snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/__init__.py +2 -1
- snowflake/cortex/_complete.py +240 -16
- snowflake/cortex/_extract_answer.py +0 -1
- snowflake/cortex/_sentiment.py +0 -1
- snowflake/cortex/_sse_client.py +81 -0
- snowflake/cortex/_summarize.py +0 -1
- snowflake/cortex/_translate.py +0 -1
- snowflake/cortex/_util.py +34 -10
- snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
- snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
- snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
- snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
- snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
- snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
- snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
- snowflake/ml/_internal/telemetry.py +26 -0
- snowflake/ml/_internal/utils/identifier.py +14 -0
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
- snowflake/ml/dataset/dataset.py +54 -32
- snowflake/ml/dataset/dataset_factory.py +3 -4
- snowflake/ml/feature_store/feature_store.py +440 -243
- snowflake/ml/feature_store/feature_view.py +61 -9
- snowflake/ml/fileset/embedded_stage_fs.py +25 -21
- snowflake/ml/fileset/fileset.py +2 -2
- snowflake/ml/fileset/snowfs.py +4 -15
- snowflake/ml/fileset/stage_fs.py +6 -8
- snowflake/ml/lineage/__init__.py +3 -0
- snowflake/ml/lineage/lineage_node.py +139 -0
- snowflake/ml/model/_client/model/model_impl.py +47 -14
- snowflake/ml/model/_client/model/model_version_impl.py +82 -2
- snowflake/ml/model/_client/ops/model_ops.py +77 -5
- snowflake/ml/model/_client/sql/model.py +1 -0
- snowflake/ml/model/_client/sql/model_version.py +47 -4
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
- snowflake/ml/model/_model_composer/model_composer.py +7 -6
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
- snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +5 -3
- snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
- snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
- snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
- snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
- snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
- snowflake/ml/model/_packager/model_packager.py +9 -4
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
- snowflake/ml/model/_signatures/builtins_handler.py +2 -1
- snowflake/ml/model/_signatures/core.py +13 -1
- snowflake/ml/model/_signatures/pandas_handler.py +2 -0
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/custom_model.py +22 -2
- snowflake/ml/model/model_signature.py +2 -0
- snowflake/ml/model/type_hints.py +74 -4
- snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +158 -121
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +39 -18
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +88 -134
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +22 -17
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +5 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +5 -3
- snowflake/ml/modeling/cluster/birch.py +5 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +5 -3
- snowflake/ml/modeling/cluster/dbscan.py +5 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +5 -3
- snowflake/ml/modeling/cluster/k_means.py +5 -3
- snowflake/ml/modeling/cluster/mean_shift.py +5 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +5 -3
- snowflake/ml/modeling/cluster/optics.py +5 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +5 -3
- snowflake/ml/modeling/compose/column_transformer.py +5 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +5 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +5 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +5 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +5 -3
- snowflake/ml/modeling/covariance/oas.py +5 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +5 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +5 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +5 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +5 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/pca.py +5 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +5 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +5 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +5 -3
- snowflake/ml/modeling/framework/base.py +3 -8
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +5 -3
- snowflake/ml/modeling/impute/knn_imputer.py +5 -3
- snowflake/ml/modeling/impute/missing_indicator.py +5 -3
- snowflake/ml/modeling/impute/simple_imputer.py +8 -4
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +5 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +5 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +5 -3
- snowflake/ml/modeling/manifold/mds.py +5 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +5 -3
- snowflake/ml/modeling/manifold/tsne.py +5 -3
- snowflake/ml/modeling/metrics/ranking.py +3 -0
- snowflake/ml/modeling/metrics/regression.py +3 -0
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +5 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +5 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +5 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +5 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +5 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +5 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/pipeline/pipeline.py +6 -0
- snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
- snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +53 -11
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +44 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +5 -3
- snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/registry/_manager/model_manager.py +16 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +51 -7
- snowflake_ml_python-1.5.4.dist-info/RECORD +389 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
- snowflake_ml_python-1.5.2.dist-info/RECORD +0 -384
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -311,7 +311,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
311
311
|
inspect.currentframe(), GaussianProcessRegressor.__class__.__name__
|
312
312
|
),
|
313
313
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
314
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
315
|
)
|
316
316
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
317
|
pd_df.columns = dataset.columns
|
@@ -77,8 +77,10 @@ class IterativeImputer(BaseTransformer):
|
|
77
77
|
initialization with the `set_input_cols` method.
|
78
78
|
|
79
79
|
label_cols: Optional[Union[str, List[str]]]
|
80
|
-
|
81
|
-
|
80
|
+
A string or list of strings representing column names that contain labels.
|
81
|
+
Label columns must be specified with this parameter during initialization
|
82
|
+
or with the `set_label_cols` method before fitting.
|
83
|
+
|
82
84
|
output_cols: Optional[Union[str, List[str]]]
|
83
85
|
A string or list of strings representing column names that will store the
|
84
86
|
output of predict and transform operations. The length of output_cols must
|
@@ -353,7 +355,7 @@ class IterativeImputer(BaseTransformer):
|
|
353
355
|
inspect.currentframe(), IterativeImputer.__class__.__name__
|
354
356
|
),
|
355
357
|
api_calls=[Session.call],
|
356
|
-
custom_tags=
|
358
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
357
359
|
)
|
358
360
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
359
361
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class KNNImputer(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -279,7 +281,7 @@ class KNNImputer(BaseTransformer):
|
|
279
281
|
inspect.currentframe(), KNNImputer.__class__.__name__
|
280
282
|
),
|
281
283
|
api_calls=[Session.call],
|
282
|
-
custom_tags=
|
284
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
283
285
|
)
|
284
286
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
287
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MissingIndicator(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -253,7 +255,7 @@ class MissingIndicator(BaseTransformer):
|
|
253
255
|
inspect.currentframe(), MissingIndicator.__class__.__name__
|
254
256
|
),
|
255
257
|
api_calls=[Session.call],
|
256
|
-
custom_tags=
|
258
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
257
259
|
)
|
258
260
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
259
261
|
pd_df.columns = dataset.columns
|
@@ -102,10 +102,14 @@ class SimpleImputer(base.BaseTransformer):
|
|
102
102
|
For string or object data types, `fill_value` must be a string. If `None`, `fill_value` will be 0 when
|
103
103
|
imputing numerical data and `missing_value` for strings and object data types.
|
104
104
|
input_cols: Optional[Union[str, List[str]]]
|
105
|
-
|
105
|
+
The name(s) of one or more columns in the input DataFrame containing feature(s) to be imputed. Input
|
106
|
+
columns must be specified before fit with this argument or after initialization with the
|
107
|
+
`set_input_cols` method. This argument is optional for API consistency.
|
106
108
|
output_cols: Optional[Union[str, List[str]]]
|
107
|
-
|
108
|
-
|
109
|
+
The name(s) to assign output columns in the output DataFrame. The number of
|
110
|
+
output columns specified must equal the number of input columns. Output columns must be specified before
|
111
|
+
transform with this argument or after initialization with the `set_output_cols` method. This argument is
|
112
|
+
optional for API consistency.
|
109
113
|
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
110
114
|
operations (such as train, transform, or inference). These specified column(s)
|
111
115
|
will remain untouched throughout the process. This option is helpful in scenarios
|
@@ -230,7 +234,7 @@ class SimpleImputer(base.BaseTransformer):
|
|
230
234
|
|
231
235
|
return input_col_datatypes
|
232
236
|
|
233
|
-
def
|
237
|
+
def _fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "SimpleImputer":
|
234
238
|
if isinstance(dataset, snowpark.DataFrame):
|
235
239
|
return self._fit_snowpark(dataset)
|
236
240
|
else:
|
@@ -76,8 +76,10 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -228,7 +230,7 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
228
230
|
inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__
|
229
231
|
),
|
230
232
|
api_calls=[Session.call],
|
231
|
-
custom_tags=
|
233
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
232
234
|
)
|
233
235
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
234
236
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class Nystroem(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -276,7 +278,7 @@ class Nystroem(BaseTransformer):
|
|
276
278
|
inspect.currentframe(), Nystroem.__class__.__name__
|
277
279
|
),
|
278
280
|
api_calls=[Session.call],
|
279
|
-
custom_tags=
|
281
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
280
282
|
)
|
281
283
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
282
284
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class PolynomialCountSketch(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -252,7 +254,7 @@ class PolynomialCountSketch(BaseTransformer):
|
|
252
254
|
inspect.currentframe(), PolynomialCountSketch.__class__.__name__
|
253
255
|
),
|
254
256
|
api_calls=[Session.call],
|
255
|
-
custom_tags=
|
257
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
256
258
|
)
|
257
259
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
258
260
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class RBFSampler(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -239,7 +241,7 @@ class RBFSampler(BaseTransformer):
|
|
239
241
|
inspect.currentframe(), RBFSampler.__class__.__name__
|
240
242
|
),
|
241
243
|
api_calls=[Session.call],
|
242
|
-
custom_tags=
|
244
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
243
245
|
)
|
244
246
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
245
247
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -237,7 +239,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
237
239
|
inspect.currentframe(), SkewedChi2Sampler.__class__.__name__
|
238
240
|
),
|
239
241
|
api_calls=[Session.call],
|
240
|
-
custom_tags=
|
242
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
241
243
|
)
|
242
244
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
245
|
pd_df.columns = dataset.columns
|
@@ -273,7 +273,7 @@ class KernelRidge(BaseTransformer):
|
|
273
273
|
inspect.currentframe(), KernelRidge.__class__.__name__
|
274
274
|
),
|
275
275
|
api_calls=[Session.call],
|
276
|
-
custom_tags=
|
276
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
277
277
|
)
|
278
278
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
279
279
|
pd_df.columns = dataset.columns
|
@@ -262,7 +262,7 @@ class LGBMClassifier(BaseTransformer):
|
|
262
262
|
inspect.currentframe(), LGBMClassifier.__class__.__name__
|
263
263
|
),
|
264
264
|
api_calls=[Session.call],
|
265
|
-
custom_tags=
|
265
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
266
266
|
)
|
267
267
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
268
268
|
pd_df.columns = dataset.columns
|
@@ -262,7 +262,7 @@ class LGBMRegressor(BaseTransformer):
|
|
262
262
|
inspect.currentframe(), LGBMRegressor.__class__.__name__
|
263
263
|
),
|
264
264
|
api_calls=[Session.call],
|
265
|
-
custom_tags=
|
265
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
266
266
|
)
|
267
267
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
268
268
|
pd_df.columns = dataset.columns
|
@@ -287,7 +287,7 @@ class ARDRegression(BaseTransformer):
|
|
287
287
|
inspect.currentframe(), ARDRegression.__class__.__name__
|
288
288
|
),
|
289
289
|
api_calls=[Session.call],
|
290
|
-
custom_tags=
|
290
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
291
291
|
)
|
292
292
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
293
293
|
pd_df.columns = dataset.columns
|
@@ -298,7 +298,7 @@ class BayesianRidge(BaseTransformer):
|
|
298
298
|
inspect.currentframe(), BayesianRidge.__class__.__name__
|
299
299
|
),
|
300
300
|
api_calls=[Session.call],
|
301
|
-
custom_tags=
|
301
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
302
302
|
)
|
303
303
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
304
304
|
pd_df.columns = dataset.columns
|
@@ -297,7 +297,7 @@ class ElasticNet(BaseTransformer):
|
|
297
297
|
inspect.currentframe(), ElasticNet.__class__.__name__
|
298
298
|
),
|
299
299
|
api_calls=[Session.call],
|
300
|
-
custom_tags=
|
300
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
301
301
|
)
|
302
302
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
303
303
|
pd_df.columns = dataset.columns
|
@@ -333,7 +333,7 @@ class ElasticNetCV(BaseTransformer):
|
|
333
333
|
inspect.currentframe(), ElasticNetCV.__class__.__name__
|
334
334
|
),
|
335
335
|
api_calls=[Session.call],
|
336
|
-
custom_tags=
|
336
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
337
337
|
)
|
338
338
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
339
339
|
pd_df.columns = dataset.columns
|
@@ -278,7 +278,7 @@ class GammaRegressor(BaseTransformer):
|
|
278
278
|
inspect.currentframe(), GammaRegressor.__class__.__name__
|
279
279
|
),
|
280
280
|
api_calls=[Session.call],
|
281
|
-
custom_tags=
|
281
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
282
282
|
)
|
283
283
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
284
284
|
pd_df.columns = dataset.columns
|
@@ -261,7 +261,7 @@ class HuberRegressor(BaseTransformer):
|
|
261
261
|
inspect.currentframe(), HuberRegressor.__class__.__name__
|
262
262
|
),
|
263
263
|
api_calls=[Session.call],
|
264
|
-
custom_tags=
|
264
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
265
265
|
)
|
266
266
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
267
267
|
pd_df.columns = dataset.columns
|
@@ -290,7 +290,7 @@ class Lars(BaseTransformer):
|
|
290
290
|
inspect.currentframe(), Lars.__class__.__name__
|
291
291
|
),
|
292
292
|
api_calls=[Session.call],
|
293
|
-
custom_tags=
|
293
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
294
294
|
)
|
295
295
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
296
|
pd_df.columns = dataset.columns
|
@@ -298,7 +298,7 @@ class LarsCV(BaseTransformer):
|
|
298
298
|
inspect.currentframe(), LarsCV.__class__.__name__
|
299
299
|
),
|
300
300
|
api_calls=[Session.call],
|
301
|
-
custom_tags=
|
301
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
302
302
|
)
|
303
303
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
304
304
|
pd_df.columns = dataset.columns
|
@@ -291,7 +291,7 @@ class Lasso(BaseTransformer):
|
|
291
291
|
inspect.currentframe(), Lasso.__class__.__name__
|
292
292
|
),
|
293
293
|
api_calls=[Session.call],
|
294
|
-
custom_tags=
|
294
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
295
295
|
)
|
296
296
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
297
297
|
pd_df.columns = dataset.columns
|
@@ -319,7 +319,7 @@ class LassoCV(BaseTransformer):
|
|
319
319
|
inspect.currentframe(), LassoCV.__class__.__name__
|
320
320
|
),
|
321
321
|
api_calls=[Session.call],
|
322
|
-
custom_tags=
|
322
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
323
323
|
)
|
324
324
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
325
325
|
pd_df.columns = dataset.columns
|
@@ -311,7 +311,7 @@ class LassoLars(BaseTransformer):
|
|
311
311
|
inspect.currentframe(), LassoLars.__class__.__name__
|
312
312
|
),
|
313
313
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
314
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
315
|
)
|
316
316
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
317
|
pd_df.columns = dataset.columns
|
@@ -312,7 +312,7 @@ class LassoLarsCV(BaseTransformer):
|
|
312
312
|
inspect.currentframe(), LassoLarsCV.__class__.__name__
|
313
313
|
),
|
314
314
|
api_calls=[Session.call],
|
315
|
-
custom_tags=
|
315
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
316
316
|
)
|
317
317
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
318
318
|
pd_df.columns = dataset.columns
|
@@ -295,7 +295,7 @@ class LassoLarsIC(BaseTransformer):
|
|
295
295
|
inspect.currentframe(), LassoLarsIC.__class__.__name__
|
296
296
|
),
|
297
297
|
api_calls=[Session.call],
|
298
|
-
custom_tags=
|
298
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
299
299
|
)
|
300
300
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
301
301
|
pd_df.columns = dataset.columns
|
@@ -248,7 +248,7 @@ class LinearRegression(BaseTransformer):
|
|
248
248
|
inspect.currentframe(), LinearRegression.__class__.__name__
|
249
249
|
),
|
250
250
|
api_calls=[Session.call],
|
251
|
-
custom_tags=
|
251
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
252
252
|
)
|
253
253
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
254
|
pd_df.columns = dataset.columns
|
@@ -362,7 +362,7 @@ class LogisticRegression(BaseTransformer):
|
|
362
362
|
inspect.currentframe(), LogisticRegression.__class__.__name__
|
363
363
|
),
|
364
364
|
api_calls=[Session.call],
|
365
|
-
custom_tags=
|
365
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
366
366
|
)
|
367
367
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
368
368
|
pd_df.columns = dataset.columns
|
@@ -383,7 +383,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
383
383
|
inspect.currentframe(), LogisticRegressionCV.__class__.__name__
|
384
384
|
),
|
385
385
|
api_calls=[Session.call],
|
386
|
-
custom_tags=
|
386
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
387
387
|
)
|
388
388
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
389
389
|
pd_df.columns = dataset.columns
|
@@ -281,7 +281,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
281
281
|
inspect.currentframe(), MultiTaskElasticNet.__class__.__name__
|
282
282
|
),
|
283
283
|
api_calls=[Session.call],
|
284
|
-
custom_tags=
|
284
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
285
285
|
)
|
286
286
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
287
287
|
pd_df.columns = dataset.columns
|
@@ -322,7 +322,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
|
|
322
322
|
inspect.currentframe(), MultiTaskElasticNetCV.__class__.__name__
|
323
323
|
),
|
324
324
|
api_calls=[Session.call],
|
325
|
-
custom_tags=
|
325
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
326
326
|
)
|
327
327
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
328
328
|
pd_df.columns = dataset.columns
|
@@ -273,7 +273,7 @@ class MultiTaskLasso(BaseTransformer):
|
|
273
273
|
inspect.currentframe(), MultiTaskLasso.__class__.__name__
|
274
274
|
),
|
275
275
|
api_calls=[Session.call],
|
276
|
-
custom_tags=
|
276
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
277
277
|
)
|
278
278
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
279
279
|
pd_df.columns = dataset.columns
|
@@ -308,7 +308,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
308
308
|
inspect.currentframe(), MultiTaskLassoCV.__class__.__name__
|
309
309
|
),
|
310
310
|
api_calls=[Session.call],
|
311
|
-
custom_tags=
|
311
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
312
312
|
)
|
313
313
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
314
314
|
pd_df.columns = dataset.columns
|
@@ -256,7 +256,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
256
256
|
inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__
|
257
257
|
),
|
258
258
|
api_calls=[Session.call],
|
259
|
-
custom_tags=
|
259
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
260
260
|
)
|
261
261
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
262
262
|
pd_df.columns = dataset.columns
|
@@ -330,7 +330,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
330
330
|
inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__
|
331
331
|
),
|
332
332
|
api_calls=[Session.call],
|
333
|
-
custom_tags=
|
333
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
334
334
|
)
|
335
335
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
336
336
|
pd_df.columns = dataset.columns
|
@@ -316,7 +316,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
316
316
|
inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__
|
317
317
|
),
|
318
318
|
api_calls=[Session.call],
|
319
|
-
custom_tags=
|
319
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
320
320
|
)
|
321
321
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
322
322
|
pd_df.columns = dataset.columns
|
@@ -329,7 +329,7 @@ class Perceptron(BaseTransformer):
|
|
329
329
|
inspect.currentframe(), Perceptron.__class__.__name__
|
330
330
|
),
|
331
331
|
api_calls=[Session.call],
|
332
|
-
custom_tags=
|
332
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
333
333
|
)
|
334
334
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
335
335
|
pd_df.columns = dataset.columns
|
@@ -278,7 +278,7 @@ class PoissonRegressor(BaseTransformer):
|
|
278
278
|
inspect.currentframe(), PoissonRegressor.__class__.__name__
|
279
279
|
),
|
280
280
|
api_calls=[Session.call],
|
281
|
-
custom_tags=
|
281
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
282
282
|
)
|
283
283
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
284
284
|
pd_df.columns = dataset.columns
|
@@ -334,7 +334,7 @@ class RANSACRegressor(BaseTransformer):
|
|
334
334
|
inspect.currentframe(), RANSACRegressor.__class__.__name__
|
335
335
|
),
|
336
336
|
api_calls=[Session.call],
|
337
|
-
custom_tags=
|
337
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
338
338
|
)
|
339
339
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
340
340
|
pd_df.columns = dataset.columns
|
@@ -326,7 +326,7 @@ class Ridge(BaseTransformer):
|
|
326
326
|
inspect.currentframe(), Ridge.__class__.__name__
|
327
327
|
),
|
328
328
|
api_calls=[Session.call],
|
329
|
-
custom_tags=
|
329
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
330
330
|
)
|
331
331
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
332
332
|
pd_df.columns = dataset.columns
|
@@ -326,7 +326,7 @@ class RidgeClassifier(BaseTransformer):
|
|
326
326
|
inspect.currentframe(), RidgeClassifier.__class__.__name__
|
327
327
|
),
|
328
328
|
api_calls=[Session.call],
|
329
|
-
custom_tags=
|
329
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
330
330
|
)
|
331
331
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
332
332
|
pd_df.columns = dataset.columns
|
@@ -277,7 +277,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
277
277
|
inspect.currentframe(), RidgeClassifierCV.__class__.__name__
|
278
278
|
),
|
279
279
|
api_calls=[Session.call],
|
280
|
-
custom_tags=
|
280
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
281
281
|
)
|
282
282
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
283
283
|
pd_df.columns = dataset.columns
|
@@ -298,7 +298,7 @@ class RidgeCV(BaseTransformer):
|
|
298
298
|
inspect.currentframe(), RidgeCV.__class__.__name__
|
299
299
|
),
|
300
300
|
api_calls=[Session.call],
|
301
|
-
custom_tags=
|
301
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
302
302
|
)
|
303
303
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
304
304
|
pd_df.columns = dataset.columns
|
@@ -417,7 +417,7 @@ class SGDClassifier(BaseTransformer):
|
|
417
417
|
inspect.currentframe(), SGDClassifier.__class__.__name__
|
418
418
|
),
|
419
419
|
api_calls=[Session.call],
|
420
|
-
custom_tags=
|
420
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
421
421
|
)
|
422
422
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
423
423
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SGDOneClassSVM(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -315,7 +317,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
315
317
|
inspect.currentframe(), SGDOneClassSVM.__class__.__name__
|
316
318
|
),
|
317
319
|
api_calls=[Session.call],
|
318
|
-
custom_tags=
|
320
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
319
321
|
)
|
320
322
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
321
323
|
pd_df.columns = dataset.columns
|