snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/__init__.py +2 -1
- snowflake/cortex/_complete.py +240 -16
- snowflake/cortex/_extract_answer.py +0 -1
- snowflake/cortex/_sentiment.py +0 -1
- snowflake/cortex/_sse_client.py +81 -0
- snowflake/cortex/_summarize.py +0 -1
- snowflake/cortex/_translate.py +0 -1
- snowflake/cortex/_util.py +34 -10
- snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
- snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
- snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
- snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
- snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
- snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
- snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
- snowflake/ml/_internal/telemetry.py +26 -0
- snowflake/ml/_internal/utils/identifier.py +14 -0
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
- snowflake/ml/dataset/dataset.py +54 -32
- snowflake/ml/dataset/dataset_factory.py +3 -4
- snowflake/ml/feature_store/feature_store.py +440 -243
- snowflake/ml/feature_store/feature_view.py +61 -9
- snowflake/ml/fileset/embedded_stage_fs.py +25 -21
- snowflake/ml/fileset/fileset.py +2 -2
- snowflake/ml/fileset/snowfs.py +4 -15
- snowflake/ml/fileset/stage_fs.py +6 -8
- snowflake/ml/lineage/__init__.py +3 -0
- snowflake/ml/lineage/lineage_node.py +139 -0
- snowflake/ml/model/_client/model/model_impl.py +47 -14
- snowflake/ml/model/_client/model/model_version_impl.py +82 -2
- snowflake/ml/model/_client/ops/model_ops.py +77 -5
- snowflake/ml/model/_client/sql/model.py +1 -0
- snowflake/ml/model/_client/sql/model_version.py +47 -4
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
- snowflake/ml/model/_model_composer/model_composer.py +7 -6
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
- snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +5 -3
- snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
- snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
- snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
- snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
- snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
- snowflake/ml/model/_packager/model_packager.py +9 -4
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
- snowflake/ml/model/_signatures/builtins_handler.py +2 -1
- snowflake/ml/model/_signatures/core.py +13 -1
- snowflake/ml/model/_signatures/pandas_handler.py +2 -0
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/custom_model.py +22 -2
- snowflake/ml/model/model_signature.py +2 -0
- snowflake/ml/model/type_hints.py +74 -4
- snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +158 -121
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +39 -18
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +88 -134
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +22 -17
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +5 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +5 -3
- snowflake/ml/modeling/cluster/birch.py +5 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +5 -3
- snowflake/ml/modeling/cluster/dbscan.py +5 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +5 -3
- snowflake/ml/modeling/cluster/k_means.py +5 -3
- snowflake/ml/modeling/cluster/mean_shift.py +5 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +5 -3
- snowflake/ml/modeling/cluster/optics.py +5 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +5 -3
- snowflake/ml/modeling/compose/column_transformer.py +5 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +5 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +5 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +5 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +5 -3
- snowflake/ml/modeling/covariance/oas.py +5 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +5 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +5 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +5 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +5 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/pca.py +5 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +5 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +5 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +5 -3
- snowflake/ml/modeling/framework/base.py +3 -8
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +5 -3
- snowflake/ml/modeling/impute/knn_imputer.py +5 -3
- snowflake/ml/modeling/impute/missing_indicator.py +5 -3
- snowflake/ml/modeling/impute/simple_imputer.py +8 -4
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +5 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +5 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +5 -3
- snowflake/ml/modeling/manifold/mds.py +5 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +5 -3
- snowflake/ml/modeling/manifold/tsne.py +5 -3
- snowflake/ml/modeling/metrics/ranking.py +3 -0
- snowflake/ml/modeling/metrics/regression.py +3 -0
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +5 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +5 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +5 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +5 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +5 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +5 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/pipeline/pipeline.py +6 -0
- snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
- snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +53 -11
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +44 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +5 -3
- snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/registry/_manager/model_manager.py +16 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +51 -7
- snowflake_ml_python-1.5.4.dist-info/RECORD +389 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
- snowflake_ml_python-1.5.2.dist-info/RECORD +0 -384
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -76,8 +76,10 @@ class ShrunkCovariance(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -237,7 +239,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
237
239
|
inspect.currentframe(), ShrunkCovariance.__class__.__name__
|
238
240
|
),
|
239
241
|
api_calls=[Session.call],
|
240
|
-
custom_tags=
|
242
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
241
243
|
)
|
242
244
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
245
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class DictionaryLearning(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -343,7 +345,7 @@ class DictionaryLearning(BaseTransformer):
|
|
343
345
|
inspect.currentframe(), DictionaryLearning.__class__.__name__
|
344
346
|
),
|
345
347
|
api_calls=[Session.call],
|
346
|
-
custom_tags=
|
348
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
347
349
|
)
|
348
350
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
349
351
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class FactorAnalysis(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -280,7 +282,7 @@ class FactorAnalysis(BaseTransformer):
|
|
280
282
|
inspect.currentframe(), FactorAnalysis.__class__.__name__
|
281
283
|
),
|
282
284
|
api_calls=[Session.call],
|
283
|
-
custom_tags=
|
285
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
284
286
|
)
|
285
287
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
286
288
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class FastICA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -298,7 +300,7 @@ class FastICA(BaseTransformer):
|
|
298
300
|
inspect.currentframe(), FastICA.__class__.__name__
|
299
301
|
),
|
300
302
|
api_calls=[Session.call],
|
301
|
-
custom_tags=
|
303
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
302
304
|
)
|
303
305
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
304
306
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class IncrementalPCA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -250,7 +252,7 @@ class IncrementalPCA(BaseTransformer):
|
|
250
252
|
inspect.currentframe(), IncrementalPCA.__class__.__name__
|
251
253
|
),
|
252
254
|
api_calls=[Session.call],
|
253
|
-
custom_tags=
|
255
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
254
256
|
)
|
255
257
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
256
258
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class KernelPCA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -346,7 +348,7 @@ class KernelPCA(BaseTransformer):
|
|
346
348
|
inspect.currentframe(), KernelPCA.__class__.__name__
|
347
349
|
),
|
348
350
|
api_calls=[Session.call],
|
349
|
-
custom_tags=
|
351
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
350
352
|
)
|
351
353
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
352
354
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -368,7 +370,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
368
370
|
inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__
|
369
371
|
),
|
370
372
|
api_calls=[Session.call],
|
371
|
-
custom_tags=
|
373
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
372
374
|
)
|
373
375
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
374
376
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MiniBatchSparsePCA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -313,7 +315,7 @@ class MiniBatchSparsePCA(BaseTransformer):
|
|
313
315
|
inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__
|
314
316
|
),
|
315
317
|
api_calls=[Session.call],
|
316
|
-
custom_tags=
|
318
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
317
319
|
)
|
318
320
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
321
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class PCA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -315,7 +317,7 @@ class PCA(BaseTransformer):
|
|
315
317
|
inspect.currentframe(), PCA.__class__.__name__
|
316
318
|
),
|
317
319
|
api_calls=[Session.call],
|
318
|
-
custom_tags=
|
320
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
319
321
|
)
|
320
322
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
321
323
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SparsePCA(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -288,7 +290,7 @@ class SparsePCA(BaseTransformer):
|
|
288
290
|
inspect.currentframe(), SparsePCA.__class__.__name__
|
289
291
|
),
|
290
292
|
api_calls=[Session.call],
|
291
|
-
custom_tags=
|
293
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
292
294
|
)
|
293
295
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
294
296
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class TruncatedSVD(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -269,7 +271,7 @@ class TruncatedSVD(BaseTransformer):
|
|
269
271
|
inspect.currentframe(), TruncatedSVD.__class__.__name__
|
270
272
|
),
|
271
273
|
api_calls=[Session.call],
|
272
|
-
custom_tags=
|
274
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
273
275
|
)
|
274
276
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
277
|
pd_df.columns = dataset.columns
|
@@ -286,7 +286,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
286
286
|
inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
|
287
287
|
),
|
288
288
|
api_calls=[Session.call],
|
289
|
-
custom_tags=
|
289
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
290
290
|
)
|
291
291
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
292
292
|
pd_df.columns = dataset.columns
|
@@ -248,7 +248,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
248
248
|
inspect.currentframe(), QuadraticDiscriminantAnalysis.__class__.__name__
|
249
249
|
),
|
250
250
|
api_calls=[Session.call],
|
251
|
-
custom_tags=
|
251
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
252
252
|
)
|
253
253
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
254
|
pd_df.columns = dataset.columns
|
@@ -273,7 +273,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
273
273
|
inspect.currentframe(), AdaBoostClassifier.__class__.__name__
|
274
274
|
),
|
275
275
|
api_calls=[Session.call],
|
276
|
-
custom_tags=
|
276
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
277
277
|
)
|
278
278
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
279
279
|
pd_df.columns = dataset.columns
|
@@ -270,7 +270,7 @@ class AdaBoostRegressor(BaseTransformer):
|
|
270
270
|
inspect.currentframe(), AdaBoostRegressor.__class__.__name__
|
271
271
|
),
|
272
272
|
api_calls=[Session.call],
|
273
|
-
custom_tags=
|
273
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
274
274
|
)
|
275
275
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
276
276
|
pd_df.columns = dataset.columns
|
@@ -305,7 +305,7 @@ class BaggingClassifier(BaseTransformer):
|
|
305
305
|
inspect.currentframe(), BaggingClassifier.__class__.__name__
|
306
306
|
),
|
307
307
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
308
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
309
|
)
|
310
310
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
311
|
pd_df.columns = dataset.columns
|
@@ -305,7 +305,7 @@ class BaggingRegressor(BaseTransformer):
|
|
305
305
|
inspect.currentframe(), BaggingRegressor.__class__.__name__
|
306
306
|
),
|
307
307
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
308
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
309
|
)
|
310
310
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
311
|
pd_df.columns = dataset.columns
|
@@ -408,7 +408,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
408
408
|
inspect.currentframe(), ExtraTreesClassifier.__class__.__name__
|
409
409
|
),
|
410
410
|
api_calls=[Session.call],
|
411
|
-
custom_tags=
|
411
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
412
412
|
)
|
413
413
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
414
414
|
pd_df.columns = dataset.columns
|
@@ -387,7 +387,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
387
387
|
inspect.currentframe(), ExtraTreesRegressor.__class__.__name__
|
388
388
|
),
|
389
389
|
api_calls=[Session.call],
|
390
|
-
custom_tags=
|
390
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
391
391
|
)
|
392
392
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
393
393
|
pd_df.columns = dataset.columns
|
@@ -420,7 +420,7 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
420
420
|
inspect.currentframe(), GradientBoostingClassifier.__class__.__name__
|
421
421
|
),
|
422
422
|
api_calls=[Session.call],
|
423
|
-
custom_tags=
|
423
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
424
424
|
)
|
425
425
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
426
426
|
pd_df.columns = dataset.columns
|
@@ -429,7 +429,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
429
429
|
inspect.currentframe(), GradientBoostingRegressor.__class__.__name__
|
430
430
|
),
|
431
431
|
api_calls=[Session.call],
|
432
|
-
custom_tags=
|
432
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
433
433
|
)
|
434
434
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
435
435
|
pd_df.columns = dataset.columns
|
@@ -401,7 +401,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
401
401
|
inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
|
402
402
|
),
|
403
403
|
api_calls=[Session.call],
|
404
|
-
custom_tags=
|
404
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
405
405
|
)
|
406
406
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
407
407
|
pd_df.columns = dataset.columns
|
@@ -392,7 +392,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
392
392
|
inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__
|
393
393
|
),
|
394
394
|
api_calls=[Session.call],
|
395
|
-
custom_tags=
|
395
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
396
396
|
)
|
397
397
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
398
398
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class IsolationForest(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -292,7 +294,7 @@ class IsolationForest(BaseTransformer):
|
|
292
294
|
inspect.currentframe(), IsolationForest.__class__.__name__
|
293
295
|
),
|
294
296
|
api_calls=[Session.call],
|
295
|
-
custom_tags=
|
297
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
296
298
|
)
|
297
299
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
300
|
pd_df.columns = dataset.columns
|
@@ -404,7 +404,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
404
404
|
inspect.currentframe(), RandomForestClassifier.__class__.__name__
|
405
405
|
),
|
406
406
|
api_calls=[Session.call],
|
407
|
-
custom_tags=
|
407
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
408
408
|
)
|
409
409
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
410
410
|
pd_df.columns = dataset.columns
|
@@ -383,7 +383,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
383
383
|
inspect.currentframe(), RandomForestRegressor.__class__.__name__
|
384
384
|
),
|
385
385
|
api_calls=[Session.call],
|
386
|
-
custom_tags=
|
386
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
387
387
|
)
|
388
388
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
389
389
|
pd_df.columns = dataset.columns
|
@@ -284,7 +284,7 @@ class StackingRegressor(BaseTransformer):
|
|
284
284
|
inspect.currentframe(), StackingRegressor.__class__.__name__
|
285
285
|
),
|
286
286
|
api_calls=[Session.call],
|
287
|
-
custom_tags=
|
287
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
288
288
|
)
|
289
289
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
290
290
|
pd_df.columns = dataset.columns
|
@@ -266,7 +266,7 @@ class VotingClassifier(BaseTransformer):
|
|
266
266
|
inspect.currentframe(), VotingClassifier.__class__.__name__
|
267
267
|
),
|
268
268
|
api_calls=[Session.call],
|
269
|
-
custom_tags=
|
269
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
270
270
|
)
|
271
271
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
272
272
|
pd_df.columns = dataset.columns
|
@@ -248,7 +248,7 @@ class VotingRegressor(BaseTransformer):
|
|
248
248
|
inspect.currentframe(), VotingRegressor.__class__.__name__
|
249
249
|
),
|
250
250
|
api_calls=[Session.call],
|
251
|
-
custom_tags=
|
251
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
252
252
|
)
|
253
253
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
254
|
pd_df.columns = dataset.columns
|
@@ -238,7 +238,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
238
238
|
inspect.currentframe(), GenericUnivariateSelect.__class__.__name__
|
239
239
|
),
|
240
240
|
api_calls=[Session.call],
|
241
|
-
custom_tags=
|
241
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
242
242
|
)
|
243
243
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
244
244
|
pd_df.columns = dataset.columns
|
@@ -234,7 +234,7 @@ class SelectFdr(BaseTransformer):
|
|
234
234
|
inspect.currentframe(), SelectFdr.__class__.__name__
|
235
235
|
),
|
236
236
|
api_calls=[Session.call],
|
237
|
-
custom_tags=
|
237
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
238
238
|
)
|
239
239
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
240
240
|
pd_df.columns = dataset.columns
|
@@ -234,7 +234,7 @@ class SelectFpr(BaseTransformer):
|
|
234
234
|
inspect.currentframe(), SelectFpr.__class__.__name__
|
235
235
|
),
|
236
236
|
api_calls=[Session.call],
|
237
|
-
custom_tags=
|
237
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
238
238
|
)
|
239
239
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
240
240
|
pd_df.columns = dataset.columns
|
@@ -234,7 +234,7 @@ class SelectFwe(BaseTransformer):
|
|
234
234
|
inspect.currentframe(), SelectFwe.__class__.__name__
|
235
235
|
),
|
236
236
|
api_calls=[Session.call],
|
237
|
-
custom_tags=
|
237
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
238
238
|
)
|
239
239
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
240
240
|
pd_df.columns = dataset.columns
|
@@ -235,7 +235,7 @@ class SelectKBest(BaseTransformer):
|
|
235
235
|
inspect.currentframe(), SelectKBest.__class__.__name__
|
236
236
|
),
|
237
237
|
api_calls=[Session.call],
|
238
|
-
custom_tags=
|
238
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
239
239
|
)
|
240
240
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
241
241
|
pd_df.columns = dataset.columns
|
@@ -234,7 +234,7 @@ class SelectPercentile(BaseTransformer):
|
|
234
234
|
inspect.currentframe(), SelectPercentile.__class__.__name__
|
235
235
|
),
|
236
236
|
api_calls=[Session.call],
|
237
|
-
custom_tags=
|
237
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
238
238
|
)
|
239
239
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
240
240
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -292,7 +294,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
292
294
|
inspect.currentframe(), SequentialFeatureSelector.__class__.__name__
|
293
295
|
),
|
294
296
|
api_calls=[Session.call],
|
295
|
-
custom_tags=
|
297
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
296
298
|
)
|
297
299
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
300
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class VarianceThreshold(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -225,7 +227,7 @@ class VarianceThreshold(BaseTransformer):
|
|
225
227
|
inspect.currentframe(), VarianceThreshold.__class__.__name__
|
226
228
|
),
|
227
229
|
api_calls=[Session.call],
|
228
|
-
custom_tags=
|
230
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
229
231
|
)
|
230
232
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
231
233
|
pd_df.columns = dataset.columns
|
@@ -16,7 +16,7 @@ from snowflake.ml._internal.exceptions import (
|
|
16
16
|
exceptions,
|
17
17
|
modeling_error_messages,
|
18
18
|
)
|
19
|
-
from snowflake.ml._internal.lineage import
|
19
|
+
from snowflake.ml._internal.lineage import lineage_utils
|
20
20
|
from snowflake.ml._internal.utils import identifier, parallelize
|
21
21
|
from snowflake.ml.modeling.framework import _utils
|
22
22
|
from snowflake.snowpark import functions as F
|
@@ -386,7 +386,6 @@ class BaseEstimator(Base):
|
|
386
386
|
self.file_names = file_names
|
387
387
|
self.custom_states = custom_states
|
388
388
|
self.sample_weight_col = sample_weight_col
|
389
|
-
self._data_sources: Optional[List[data_source.DataSource]] = None
|
390
389
|
|
391
390
|
self.start_time = datetime.now().strftime(_utils.DATETIME_FORMAT)[:-3]
|
392
391
|
|
@@ -421,18 +420,14 @@ class BaseEstimator(Base):
|
|
421
420
|
"""
|
422
421
|
return []
|
423
422
|
|
424
|
-
def _get_data_sources(self) -> Optional[List[data_source.DataSource]]:
|
425
|
-
return self._data_sources
|
426
|
-
|
427
423
|
@telemetry.send_api_usage_telemetry(
|
428
424
|
project=PROJECT,
|
429
425
|
subproject=SUBPROJECT,
|
430
426
|
)
|
431
427
|
def fit(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> "BaseEstimator":
|
432
428
|
"""Runs universal logics for all fit implementations."""
|
433
|
-
|
434
|
-
|
435
|
-
assert all(isinstance(ds, data_source.DataSource) for ds in self._data_sources)
|
429
|
+
data_sources = lineage_utils.get_data_sources(dataset)
|
430
|
+
lineage_utils.set_data_sources(self, data_sources)
|
436
431
|
return self._fit(dataset)
|
437
432
|
|
438
433
|
@abstractmethod
|
@@ -320,7 +320,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
320
320
|
inspect.currentframe(), GaussianProcessClassifier.__class__.__name__
|
321
321
|
),
|
322
322
|
api_calls=[Session.call],
|
323
|
-
custom_tags=
|
323
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
324
324
|
)
|
325
325
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
326
326
|
pd_df.columns = dataset.columns
|