snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (250) hide show
  1. snowflake/cortex/__init__.py +2 -1
  2. snowflake/cortex/_complete.py +240 -16
  3. snowflake/cortex/_extract_answer.py +0 -1
  4. snowflake/cortex/_sentiment.py +0 -1
  5. snowflake/cortex/_sse_client.py +81 -0
  6. snowflake/cortex/_summarize.py +0 -1
  7. snowflake/cortex/_translate.py +0 -1
  8. snowflake/cortex/_util.py +34 -10
  9. snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
  10. snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
  11. snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
  12. snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
  13. snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
  14. snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
  15. snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
  16. snowflake/ml/_internal/telemetry.py +26 -0
  17. snowflake/ml/_internal/utils/identifier.py +14 -0
  18. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
  19. snowflake/ml/dataset/dataset.py +54 -32
  20. snowflake/ml/dataset/dataset_factory.py +3 -4
  21. snowflake/ml/feature_store/feature_store.py +440 -243
  22. snowflake/ml/feature_store/feature_view.py +61 -9
  23. snowflake/ml/fileset/embedded_stage_fs.py +25 -21
  24. snowflake/ml/fileset/fileset.py +2 -2
  25. snowflake/ml/fileset/snowfs.py +4 -15
  26. snowflake/ml/fileset/stage_fs.py +6 -8
  27. snowflake/ml/lineage/__init__.py +3 -0
  28. snowflake/ml/lineage/lineage_node.py +139 -0
  29. snowflake/ml/model/_client/model/model_impl.py +47 -14
  30. snowflake/ml/model/_client/model/model_version_impl.py +82 -2
  31. snowflake/ml/model/_client/ops/model_ops.py +77 -5
  32. snowflake/ml/model/_client/sql/model.py +1 -0
  33. snowflake/ml/model/_client/sql/model_version.py +47 -4
  34. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
  35. snowflake/ml/model/_model_composer/model_composer.py +7 -6
  36. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
  37. snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
  38. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
  39. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +5 -3
  40. snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
  41. snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
  42. snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
  43. snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
  44. snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
  45. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
  46. snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
  47. snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
  48. snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
  49. snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
  50. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
  51. snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
  52. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
  53. snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
  54. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  55. snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
  56. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  57. snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
  58. snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
  59. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
  60. snowflake/ml/model/_packager/model_packager.py +9 -4
  61. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  62. snowflake/ml/model/_signatures/builtins_handler.py +2 -1
  63. snowflake/ml/model/_signatures/core.py +13 -1
  64. snowflake/ml/model/_signatures/pandas_handler.py +2 -0
  65. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  66. snowflake/ml/model/custom_model.py +22 -2
  67. snowflake/ml/model/model_signature.py +2 -0
  68. snowflake/ml/model/type_hints.py +74 -4
  69. snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
  70. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +158 -121
  71. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
  72. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +39 -18
  73. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +88 -134
  74. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +22 -17
  75. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  76. snowflake/ml/modeling/cluster/affinity_propagation.py +5 -3
  77. snowflake/ml/modeling/cluster/agglomerative_clustering.py +5 -3
  78. snowflake/ml/modeling/cluster/birch.py +5 -3
  79. snowflake/ml/modeling/cluster/bisecting_k_means.py +5 -3
  80. snowflake/ml/modeling/cluster/dbscan.py +5 -3
  81. snowflake/ml/modeling/cluster/feature_agglomeration.py +5 -3
  82. snowflake/ml/modeling/cluster/k_means.py +5 -3
  83. snowflake/ml/modeling/cluster/mean_shift.py +5 -3
  84. snowflake/ml/modeling/cluster/mini_batch_k_means.py +5 -3
  85. snowflake/ml/modeling/cluster/optics.py +5 -3
  86. snowflake/ml/modeling/cluster/spectral_biclustering.py +5 -3
  87. snowflake/ml/modeling/cluster/spectral_clustering.py +5 -3
  88. snowflake/ml/modeling/cluster/spectral_coclustering.py +5 -3
  89. snowflake/ml/modeling/compose/column_transformer.py +5 -3
  90. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  91. snowflake/ml/modeling/covariance/elliptic_envelope.py +5 -3
  92. snowflake/ml/modeling/covariance/empirical_covariance.py +5 -3
  93. snowflake/ml/modeling/covariance/graphical_lasso.py +5 -3
  94. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +5 -3
  95. snowflake/ml/modeling/covariance/ledoit_wolf.py +5 -3
  96. snowflake/ml/modeling/covariance/min_cov_det.py +5 -3
  97. snowflake/ml/modeling/covariance/oas.py +5 -3
  98. snowflake/ml/modeling/covariance/shrunk_covariance.py +5 -3
  99. snowflake/ml/modeling/decomposition/dictionary_learning.py +5 -3
  100. snowflake/ml/modeling/decomposition/factor_analysis.py +5 -3
  101. snowflake/ml/modeling/decomposition/fast_ica.py +5 -3
  102. snowflake/ml/modeling/decomposition/incremental_pca.py +5 -3
  103. snowflake/ml/modeling/decomposition/kernel_pca.py +5 -3
  104. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -3
  105. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -3
  106. snowflake/ml/modeling/decomposition/pca.py +5 -3
  107. snowflake/ml/modeling/decomposition/sparse_pca.py +5 -3
  108. snowflake/ml/modeling/decomposition/truncated_svd.py +5 -3
  109. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  110. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  111. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  112. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  113. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  114. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  115. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  116. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  117. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  118. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  119. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  120. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  121. snowflake/ml/modeling/ensemble/isolation_forest.py +5 -3
  122. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  123. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  124. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  125. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  126. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  127. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  128. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  129. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  130. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  131. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  132. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  133. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
  134. snowflake/ml/modeling/feature_selection/variance_threshold.py +5 -3
  135. snowflake/ml/modeling/framework/base.py +3 -8
  136. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  137. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  138. snowflake/ml/modeling/impute/iterative_imputer.py +5 -3
  139. snowflake/ml/modeling/impute/knn_imputer.py +5 -3
  140. snowflake/ml/modeling/impute/missing_indicator.py +5 -3
  141. snowflake/ml/modeling/impute/simple_imputer.py +8 -4
  142. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +5 -3
  143. snowflake/ml/modeling/kernel_approximation/nystroem.py +5 -3
  144. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +5 -3
  145. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +5 -3
  146. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +5 -3
  147. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  148. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  149. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  150. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  151. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  152. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  153. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  154. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  155. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  156. snowflake/ml/modeling/linear_model/lars.py +1 -1
  157. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  158. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  159. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  160. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  161. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  162. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  163. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  164. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  165. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  166. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  167. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  168. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  169. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  170. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  171. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  172. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  173. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  174. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  175. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  176. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  177. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  178. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  179. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  180. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  181. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -3
  182. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  183. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  184. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  185. snowflake/ml/modeling/manifold/isomap.py +5 -3
  186. snowflake/ml/modeling/manifold/mds.py +5 -3
  187. snowflake/ml/modeling/manifold/spectral_embedding.py +5 -3
  188. snowflake/ml/modeling/manifold/tsne.py +5 -3
  189. snowflake/ml/modeling/metrics/ranking.py +3 -0
  190. snowflake/ml/modeling/metrics/regression.py +3 -0
  191. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +5 -3
  192. snowflake/ml/modeling/mixture/gaussian_mixture.py +5 -3
  193. snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
  194. snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
  195. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  196. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  197. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  198. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  199. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  200. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  201. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  202. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  203. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  204. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  205. snowflake/ml/modeling/neighbors/kernel_density.py +5 -3
  206. snowflake/ml/modeling/neighbors/local_outlier_factor.py +5 -3
  207. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  208. snowflake/ml/modeling/neighbors/nearest_neighbors.py +5 -3
  209. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  210. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  211. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  212. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +5 -3
  213. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  214. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  215. snowflake/ml/modeling/pipeline/pipeline.py +6 -0
  216. snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
  217. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
  218. snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
  219. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
  220. snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
  221. snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
  222. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +53 -11
  223. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +44 -13
  224. snowflake/ml/modeling/preprocessing/polynomial_features.py +5 -3
  225. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
  226. snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
  227. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  228. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  229. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  230. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  231. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  232. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  233. snowflake/ml/modeling/svm/svc.py +1 -1
  234. snowflake/ml/modeling/svm/svr.py +1 -1
  235. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  236. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  237. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  238. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  239. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  240. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  241. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  242. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  243. snowflake/ml/registry/_manager/model_manager.py +16 -3
  244. snowflake/ml/version.py +1 -1
  245. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +51 -7
  246. snowflake_ml_python-1.5.4.dist-info/RECORD +389 -0
  247. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
  248. snowflake_ml_python-1.5.2.dist-info/RECORD +0 -384
  249. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
  250. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -311,7 +311,7 @@ class GaussianProcessRegressor(BaseTransformer):
311
311
  inspect.currentframe(), GaussianProcessRegressor.__class__.__name__
312
312
  ),
313
313
  api_calls=[Session.call],
314
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ custom_tags={"autogen": True} if self._autogenerated else None,
315
315
  )
316
316
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
317
317
  pd_df.columns = dataset.columns
@@ -77,8 +77,10 @@ class IterativeImputer(BaseTransformer):
77
77
  initialization with the `set_input_cols` method.
78
78
 
79
79
  label_cols: Optional[Union[str, List[str]]]
80
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
81
-
80
+ A string or list of strings representing column names that contain labels.
81
+ Label columns must be specified with this parameter during initialization
82
+ or with the `set_label_cols` method before fitting.
83
+
82
84
  output_cols: Optional[Union[str, List[str]]]
83
85
  A string or list of strings representing column names that will store the
84
86
  output of predict and transform operations. The length of output_cols must
@@ -353,7 +355,7 @@ class IterativeImputer(BaseTransformer):
353
355
  inspect.currentframe(), IterativeImputer.__class__.__name__
354
356
  ),
355
357
  api_calls=[Session.call],
356
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
358
+ custom_tags={"autogen": True} if self._autogenerated else None,
357
359
  )
358
360
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
359
361
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class KNNImputer(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -279,7 +281,7 @@ class KNNImputer(BaseTransformer):
279
281
  inspect.currentframe(), KNNImputer.__class__.__name__
280
282
  ),
281
283
  api_calls=[Session.call],
282
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
284
+ custom_tags={"autogen": True} if self._autogenerated else None,
283
285
  )
284
286
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
285
287
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class MissingIndicator(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -253,7 +255,7 @@ class MissingIndicator(BaseTransformer):
253
255
  inspect.currentframe(), MissingIndicator.__class__.__name__
254
256
  ),
255
257
  api_calls=[Session.call],
256
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
258
+ custom_tags={"autogen": True} if self._autogenerated else None,
257
259
  )
258
260
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
259
261
  pd_df.columns = dataset.columns
@@ -102,10 +102,14 @@ class SimpleImputer(base.BaseTransformer):
102
102
  For string or object data types, `fill_value` must be a string. If `None`, `fill_value` will be 0 when
103
103
  imputing numerical data and `missing_value` for strings and object data types.
104
104
  input_cols: Optional[Union[str, List[str]]]
105
- Columns to use as inputs during fit and transform.
105
+ The name(s) of one or more columns in the input DataFrame containing feature(s) to be imputed. Input
106
+ columns must be specified before fit with this argument or after initialization with the
107
+ `set_input_cols` method. This argument is optional for API consistency.
106
108
  output_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that will store the output of transform operation.
108
- The length of `output_cols` must equal the length of `input_cols`.
109
+ The name(s) to assign output columns in the output DataFrame. The number of
110
+ output columns specified must equal the number of input columns. Output columns must be specified before
111
+ transform with this argument or after initialization with the `set_output_cols` method. This argument is
112
+ optional for API consistency.
109
113
  passthrough_cols: A string or a list of strings indicating column names to be excluded from any
110
114
  operations (such as train, transform, or inference). These specified column(s)
111
115
  will remain untouched throughout the process. This option is helpful in scenarios
@@ -230,7 +234,7 @@ class SimpleImputer(base.BaseTransformer):
230
234
 
231
235
  return input_col_datatypes
232
236
 
233
- def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "SimpleImputer":
237
+ def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "SimpleImputer":
234
238
  if isinstance(dataset, snowpark.DataFrame):
235
239
  return self._fit_snowpark(dataset)
236
240
  else:
@@ -76,8 +76,10 @@ class AdditiveChi2Sampler(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -228,7 +230,7 @@ class AdditiveChi2Sampler(BaseTransformer):
228
230
  inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__
229
231
  ),
230
232
  api_calls=[Session.call],
231
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
233
+ custom_tags={"autogen": True} if self._autogenerated else None,
232
234
  )
233
235
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
234
236
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class Nystroem(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -276,7 +278,7 @@ class Nystroem(BaseTransformer):
276
278
  inspect.currentframe(), Nystroem.__class__.__name__
277
279
  ),
278
280
  api_calls=[Session.call],
279
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
281
+ custom_tags={"autogen": True} if self._autogenerated else None,
280
282
  )
281
283
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
282
284
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class PolynomialCountSketch(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -252,7 +254,7 @@ class PolynomialCountSketch(BaseTransformer):
252
254
  inspect.currentframe(), PolynomialCountSketch.__class__.__name__
253
255
  ),
254
256
  api_calls=[Session.call],
255
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
257
+ custom_tags={"autogen": True} if self._autogenerated else None,
256
258
  )
257
259
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
258
260
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class RBFSampler(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -239,7 +241,7 @@ class RBFSampler(BaseTransformer):
239
241
  inspect.currentframe(), RBFSampler.__class__.__name__
240
242
  ),
241
243
  api_calls=[Session.call],
242
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
244
+ custom_tags={"autogen": True} if self._autogenerated else None,
243
245
  )
244
246
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
245
247
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class SkewedChi2Sampler(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -237,7 +239,7 @@ class SkewedChi2Sampler(BaseTransformer):
237
239
  inspect.currentframe(), SkewedChi2Sampler.__class__.__name__
238
240
  ),
239
241
  api_calls=[Session.call],
240
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
242
+ custom_tags={"autogen": True} if self._autogenerated else None,
241
243
  )
242
244
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
243
245
  pd_df.columns = dataset.columns
@@ -273,7 +273,7 @@ class KernelRidge(BaseTransformer):
273
273
  inspect.currentframe(), KernelRidge.__class__.__name__
274
274
  ),
275
275
  api_calls=[Session.call],
276
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
+ custom_tags={"autogen": True} if self._autogenerated else None,
277
277
  )
278
278
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
279
279
  pd_df.columns = dataset.columns
@@ -262,7 +262,7 @@ class LGBMClassifier(BaseTransformer):
262
262
  inspect.currentframe(), LGBMClassifier.__class__.__name__
263
263
  ),
264
264
  api_calls=[Session.call],
265
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
+ custom_tags={"autogen": True} if self._autogenerated else None,
266
266
  )
267
267
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
268
268
  pd_df.columns = dataset.columns
@@ -262,7 +262,7 @@ class LGBMRegressor(BaseTransformer):
262
262
  inspect.currentframe(), LGBMRegressor.__class__.__name__
263
263
  ),
264
264
  api_calls=[Session.call],
265
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
+ custom_tags={"autogen": True} if self._autogenerated else None,
266
266
  )
267
267
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
268
268
  pd_df.columns = dataset.columns
@@ -287,7 +287,7 @@ class ARDRegression(BaseTransformer):
287
287
  inspect.currentframe(), ARDRegression.__class__.__name__
288
288
  ),
289
289
  api_calls=[Session.call],
290
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
290
+ custom_tags={"autogen": True} if self._autogenerated else None,
291
291
  )
292
292
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
293
293
  pd_df.columns = dataset.columns
@@ -298,7 +298,7 @@ class BayesianRidge(BaseTransformer):
298
298
  inspect.currentframe(), BayesianRidge.__class__.__name__
299
299
  ),
300
300
  api_calls=[Session.call],
301
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
+ custom_tags={"autogen": True} if self._autogenerated else None,
302
302
  )
303
303
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
304
304
  pd_df.columns = dataset.columns
@@ -297,7 +297,7 @@ class ElasticNet(BaseTransformer):
297
297
  inspect.currentframe(), ElasticNet.__class__.__name__
298
298
  ),
299
299
  api_calls=[Session.call],
300
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
300
+ custom_tags={"autogen": True} if self._autogenerated else None,
301
301
  )
302
302
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
303
303
  pd_df.columns = dataset.columns
@@ -333,7 +333,7 @@ class ElasticNetCV(BaseTransformer):
333
333
  inspect.currentframe(), ElasticNetCV.__class__.__name__
334
334
  ),
335
335
  api_calls=[Session.call],
336
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
+ custom_tags={"autogen": True} if self._autogenerated else None,
337
337
  )
338
338
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
339
339
  pd_df.columns = dataset.columns
@@ -278,7 +278,7 @@ class GammaRegressor(BaseTransformer):
278
278
  inspect.currentframe(), GammaRegressor.__class__.__name__
279
279
  ),
280
280
  api_calls=[Session.call],
281
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
281
+ custom_tags={"autogen": True} if self._autogenerated else None,
282
282
  )
283
283
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
284
284
  pd_df.columns = dataset.columns
@@ -261,7 +261,7 @@ class HuberRegressor(BaseTransformer):
261
261
  inspect.currentframe(), HuberRegressor.__class__.__name__
262
262
  ),
263
263
  api_calls=[Session.call],
264
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
264
+ custom_tags={"autogen": True} if self._autogenerated else None,
265
265
  )
266
266
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
267
267
  pd_df.columns = dataset.columns
@@ -290,7 +290,7 @@ class Lars(BaseTransformer):
290
290
  inspect.currentframe(), Lars.__class__.__name__
291
291
  ),
292
292
  api_calls=[Session.call],
293
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
+ custom_tags={"autogen": True} if self._autogenerated else None,
294
294
  )
295
295
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
296
296
  pd_df.columns = dataset.columns
@@ -298,7 +298,7 @@ class LarsCV(BaseTransformer):
298
298
  inspect.currentframe(), LarsCV.__class__.__name__
299
299
  ),
300
300
  api_calls=[Session.call],
301
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
+ custom_tags={"autogen": True} if self._autogenerated else None,
302
302
  )
303
303
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
304
304
  pd_df.columns = dataset.columns
@@ -291,7 +291,7 @@ class Lasso(BaseTransformer):
291
291
  inspect.currentframe(), Lasso.__class__.__name__
292
292
  ),
293
293
  api_calls=[Session.call],
294
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
+ custom_tags={"autogen": True} if self._autogenerated else None,
295
295
  )
296
296
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
297
297
  pd_df.columns = dataset.columns
@@ -319,7 +319,7 @@ class LassoCV(BaseTransformer):
319
319
  inspect.currentframe(), LassoCV.__class__.__name__
320
320
  ),
321
321
  api_calls=[Session.call],
322
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
322
+ custom_tags={"autogen": True} if self._autogenerated else None,
323
323
  )
324
324
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
325
325
  pd_df.columns = dataset.columns
@@ -311,7 +311,7 @@ class LassoLars(BaseTransformer):
311
311
  inspect.currentframe(), LassoLars.__class__.__name__
312
312
  ),
313
313
  api_calls=[Session.call],
314
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ custom_tags={"autogen": True} if self._autogenerated else None,
315
315
  )
316
316
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
317
317
  pd_df.columns = dataset.columns
@@ -312,7 +312,7 @@ class LassoLarsCV(BaseTransformer):
312
312
  inspect.currentframe(), LassoLarsCV.__class__.__name__
313
313
  ),
314
314
  api_calls=[Session.call],
315
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
315
+ custom_tags={"autogen": True} if self._autogenerated else None,
316
316
  )
317
317
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
318
318
  pd_df.columns = dataset.columns
@@ -295,7 +295,7 @@ class LassoLarsIC(BaseTransformer):
295
295
  inspect.currentframe(), LassoLarsIC.__class__.__name__
296
296
  ),
297
297
  api_calls=[Session.call],
298
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
298
+ custom_tags={"autogen": True} if self._autogenerated else None,
299
299
  )
300
300
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
301
301
  pd_df.columns = dataset.columns
@@ -248,7 +248,7 @@ class LinearRegression(BaseTransformer):
248
248
  inspect.currentframe(), LinearRegression.__class__.__name__
249
249
  ),
250
250
  api_calls=[Session.call],
251
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
251
+ custom_tags={"autogen": True} if self._autogenerated else None,
252
252
  )
253
253
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
254
254
  pd_df.columns = dataset.columns
@@ -362,7 +362,7 @@ class LogisticRegression(BaseTransformer):
362
362
  inspect.currentframe(), LogisticRegression.__class__.__name__
363
363
  ),
364
364
  api_calls=[Session.call],
365
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
365
+ custom_tags={"autogen": True} if self._autogenerated else None,
366
366
  )
367
367
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
368
368
  pd_df.columns = dataset.columns
@@ -383,7 +383,7 @@ class LogisticRegressionCV(BaseTransformer):
383
383
  inspect.currentframe(), LogisticRegressionCV.__class__.__name__
384
384
  ),
385
385
  api_calls=[Session.call],
386
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
386
+ custom_tags={"autogen": True} if self._autogenerated else None,
387
387
  )
388
388
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
389
389
  pd_df.columns = dataset.columns
@@ -281,7 +281,7 @@ class MultiTaskElasticNet(BaseTransformer):
281
281
  inspect.currentframe(), MultiTaskElasticNet.__class__.__name__
282
282
  ),
283
283
  api_calls=[Session.call],
284
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
284
+ custom_tags={"autogen": True} if self._autogenerated else None,
285
285
  )
286
286
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
287
287
  pd_df.columns = dataset.columns
@@ -322,7 +322,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
322
322
  inspect.currentframe(), MultiTaskElasticNetCV.__class__.__name__
323
323
  ),
324
324
  api_calls=[Session.call],
325
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
+ custom_tags={"autogen": True} if self._autogenerated else None,
326
326
  )
327
327
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
328
328
  pd_df.columns = dataset.columns
@@ -273,7 +273,7 @@ class MultiTaskLasso(BaseTransformer):
273
273
  inspect.currentframe(), MultiTaskLasso.__class__.__name__
274
274
  ),
275
275
  api_calls=[Session.call],
276
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
+ custom_tags={"autogen": True} if self._autogenerated else None,
277
277
  )
278
278
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
279
279
  pd_df.columns = dataset.columns
@@ -308,7 +308,7 @@ class MultiTaskLassoCV(BaseTransformer):
308
308
  inspect.currentframe(), MultiTaskLassoCV.__class__.__name__
309
309
  ),
310
310
  api_calls=[Session.call],
311
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
311
+ custom_tags={"autogen": True} if self._autogenerated else None,
312
312
  )
313
313
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
314
314
  pd_df.columns = dataset.columns
@@ -256,7 +256,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
256
256
  inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__
257
257
  ),
258
258
  api_calls=[Session.call],
259
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
259
+ custom_tags={"autogen": True} if self._autogenerated else None,
260
260
  )
261
261
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
262
262
  pd_df.columns = dataset.columns
@@ -330,7 +330,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
330
330
  inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__
331
331
  ),
332
332
  api_calls=[Session.call],
333
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
333
+ custom_tags={"autogen": True} if self._autogenerated else None,
334
334
  )
335
335
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
336
336
  pd_df.columns = dataset.columns
@@ -316,7 +316,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
316
316
  inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__
317
317
  ),
318
318
  api_calls=[Session.call],
319
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
319
+ custom_tags={"autogen": True} if self._autogenerated else None,
320
320
  )
321
321
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
322
322
  pd_df.columns = dataset.columns
@@ -329,7 +329,7 @@ class Perceptron(BaseTransformer):
329
329
  inspect.currentframe(), Perceptron.__class__.__name__
330
330
  ),
331
331
  api_calls=[Session.call],
332
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
332
+ custom_tags={"autogen": True} if self._autogenerated else None,
333
333
  )
334
334
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
335
335
  pd_df.columns = dataset.columns
@@ -278,7 +278,7 @@ class PoissonRegressor(BaseTransformer):
278
278
  inspect.currentframe(), PoissonRegressor.__class__.__name__
279
279
  ),
280
280
  api_calls=[Session.call],
281
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
281
+ custom_tags={"autogen": True} if self._autogenerated else None,
282
282
  )
283
283
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
284
284
  pd_df.columns = dataset.columns
@@ -334,7 +334,7 @@ class RANSACRegressor(BaseTransformer):
334
334
  inspect.currentframe(), RANSACRegressor.__class__.__name__
335
335
  ),
336
336
  api_calls=[Session.call],
337
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
337
+ custom_tags={"autogen": True} if self._autogenerated else None,
338
338
  )
339
339
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
340
340
  pd_df.columns = dataset.columns
@@ -326,7 +326,7 @@ class Ridge(BaseTransformer):
326
326
  inspect.currentframe(), Ridge.__class__.__name__
327
327
  ),
328
328
  api_calls=[Session.call],
329
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
+ custom_tags={"autogen": True} if self._autogenerated else None,
330
330
  )
331
331
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
332
332
  pd_df.columns = dataset.columns
@@ -326,7 +326,7 @@ class RidgeClassifier(BaseTransformer):
326
326
  inspect.currentframe(), RidgeClassifier.__class__.__name__
327
327
  ),
328
328
  api_calls=[Session.call],
329
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
+ custom_tags={"autogen": True} if self._autogenerated else None,
330
330
  )
331
331
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
332
332
  pd_df.columns = dataset.columns
@@ -277,7 +277,7 @@ class RidgeClassifierCV(BaseTransformer):
277
277
  inspect.currentframe(), RidgeClassifierCV.__class__.__name__
278
278
  ),
279
279
  api_calls=[Session.call],
280
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
+ custom_tags={"autogen": True} if self._autogenerated else None,
281
281
  )
282
282
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
283
283
  pd_df.columns = dataset.columns
@@ -298,7 +298,7 @@ class RidgeCV(BaseTransformer):
298
298
  inspect.currentframe(), RidgeCV.__class__.__name__
299
299
  ),
300
300
  api_calls=[Session.call],
301
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
+ custom_tags={"autogen": True} if self._autogenerated else None,
302
302
  )
303
303
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
304
304
  pd_df.columns = dataset.columns
@@ -417,7 +417,7 @@ class SGDClassifier(BaseTransformer):
417
417
  inspect.currentframe(), SGDClassifier.__class__.__name__
418
418
  ),
419
419
  api_calls=[Session.call],
420
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
420
+ custom_tags={"autogen": True} if self._autogenerated else None,
421
421
  )
422
422
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
423
423
  pd_df.columns = dataset.columns
@@ -76,8 +76,10 @@ class SGDOneClassSVM(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -315,7 +317,7 @@ class SGDOneClassSVM(BaseTransformer):
315
317
  inspect.currentframe(), SGDOneClassSVM.__class__.__name__
316
318
  ),
317
319
  api_calls=[Session.call],
318
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
320
+ custom_tags={"autogen": True} if self._autogenerated else None,
319
321
  )
320
322
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
321
323
  pd_df.columns = dataset.columns