snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/cortex/_complete.py +26 -5
  2. snowflake/cortex/_sse_client.py +81 -0
  3. snowflake/cortex/_util.py +105 -8
  4. snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
  5. snowflake/ml/dataset/dataset.py +15 -12
  6. snowflake/ml/dataset/dataset_factory.py +3 -4
  7. snowflake/ml/feature_store/feature_store.py +2 -2
  8. snowflake/ml/model/_client/sql/model_version.py +2 -2
  9. snowflake/ml/model/_model_composer/model_composer.py +2 -2
  10. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
  11. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  12. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  13. snowflake/ml/model/_signatures/builtins_handler.py +2 -1
  14. snowflake/ml/model/_signatures/core.py +13 -1
  15. snowflake/ml/model/_signatures/pandas_handler.py +2 -0
  16. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  17. snowflake/ml/model/model_signature.py +2 -0
  18. snowflake/ml/model/type_hints.py +1 -0
  19. snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
  20. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +156 -121
  21. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
  22. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
  23. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
  24. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
  25. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  26. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  27. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  28. snowflake/ml/modeling/cluster/birch.py +1 -1
  29. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  30. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  31. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  32. snowflake/ml/modeling/cluster/k_means.py +1 -1
  33. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  34. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  35. snowflake/ml/modeling/cluster/optics.py +1 -1
  36. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  37. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  38. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  39. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  40. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  41. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  42. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  43. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  44. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  45. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  46. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  47. snowflake/ml/modeling/covariance/oas.py +1 -1
  48. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  49. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  50. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  51. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  52. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  53. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  54. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  55. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  56. snowflake/ml/modeling/decomposition/pca.py +1 -1
  57. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  58. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  59. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  60. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  61. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  62. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  63. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  64. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  65. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  66. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  67. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  68. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  69. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  70. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  71. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  72. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  73. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  74. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  75. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  76. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  77. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  78. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  79. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  80. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  81. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  82. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  83. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  84. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  85. snowflake/ml/modeling/framework/base.py +3 -8
  86. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  87. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  88. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  89. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  90. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  91. snowflake/ml/modeling/impute/simple_imputer.py +8 -4
  92. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  93. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  94. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  95. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  96. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  97. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  98. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  99. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  100. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  101. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  102. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  103. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  104. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  105. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  106. snowflake/ml/modeling/linear_model/lars.py +1 -1
  107. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  108. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  109. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  110. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  111. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  112. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  113. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  114. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  115. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  116. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  118. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  119. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  120. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  121. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  122. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  123. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  124. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  125. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  126. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  127. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  128. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  129. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  130. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  131. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  132. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  133. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  134. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  135. snowflake/ml/modeling/manifold/isomap.py +1 -1
  136. snowflake/ml/modeling/manifold/mds.py +1 -1
  137. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  138. snowflake/ml/modeling/manifold/tsne.py +1 -1
  139. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  140. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  141. snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
  142. snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
  143. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  144. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  145. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  146. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  147. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  148. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  149. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  150. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  151. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  152. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  153. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  154. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  155. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  156. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  157. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  158. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  159. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  160. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  161. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  162. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  163. snowflake/ml/modeling/pipeline/pipeline.py +5 -0
  164. snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
  165. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
  166. snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
  167. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
  168. snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
  169. snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
  170. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
  171. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
  172. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  173. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
  174. snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  177. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  178. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  179. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  180. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  181. snowflake/ml/modeling/svm/svc.py +1 -1
  182. snowflake/ml/modeling/svm/svr.py +1 -1
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  191. snowflake/ml/version.py +1 -1
  192. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +21 -5
  193. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +196 -195
  194. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
  195. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
  196. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,12 @@
1
1
  snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
- snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
2
+ snowflake/cortex/_complete.py,sha256=Hg5JXtFGYqStCi6BDvgaIPJfDWhX9GDNs2iGTrscJBc,2361
3
3
  snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
4
  snowflake/cortex/_sentiment.py,sha256=hY-GVxLnWuRBSG16kMo-I8r-pDiFT6j9ZZhFUECgtFk,1246
5
+ snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
5
6
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
7
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
- snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=LIMkbrRMRPbW2Opu4zvrO-XuMaM8ZNoLg3tBYOBlhmU,16
8
+ snowflake/cortex/_util.py,sha256=6KVmrFZQrY1myI8VxtbDPBjqz39jVbFdQx8UbVVtpJg,4644
9
+ snowflake/ml/version.py,sha256=bfI2NojWQ0mSVWuSsEep7KAW_E2qdiO7VDpCL3cN5Bs,16
9
10
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
11
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
11
12
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
@@ -30,7 +31,7 @@ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t
30
31
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
31
32
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
32
33
  snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
33
- snowflake/ml/_internal/lineage/lineage_utils.py,sha256=4BNoyg3GFeUY5tDNdjDvN129rc6JymOt6PUdWP_Vhj4,3007
34
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-eO01yjER2qGYvaS-2SD9oxmWN52vrk3VEWlduHZO78,3415
34
35
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
35
36
  snowflake/ml/_internal/utils/identifier.py,sha256=7dV6dN_KAoupT-xJS8f19K69GVWa4069RmKVWMuWH9k,10926
36
37
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -49,14 +50,14 @@ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLk
49
50
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
50
51
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
51
52
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
52
- snowflake/ml/dataset/dataset.py,sha256=LbiYP2S-dnw8a2ALswSLqZs7AittzSejMC9Hzipkpn0,21013
53
- snowflake/ml/dataset/dataset_factory.py,sha256=qdS6jX8uiCpW5TIKnZ-_2HRfWN3c_N1bZ6lBC1bLy5g,1712
53
+ snowflake/ml/dataset/dataset.py,sha256=6_4WPEw0SxU0O_2ock3UmcYjLU51Drmu7VRQQ8vU1gg,21117
54
+ snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
54
55
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
55
56
  snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
56
57
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
57
58
  snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
58
59
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
59
- snowflake/ml/feature_store/feature_store.py,sha256=2RkeJ2ODpRLNboYNqpCPulUNYQ33lGLulu-Oa9QgQrM,78693
60
+ snowflake/ml/feature_store/feature_store.py,sha256=Xy5wnUanl1AsfBXyIoPGPlwugE6h-Vf9QmeYqyPYH84,78694
60
61
  snowflake/ml/feature_store/feature_view.py,sha256=6D4hB0v2jmLLjBlpiIVkSUXdSXxqqozf0XLc8EZ3bys,19332
61
62
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=90nCRvRm2EZpDlx-Hu-NLI5s9fYbEFHdf0ggwjdrkQM,5919
62
63
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
@@ -70,15 +71,15 @@ snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4Rjele
70
71
  snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
71
72
  snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
72
73
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
73
- snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
74
- snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
74
+ snowflake/ml/model/model_signature.py,sha256=ZnkgY-6BL7gNGRPXJTgK0EbZ6RQ7hDJjiDxsPNXHKi4,29453
75
+ snowflake/ml/model/type_hints.py,sha256=ZHnhoAV_oAAPz3QmXtzrrpstVyame48-KgTpyIHGM6k,12726
75
76
  snowflake/ml/model/_client/model/model_impl.py,sha256=hVtAHejB2pTDquWs4XNS7E7XZS1DI7nH7EILbd0btbc,13655
76
77
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=Li9JtKwZvNqKjpAQM4qA52-F0fu-HASt0RWPDEJGFPE,17994
77
78
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
78
79
  snowflake/ml/model/_client/ops/model_ops.py,sha256=YWhR_MVvp8bCFJ_yvSHp0fRe9ZCWSAmFCvZUNLqs7Ko,30615
79
80
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
80
81
  snowflake/ml/model/_client/sql/model.py,sha256=dKgrkYKuuAIaOcAC1K7_wxWgrtGF1r89sItcP00hUzY,5736
81
- snowflake/ml/model/_client/sql/model_version.py,sha256=_bZw0-gsrIvfpXqsQsd5cVzVLyBBD27FRDaNGPPNHkU,18168
82
+ snowflake/ml/model/_client/sql/model_version.py,sha256=aLNXLKqDAEG1LjxdLdSc05E_3hK9i-Ry6MwSTWGS1kg,18106
82
83
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
83
84
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
84
85
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -99,12 +100,12 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
99
100
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
100
101
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
101
102
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
102
- snowflake/ml/model/_model_composer/model_composer.py,sha256=rIyiI-VWS7KR1Kyp-UfvOf7_aML7ZFkkiSyMiI9n3Ns,7612
103
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=DPTI_-krAIzlYgs5-ojSpoBP-OQ_vamcI1uim3s9n08,7580
103
104
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
104
105
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
105
106
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
106
107
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
107
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
108
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
108
109
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
109
110
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
110
111
  snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
@@ -125,7 +126,7 @@ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeL
125
126
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
126
127
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
127
128
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
128
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
129
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=QaB-eiwoyIl5BT5HSI_Jrb-FxqGJ6LgvsNRrPiI8UQc,265
129
130
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
130
131
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
131
132
  snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=lmztlpzedTtJ2PNyLm5vYATGoMPVPXluu2qppmvEVJ8,17137
@@ -133,21 +134,21 @@ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IF
133
134
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
134
135
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
135
136
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
136
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
137
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=ZGtLo1foiSMGE3KyAmyCcNoeYHeyQgeRIMMSgwuQBW4,239
137
138
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
138
139
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
139
- snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
140
- snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
140
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
141
+ snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
141
142
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
142
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
143
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
143
144
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
144
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=ZlXJJIoCUMV99E5ToD3cteQ5VBcs1ekpy8l6dGU0WJM,6036
145
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=3WjPhkyUFuIQ8x8cgQMOMrjlqOhifn_g5amPoHM7FVk,6033
145
146
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
146
147
  snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
147
148
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
148
149
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
149
150
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
150
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
151
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
151
152
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
152
153
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=wLAfgWjwWXj3dqhyzZLCJVYSSgujq6zrYBa4q0pw_II,923
153
154
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
@@ -157,141 +158,141 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
157
158
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
158
159
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
159
160
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
160
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=kElGLMbmyIXlyhQRh4eDo2Cy-yBRRId6-DhPob4xrcs,51783
161
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=tlxvDDRpN-sSuikL236__bLW0ElE6lRTl4MBfewN7Ik,6144
162
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=AgNupOLqXJytkbdQ1p5Nj1L5QShwi8PSUSYj506SxhM,14539
163
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=WiRekLxqcnnEJV3dHyjyU797tnKsgxj_g-ZAjmIVWVk,35283
164
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
161
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=ueX0rtJSn3x9cJL9w1j_AiAG1ud6iykHOgkhSyjcAFQ,54585
162
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=YN8I_U_7_hL42o5_7NnEYY05aiuwgdO4Q2Iw__7Qa_w,6180
163
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=rt3xsJg0q82EbBgV1GF6OQjwGSYRbNMPr5a3mOn8iY0,15483
164
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=C2-_fJxOSre3mDhn9SAWLZThKj11BT42mecB4xppgKA,33390
165
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
165
166
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
166
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=dHfJa3HbyjQUttE6OJBEX9wUt_sVtPHLk468tztvjR0,51604
167
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=K9_iTZRo_XU7THcR6t51OcmHQxHj07CxdBkKHi-4FSY,51596
167
168
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
168
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=VxQcJhUI_aU-cR68fvCwL-pmWIaUT94cudrCYJmM6Xs,49433
169
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=9uThl49ukTTXCsewRfh1oQ2MlOuhbDOuo5komZH3HDE,51470
170
- snowflake/ml/modeling/cluster/birch.py,sha256=ukUwlYGsw_fTlF_cMxsXEdC_vvjdxpBdJzGws4LIA-M,49360
171
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=wTJBefSFhNVev9xA-b7G1BjVkLh9ZdOwrXz2GnAACkc,52119
172
- snowflake/ml/modeling/cluster/dbscan.py,sha256=jBQipt3eDQfg-FnVHkhJx_wlclwSUi8f9Kts-yWfutE,49520
173
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=lyEYhw5-2NDviOQDFMZJU8SN1g_fm3e_w8c8l1CQbpw,52235
174
- snowflake/ml/modeling/cluster/k_means.py,sha256=wA0IE7lrLuGeq0XZA-iHdXySHyt3ygFWeSMeTrNjqO0,51648
175
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=Q_9r_6LazbcUHr4Tg03TUxr0zwk9PibxLlKOw-cx5CU,49730
176
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=0tBuFtMvnuaWU8A6TzNFZMXrnc6TCrXlIYaxF5BNGg4,53037
177
- snowflake/ml/modeling/cluster/optics.py,sha256=INjDv06ZKYaJtObTvfMf6DYZO17xVaMw7earK1sLPa0,52834
178
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=OdOm8Lwqc1XKBCX8wlbCWaPuUVW3XZ1uAP1hV7w-eEs,49729
179
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=3xwuuMZgpLh4U1QkIiKiRYpkRDsR_eGd1Y15PvZcI8M,52921
180
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=N6nl9TIfRc0ExU8u7-oRYf0DUb3R3RKhyzkP1lWrljY,48862
169
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=uW6rQmBiarz-6kw_F6Qmdma4oaL4QAscifZI56PRMhQ,49425
170
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=cs1FQycRGsXdRUEpKl_OC7Hyfg14bQSDv7eU11e7Kss,51462
171
+ snowflake/ml/modeling/cluster/birch.py,sha256=CA4yNF5eVMx7IOsUAXmIRevtEZN_6ufzBorY8ZOeK5w,49352
172
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=w19X53Mk9pdkmr0sjU8wRyVNTIycPrum1P3Z3MBXSSo,52111
173
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=71SaDPql_w2PKnge8-CQRa1zR5m9fwvUJkWB9AAfEYk,49512
174
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=AszdjTzVfmlnhzlB4HEqNJ0fTjBvlRVSAqibjWVwgOY,52227
175
+ snowflake/ml/modeling/cluster/k_means.py,sha256=Nj8XpH64T39A-KrTHkkdT5Aghhsz4O37mltb59DgUXs,51640
176
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=pLLZ7SO-m8PmJ7EwDn0j3m_fZ01FzO7BsI0KfJzdwe0,49722
177
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HBadAGegSP1RDMBUcdai5cqlOOofDiN01Le4jxYBYnI,53029
178
+ snowflake/ml/modeling/cluster/optics.py,sha256=Urt2e02Ilhg5CNaSajX86x-5OIzh_YORI8PzZnyNyUA,52826
179
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=YfxvYnLw55ntCeaqAVdwNo27YYp4YAF7gUQm9InF62M,49721
180
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=rrHwdYx6qKQyBAd3R38YtWl2CVKJwwxLoXNsYRd8mJk,52913
181
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=OU4L3Ib_do0TYp8kfyfuZu7JjsYih53tPrCzbOx1ms0,48854
181
182
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
182
- snowflake/ml/modeling/compose/column_transformer.py,sha256=aWcT2THY80c1D-pECI2NiOWmfngWFF2euieEA1MP6Nw,51700
183
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=hTSsIrAAeUmIaZLA8B55KyxCR746YtbVmN1hkqmnFEY,49416
183
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=cG78wvFzaWF2dNYhiNv_PDqSiWn4TQz2LvZnhyvLCmQ,51692
184
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=1NwaWTVABvYhApdXJHSb7BLrOOnmGc2u-v0n_4Hv4IU,49408
184
185
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
185
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=Csj9_5DVN1wjfLQjmdVhbY28tiu9CnlO1Z-_0QDWqZ4,49754
186
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RjEAsE_ByR74uer0Rbn3Yp0nst4oFVyJUhXBz_WFZ0w,47562
187
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=hnWAjnAfBHf39k2frnKRvZyNtNMSqJQE-iPmx9XB_KA,49426
188
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=kF_f6MRI0XdAxzsaagfxP7e97EMoinr6NfhTZ02tiHg,50591
189
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=bygsEjJ_Vt5zUPqN-b1XsPfK97TAp6F_HrzcLPbiYDQ,47700
190
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=p2rsj4yeNd-IEjoECegpGAkMftKB6vkRLTYFtgaRJK8,48455
191
- snowflake/ml/modeling/covariance/oas.py,sha256=rGIO3yXd8gMsETaYrcKUJ3WzncdlQET6EgVqOcHmcBo,47341
192
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=sRF7BTA-C_o3-C9ZaL50WOHmjShselrO2AHVO8xfJIE,47717
186
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=H5jLT_yDAwiFYi2JcsgRCihKRpy9GWWrBMtHvceExQ0,49746
187
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=9vFnH0oRwbY7wfHDexO3xf9vlw6seqbu1pO_7Jc9svg,47554
188
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=EvxbRLYslQyDjhHqje5yx6VoJLmPiQX0rkoyP09Hk_A,49418
189
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=sNUEFH-e4BerMZ0zSOeL3VBDP0p8q_k1w5mujKK4Tkw,50583
190
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Bl1nx4pdWzp-yqOFOO9TCO2U5BM_p3T6947YxswKFl4,47692
191
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=3RMyEMkYV7CpapjcLZ__p4pOnPpOsZHQzrMr_G9ySn8,48447
192
+ snowflake/ml/modeling/covariance/oas.py,sha256=atSOn1SSJ2mXwB0Ym_A4gZPcXWJwvIxoqE6LbtqZDfM,47333
193
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=CWAEhnyz3rxDgrEaoCqmwVLGbf7SKe_MOmPqcr2-DUA,47709
193
194
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
194
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=vT61ZfOhKg5zHDkZ6yKpPdDYDKyR5IPzsxXklpAXVbA,52714
195
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=qd1H_q8EiDoJjulFoYWyqfU1cRkK813BVmtEK1O9tf0,50377
196
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=zRh7xNj4JMzt7mIbXGujLXiBF8vkXTvUj1GFYLhygoc,50311
197
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=9ZaPxS1sOKVA2iEoFKllkFcYKG3gd8qi3vBhks5vOB4,48671
198
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=T4z6PCk4zZrMG4j5NaBDEXEgUywEQKE1EgF6aB920OQ,52669
199
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=hcco5pEnmCYTxKlGkoDqB23hA3dtJ7zl0YMegbuhcL4,53755
200
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=ScdDGBrRifWIvu4REAsqNNIzrg_09D_3Qnfx9QXOKd8,51020
201
- snowflake/ml/modeling/decomposition/pca.py,sha256=Jo4SpVRxmU5ufdKNc6mQXUyjkjddyPADXBX05g_Id8Y,51938
202
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=hqms5AHQ5fpVWpWWKB7Mg3E0UxCx1jNscLLevpL43TM,49825
203
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=C3wg7LT0ZuBZS11c96BL4UIGc83D4xCz9JGCN0AAtMw,49448
195
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TC9EW-abr5-s2Si6q3RzBoTwDSDPoB0SEuWGvbm4_c8,52706
196
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DpZT0nesVDJJjsi267IY9eJHCmUideN_DEl6tQnUj0U,50369
197
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=ENQYsxckx7NrsghQMRaLwBn5pyzL4mbZ90ptH39j8yU,50303
198
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=HaqFYKoXLzpvuXbyMRKCHJOTxVH485Yhp55-sM_MhPY,48663
199
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=MCrYz74F1eM_9EklxwA-QYleSUcDQmcUVx71ubQMus0,52661
200
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=GTNS6j-LaorTq-VnmrYHxIWHBDyT3HSVmMBMZSe0WHE,53747
201
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=p5_gbVDBkImMwiuUsoquFSzuaRFFF_EYKlOvf9Cdr6c,51012
202
+ snowflake/ml/modeling/decomposition/pca.py,sha256=ECUXv2XWoQy5SZpD9OcBZhcGX0h23C__BDUioMVeJM4,51930
203
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vDbHgJYAQGa3mc7wsZWxmHC1774ubTlL-EC5nnFqzbQ,49817
204
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=8JKkBGV46Ltf54HSsBgdwLpZQS9ui6j642DBH00bnsU,49440
204
205
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
205
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=y6CwF_IVn4gkpGb83AnLpk04IbxzI3ABXOFhJ03NZWc,52203
206
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=Jiar3qrWe9chANseNIwpjnvKtQggeJLGp5x22aozPT4,49985
206
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=aD4eyWhCJ0dtHnuiRdiMROYGa5pk1Ww5PSFtKZGcsTM,52195
207
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=I4zI7ebh8m4WbtTo5HIjQGY20RLeW4Yd-bwTTvRVhHg,49977
207
208
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
208
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=DvUBDdyb1HJUKMVLevVIupznugu26Z4boqA-KvoaUVg,50803
209
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=iu6i3_gXx9d1MJusf4dZFFicD_61rWAsruZFFWOvLh0,49694
210
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=YgEc79O-DaicQ1qj3oCk7igOHXEY9jduWDGp1VPv4gk,51714
211
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=vgUxNHIuwJcgx1zSkjzYW5WgYYtf6VZJMuOeK13vtWs,50950
212
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=C84z_NxGfET40FAhLazDIx-RFxeZ_rWlnhn9FiWk5ek,56634
213
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=2KkcPPYQ9SYQWYR7nwM-mIZgCJ03rYKVfjqeDzsV8jo,55238
214
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Yz6c9m_2h2_S_YspTZdrSKiMwwU35mIsPqqgO5mvJy8,58089
215
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=2xObD2kaSZOnsXzqAAHQHg1nkzb6qqKK3I85AINGIFE,57682
216
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=O4Kggm0DMgSlYkziBII0qxpGSPLC8g7NLCRu9mV3o8E,57923
217
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Sj75Q8c8Gt6-ymbdArPYskv_mEHYMjXYKCJMbqxYsOI,56408
218
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=wWwiBJlF36L7bjy46QWZMBmk82ATqpEoKwxfa0srAuM,50902
219
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=rDjwe-zXWK_aNhYMHT9NMx68pmcEpcU3ekOGMtOTIts,56617
220
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=WQ7qBTIJbW82w5J59Alx5uVqTlGf2JvEOVkQhIFQZ74,55209
221
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=8pI6DqYmyZhC5cZ5Zvm628oKHOmPzaRnJ5b3EpzLBYI,50928
222
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=toP_OjkrbOrs0g2iv1JfWBy6P5rh0EXostCawzr4XmI,50481
223
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=F0j4ws5LrpD5jVqN4j4P-pkyENZ5CWE5HmKdqJyGmlA,49007
209
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=QSROCmhdBdQXL35Qo_58mgzklGFAFoMREBSlFSDKHRg,50795
210
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=sru0E3Jluo-xblOsiQu2i7uVq5Ii3NJy5qVOuYuphgE,49686
211
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=dfzXRYNMgFPRtKiHZJ2-sV7GnfuuYC5dXaxip4hooaU,51706
212
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=3Y9DXqe5CCRbpkAWFNdEshCHSfTr5b473kcPzHNpCI8,50942
213
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=4vwYcR0Gxm4dWlsLLxrDZIkb7yd5rBII3ICzVYAvdT8,56626
214
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=OY7vVz9GnevpLL6_vP_tj9uTYnRAU_VRfDLt-eBzV68,55230
215
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=jyjuwXiI-o_08lz1FEwbMo4Qvx8WFuYQJvfxEIh6NLk,58081
216
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kzDj-tzK1Zh3hG8nslnZk-V6Yeudwi8TUe9_w0rJmgY,57674
217
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=jFK9JOyTZq4VDRNuhYXJguqkHogM-mshxQhA-EYV5KQ,57915
218
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=jlzEtA-Il_zcgrN2AsypiiUsbekGHKE90FNq2igIhIg,56400
219
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=EAojT9PzpKJVnWJ3rxJQzmAqG7bvYHdCWPHa_fHsrJE,50894
220
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=iI_pjip7zCA70IBVZmIUX1wM84aw1BA0GfC6ATldGSg,56609
221
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=XSb3MwsB4esvoZHx_XAPahF8ABjdeJNCdTOAKImT9y0,55201
222
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=cVydbNy2f7a2NBxvUCw9E46whcv7NMnfA-p7D0-FT5s,50920
223
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=0uWv7Z5iOU5g24MhtxFYb-F6NzWcsE0Ef7IsV47SJZo,50473
224
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=IFYsFGYI1tFa21MArt03HrX5JvddyRNm4hEzoEUlEXM,48999
224
225
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=z8GaU72Aq1OHbY4ACZb88yCyVS4swFr-wDxokg8T0Z0,48344
226
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=Kxb4qBhob9PLRp0V1EVXIRgwY4IKQarZKKATcyo6y5c,47945
227
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=fXyEr4x4OlHGpXHxP80RwSWn5mb1WwFV4-QbsWpnhO8,47939
228
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=lJPaGFoy87pFm9XANtMShy1zPtAnbktDp4NVtkeH_uc,47947
229
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=MzD5KR2_rBqLmg8mSbo26ael_MX6OloBJA8jpdLsB0E,48038
230
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=QpSF6PV36w2d9GFM3qnKkg1KO2MDI39K7HFRUeatjwA,48093
231
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=GaaucJ3KrXFg_Mic2FI6moPd2l1nB3TkmM9DFtwAMCE,50713
232
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=wNXD495HPasIUej_f0yUpKi3vEgkZuV6SA9VjQgoTFs,47649
226
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=eS-igVAnxLlhBpn3GVTB9kzxOE9aSDom8tCI8kuxLnk,48336
227
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XQlFrwBMCt-2DrRNzGj7bJiWxlcyYRpAPXzzfMJ87LE,47937
228
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1OkuVewZQZg2qthlIOASK8XPZaeaJMyRK5Jwj4tDF7g,47931
229
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=OyPeCIcUFypzdEhl3NRFBB7dDkSGQGlipV-UacRVeXU,47939
230
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=zO_JGWE0U5iF_ruiJOS1xWbbJLKTDzlheEy3bHbR2rg,48030
231
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=Uh_WEWjInPmaRCSh0JXuqSj3Ai2fVE1xRoaAtv3p0vc,48085
232
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=XwdAvIRvEkB6X7Ge-RhoQctiuXoRqE_BDpsoyea32i4,50705
233
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=IioNNW_h6c2ChsWrmDmCUmNOR9kRhQqeF0hC9Z9DFPk,47641
233
234
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
234
- snowflake/ml/modeling/framework/base.py,sha256=ifv9wAOhPtd8kQT2TleIV0y3Ftw3xlULyvxGolyWn7w,31439
235
+ snowflake/ml/modeling/framework/base.py,sha256=gGsQLJJQcFvtRn_6uhiB5UB3bV0HFiijJpkBvvDyFUU,31156
235
236
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=oyx19uV9XsQKvd2I7FOlefus2vVNjeChNx-sHW8B_NA,53355
237
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=oedZ49f0AQkQLNJL-U54a7QUQ3PmlseiMCv_vK6PDZg,52420
237
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=04H5iTImclnaG3QYJRSfnRQfBl2EfNnheJXlhzeuu-c,53347
238
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=I33qYg_R8NDieFBJvd12mpCpe6jxy-fNhqwelw8e5uQ,52412
238
239
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
239
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=yqv9EX5GKEnPK4OUN-aHIWE6xyW33fOlhpPH4LLhr6g,54173
240
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=wZJE2xA4_a_Dz95sAkWwNWWTJCAZe6a-LccGtemMuPY,49889
241
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=nu6EorbQw9mn4GRAvSIrkA9oW63tFVazBKBIq8WiXUs,48746
242
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=Q3zmBeEOY1IkKVVeOnIXILnkX8p8DJu2jPWoTm-Mb3o,19443
240
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=fce1UrFCL9fHpaBQ4-3eJ-icZQeinARojCAOGB3wxg0,54165
241
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=mNBzoaOomnP7ptuwZhMfgA2DuqJl5Aus5com4VPe5Wk,49881
242
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=L214K6TSNLifdZyqWEBBJpIhmehdjGGvNj95li9B5Lw,48738
243
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=Y-oSvi8CXOyBJSCkLoNZNjdZ_NVwjvQhaOmxvgo2HAY,19847
243
244
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
244
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=hKvRjCO-jPwyCBafqDZD_fnv9vFU0-QNF0rronb9ay4,47777
245
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=OruOvgR4OCmHUwSMjPcnqZC74kBpD0LOLLc6beDrubM,49548
246
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=DVfW2ALj6-pPPEgI9tcB97xKvnu8-EhCJKfXxUXk8CQ,48796
247
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=vif_xPwlKArdHwdixrnGY3TsWHEZWz-L1ifTO-1VbEo,48150
248
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=MDbqGqi3UCpUvo87eE9Id3kFkSrDkbknOwu_vJAQ_Vc,48198
245
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=jzkCrzcsW9Bza1tEm_oXO71ax1Rt4jBEocs2HYKVDnY,47769
246
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=U2Eumczi05eTUZCiSpUQsk7ka5Z7pV9ZVjiFlA20_Ys,49540
247
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Eb6RD5A-imt-R1uGjabMlOQDA0ufAIjuIHN422X6jXM,48788
248
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=fMT9l5l-zfs0RVNKYh9J7QqRJ1g5bWHCpFML8O0hlHg,48142
249
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=woUxmEBQGk3xCXuaJ5fTNS2q34xasrEUof6k4qK2iVI,48190
249
250
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
250
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=1BNUFkCCU3pZhkjcXVgLjgmaaqll1M-gb1c0-8nISOk,49734
251
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=NBdl_aCcc78yYNSf31N-oeHycA_l-WTW0xluEgUMooA,49726
251
252
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
252
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=970IRbgnoKDFoJ5EG9ZfD4roHwNa_SRbXwkwmcVoe78,49302
253
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=MXSltWa9Sn5JPnQRC8pkzMpieoEJbkgWyLcivchZUiM,48805
253
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=L9Bih5uStC-Ta8oyjJR0jv9Q7k5yiEKCArjaySHCid0,49294
254
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=YU2A2Ewo99AL0oOqK5nYSKwA6hjaGYLo4DPBH9--Qm8,48797
254
255
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
255
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DR_AsOlu1UvuCvPVblRMXPB5MurIlEO9gD5xyHul0CY,49679
256
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qE8LOyrPERxOoXn3xWANuWbmx4v2pIDgJq2qJxSwCcM,50095
257
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=oODXwBq8axiO6tBK2IvS-A1QntzcCdO6MumQ9OzVD4g,50667
258
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=I5lcZHZLr3OAuwN4ehRjQDRNZ0SImhS3MxKws-xTJ3k,51935
259
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=iQHd_9vgIdFzIrtIOREiRyWN4Zvh1y5kBoBifkL7oJw,49747
260
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=fTmJig6UiKJtd1BUL2AvUsTj6Yd1rOiKkdXFXYVbVRg,48944
261
- snowflake/ml/modeling/linear_model/lars.py,sha256=pyV1z0jIcxNcNicq-gjyRYrz5ENHX4dsnLmCVG9cBHY,50167
262
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=TZGa7GZ2O-BNvFqYiX7MCK2SnKTO00ky5TCFoXjZ-L8,50388
263
- snowflake/ml/modeling/linear_model/lasso.py,sha256=W-bmWUmYdbSgAsNVKUrtoaq-SG8e0bQfb4rNXIO7WsE,50273
264
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=YSP8x2j7T3BCBZay8yxbeuQzEi7IeFYknW91g2adL0E,51058
265
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=k636mH0TAKN6lceGQUPn31B_S84Zn9Drd1NqyfE7KzY,51303
266
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=9gj6rDG2yaB7upnlFInh8cfiX_X-M8m2NQU5ARfmMvA,51264
267
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=yU4OSReXul3wSXdqglAViBsW4cReo1XoznsvmjXjDyY,50610
268
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=G9C4M2ynXGRh-B9ERwj-vdobuWxShS8TWmVgCIBkDm8,48486
269
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=84A7Edxc3_RNz7S2Vx4AyEBpv-GdgrAhxPr7VMfLZb0,54741
270
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=EOBTQN4GgPd31fDYb5vQtuK8HSbK9SvKVoYHYXZE6Uk,55781
271
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=3PWQaSlJmAy1Il2Ed-TDQs1YRQ9n6rxVWvPrM_kHPFg,49958
272
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=b7auXuWoaELZXsNn0Lqqa90aB_oE_m4FNmnnQnrDRkg,51596
273
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=EQyyEcUohi__Gvr9KkODA5ZQcpmMlpTV1PsDlpfD1MU,49506
274
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=SldwsglXckF-PA369-mMPd2JsYkE4rBLhGQpb8I2DXs,50768
275
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=7m0e7PYJQF4QwAdiNI0KHIjk84AXk_Jv55tiiBh_f6M,49113
276
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=AM5KM4zb5TjITL4LSKYUi1FaqmBecdpNW1A0DmIJSs0,52469
277
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=T1hnz95OfYBDS8G45ci75IjjRcTa5fdnd82gHpvH8PI,51536
278
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=4VX2hgQ5NYYEv5lS6-BJ2n7fv4vxAgXgR0RneVYl-7k,51853
279
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=GCXphn2NKSQrudWEcaAOSifplWaPh8w5zXT749EmLAU,49792
280
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=N8mAxFnjRaZKiifEq97xd6mHWnXhQ8Zvq3H2I8JUxjY,52911
281
- snowflake/ml/modeling/linear_model/ridge.py,sha256=TuDJpHL3D9d_YXtcg2e7pBZjAPrTVpI-FCPb3yzjFaQ,51817
282
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=lX55F3eY1H1WHJPpQWxvJ96FBc8bQv_sF1GEuqjTrwo,52205
283
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NO9LKsrynA3oF4LtHBv8HL-ZAhc_JwQiVByCq94AK5w,50200
284
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=oqcG1xafx5ixvkdzNt3ATWj4rT9UechfZqkcsn_uJk4,50901
285
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=LwIEUD6yU_onvgFg9z0xpsCpIWIJNFjYLktf1dop4FQ,57278
286
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=Om4HlWJ-4GZJ-KErAHVC6Lqsr2t9w4IqpqxYvruZVJE,52076
287
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=nKg8WpAIyh9Ks62V8EIBcy_PFOjh3JGPcHQd2uojiJ8,54749
288
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=C2k1WHgz7Z5fbub18hqswdDk_VaK-cTRGwRRYy22VWU,50227
289
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=4BHEZXjlRs1YDEATXcdQFiI38YE2bNeFPCNL1JuWDn0,51183
256
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=XEYZvnaJJlElbUFJP_Zt6WBCbADd8tYYPDyoD_uAV8g,49671
257
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=iZjGFwKoGVoMK7_KBFC3EoPVNnSeNQgv4pUz4Yt_AfQ,50087
258
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=EIAn_BBDDbpRq5GNhH3xLeernz3eXufnKZrK7ydWk_Q,50659
259
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=OQrwzyFAhJCJS4kYDTXMYD3U0sLQt1QPNT_Svtd9JMk,51927
260
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=XNPXohb_s8-ZE04r3QmN3XS5z645M8EcZtWG7cqo5gE,49739
261
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=hPdF84DJGnarFa3RD6pdiapqKTZ6jP6texhqMRHVtPc,48936
262
+ snowflake/ml/modeling/linear_model/lars.py,sha256=7CQlfXJIc7Xz_97nKaD38LLydFEp3g4EurTudDPgvBY,50159
263
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=f4QPrnc2s5_olqNIauFLyBJJPnjCMiiBYl2lP2QPea0,50380
264
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=_LNtPWVKs5Ijqi5Vbyp9BBbJcbGCS30cXhHN0dkEQyI,50265
265
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=mBoCFXehOaQM4jXZupM0BMAT6pZUbe6we90LV0sFN68,51050
266
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Cw049plEqVJA868QR47vHuTDive1sEExoQ3P6uBwncM,51295
267
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=_PO0Y4iZCwAOz7tJG2XbGUns5avUvQrilr-INJ9Ewv8,51256
268
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=gd1TJhxGctmsPmnxpL_jsvUNeL0WOygibM-OsRkfF8Q,50602
269
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=j5Xh-HAb_rIcQMfewhspu5w4M3eQLBrDHTDxaAw1fCA,48478
270
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=JjeIgmCQjD5ScyfYFl42cag6jBI15n1XS37WvtNn5Ec,54733
271
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=2CzGvL-O0REYKTDalFrHuzDXjFvUX8oeB3KPyK2oMxc,55773
272
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=ppjO4PZiZANuD9Aq9IkCmWG4HeQ-1KiHmnS3GGL_H0o,49950
273
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=-GnfKXcdfV2aL1JImYUhbdBmKJUrauo4K9m_hrB61QU,51588
274
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=Hz2olnylyEZBsHjyoB1c1JtN7daGg_u3WavDt-vZDfI,49498
275
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=y20mLXkHbSWjtOaus5tXKrGlHazmWHg6GBExCEzI85s,50760
276
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=mZiCfvcu-c_d7aoyqrIKA0gBbsH6VKW8CZgem2mBrkQ,49105
277
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=2h6NzmbiDCYKq-oToc9sj425h_yUWuIdJHmfx3o96pQ,52461
278
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=C5O73iGAiAeWgS6_OvI0Y7yznCAfVNio7T_3maoU9nM,51528
279
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=0txxyIYrP_TCFFtHCLT7ZZQY-KX2fsRyopSt1PaoJa8,51845
280
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=LUGDYcOJhj5J2w6LUvWdLRJW6ocjRhSqYAxewr-02W4,49784
281
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=XCa_uSPa-ufmlu-Cjxk7RC2vdbmXorZDNRKVIAgK2XM,52903
282
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=7PxOQSaNP_WoGWhyruKX0yaqJCkHd8nocJCs_pihfYU,51809
283
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=mphwSuzmQdfhmNyVMijXFifDLVLEkLDdhax1YnI5IO8,52197
284
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NLp1ih9pmk71OHWHdIvuOUnF8vr7tCTZtmrJCBpObjU,50192
285
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=BlJLP44TG4M8Fd1ygQ6DTKpR6zzipvn10KzzafijSzE,50893
286
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=NSqWxj693EefNlIjH1NGjN0hITDzPOtBcGhIw2vTSu8,57270
287
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=5nxTy3XsaafbNJG1fi1UUCDEHJrx4aMLIktcB6Uk8HQ,52068
288
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=LxbXjd-ZukPmvZ7dsOXp3XNIkxf02ESWrvbRC52DeEc,54741
289
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=RoupM8uJLO8Wei3a1Vtbz6LJv9UkYWyovjzQKkOPDeQ,50219
290
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=j3WY7u3mxWQYIjBjh-8NeBFbUNF_OIWpQTrN8771iqg,51175
290
291
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
291
- snowflake/ml/modeling/manifold/isomap.py,sha256=nQ9ow3km6fjbtm8uGZtMUs2qcISUaGNEMzNzRFy78eA,50410
292
- snowflake/ml/modeling/manifold/mds.py,sha256=j5bsW0pERjd2TRcJER8D1b9UW_DWL-KMrp-hj41P2LY,49630
293
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=_TajsfSK2K9dHp3qgXt1l6X2aDIQTMTDd1M1J43FpqA,50481
294
- snowflake/ml/modeling/manifold/tsne.py,sha256=3XSEao-by9N7BipCnzuUUhdUJg4OFCmRrcedin_dxpQ,53420
292
+ snowflake/ml/modeling/manifold/isomap.py,sha256=dIN5V-okxAsLPhtst0fbY-QPT38gUTSWHJrWNSshC60,50402
293
+ snowflake/ml/modeling/manifold/mds.py,sha256=JmriGgVE5DfxVxsHJhLIbDiSGcBnFVThxqB6kqWv6ys,49622
294
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=UqS8Ezqtkwmr3OSGQjYu8USsnol0nPJen2lE8ROCkrs,50473
295
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Zbppt5E9AWb7PPdA94IYxFiyXntc5wBK64it-lkaCmw,53412
295
296
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
296
297
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
297
298
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -300,71 +301,71 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
300
301
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
301
302
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
302
303
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
303
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=FvzlATlhCHeCn3lEhophrFk-RVO3FbUAXgDLCAaRcAE,54983
304
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=bnnRg-AoLdbnNsBLaOqgxxQYIy1vNUUM-vheK43w5Gg,52884
304
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=j66bYxt5nAgQxDasNa8gJN3qY__s1JZUf1xuzhwyNm4,54975
305
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=_Yympzyu4CcCm5vEi2Yp0y0faaAqUbzgzR_bbVAxapU,52876
305
306
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
306
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=B18rb0gh4TK9z2G5XVCx5nav_a9jWDH7q7XdLzAkRwI,38125
307
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=ipnRe8z3G09wTy1I2s33CzRsit8pIBfGaZGy4IZfjdM,38867
307
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
308
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
308
309
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
309
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=pZSg4iexRREq8HqlSGStXeG5d0M22V5I7YAKxFTEftc,48486
310
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=CDmXMppKIToQ7QvekH1aED6ZTRW6kEMLgcYSNeagw7w,49420
311
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=gZ71bSYS6H3wnCZbSmBb8ojz8bapy9qFqDWjEUYRCEs,48756
310
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=5_m8RqzkhdZh3-4N8SvgnmWwgXA1JkRUMSt2BDdsdlQ,48478
311
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Q_wLk-JijO1IQt1gikXFctSSLLd8f1I9sGXqAJECHqU,49412
312
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=GYokPhI3RO_iwdgcYvp9eLRge8VygB4J8G-x4hQ1HpQ,48748
312
313
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=_2nfXAsX9U3G6ahkBiEkc_ArehsDGvh910S0Zj49JY8,49025
314
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=Mk46O1BbqbyVcQ9C8VyfZA6GJ8VWdafBP-OlyChDtA8,49360
315
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=w5cxPBnCsW02kbWqz4_bw3nEQNQSGM_ufTZy2DYpIK8,49040
316
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=y1jXxTH_hYbzD7JPPWy4WW2S6OkRRXRTb5JQM6iBv4U,48169
317
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=27ifnJSjGnFsTGLUajeTO_XO02tx_ASPGXevmNI3d1w,48805
314
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=m-sdAtV2kmpepve-JugFRDgcWBROvcIpk36oFO6MO04,49017
315
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=z4HV6tyWp76OLO3OIsNYjzbkWbl7eZXYzF8ZiIPFlcc,49352
316
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=ZGwz9bjMxSEiHz5eawTh2gvwp6Iq_rzK4DBJHYhPQ74,49032
317
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=7J-AVaTK-z3iRgWLdSyWUGCJEyc5O8JZlOBv11cqaYU,48161
318
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1t7DdWZXdHfbBJWukvyVf3KMAyQLpQ1ZZ9Oj6NIYLZY,48797
318
319
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
319
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=JQKT6s76Ku9awBz-USk5bYmuglCw2_x_j4O1AaX9KWg,51874
320
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=mXM9Ih2Kuw7s_hYJrl3HOC4jTR3E2i9mvaKaD1uAU3Y,51345
321
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=eYNLIBWt-IhZDxH_v5fqiDt5-U6skoFbFXYBPiZa_tI,49703
322
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=WqK2x1p_Bg-V4fJ_rg_6r_iY-0bQI3qmEA_HW4iQpjc,52281
323
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=t7FcI9w6L0sv55G-HzrZ0OjtJnXO1vIP4DdyitxHC0Y,48363
324
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=kYUB5qtiNOR1HHxgVRDlSfyXlC1rkM8TimeZPxPYwU8,50172
325
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=nFZ3X4kwtcJopQvAkYrp6hM_Pc9Gtrctw3tCzlH09sI,51835
326
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-inPtmu1PZrXmjkf2e5BBmEGo_x7TwiQ5mqSmhdsefg,52287
327
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=98I3UFWaDR1BYd8NB45eoapdaLAykeQ-NdMn4A4y440,51168
320
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Za3lXdpV1yltloLN1CjtU383s4Yz0kmUfWwSzxh5cSU,51866
321
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=1QJLPrEGqCfbk5QyPzH3jMvWo1ds-is6qPXDRBMfXp4,51337
322
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=3sBEG5wP1TyDC5t59XDBgbQfRtbmeZJYBy3PDSb0bhY,49695
323
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=vfACYYYe5jx9tYZoWrOnLCbUfnTCQ2KSeNdWqL1NoP0,52273
324
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=KPD4psFrwMu_2KaDV6zZiY_I8WxRRO62yv8VpykgREE,48355
325
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=c_wURNmsJA7Xjbnl0jPzzJronVxzvYjT2kO-MH08rDQ,50164
326
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ZRsEVMYQM3KzXKNkKz4wmCAj3Km4CBo-aEDzddZtoOo,51827
327
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-ebpHawA51N0FZ_YWXDK5PquKZl8cu72b1dIlCQ8p1M,52279
328
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=LxkVr2eaPZzYM1FgUnnky8UYLb3Fw_JTv82kh4ZouSk,51160
328
329
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
329
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=OAvp3GI_8u-TbbO7524C7xzD1fwbpHEa5auHQRf0s2k,48911
330
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=boP0eDlfMdAwY0WGgt9sm5hYPvnWLYpS2nLCyF5Lx6A,56247
331
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=LIw6ShXGJJbjdzto_FsMv_PE0zI2cosMxXOdUlTM7m8,55516
330
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=wDjO7pffyY1Wp14h5NMo1glIBCNK3J09AYHz5UL4ZFc,48903
331
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=tfNfjBo2I5-l9hzN3qLTiZ3pAL89JTquebp_KLKLxM8,56239
332
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoDgmgFN8nI19SyjmxG4MC8SIjI,55508
332
333
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
333
334
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
334
335
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
335
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=c-TbJKNlLJ7JSmFEmnVRkmrisqfvrVDhB62xHbgLEH0,46223
336
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=531nAtKEoOBz_j25upGvWuvWz7vDmG9LePCksHWsS_c,46484
336
337
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
337
- snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
338
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
339
- snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJoqVgOP8eOnTNP7NIsnfR2xE,7405
340
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
341
- snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
342
- snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
343
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=5kj3V48bYmXnorf0xnp5AqRbAiJtgswepgUicyNdFHM,72322
344
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
345
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=zO4ts-sk6nvacvofj9f2ZfEjvRUbU1q8d2Cpu60vkrU,48837
346
- snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
347
- snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
338
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
339
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
340
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhfJtWYIT_8L81miwcQy4dxHIA,7802
341
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
342
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
343
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
344
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=vSRMBFSYK_KRToPecMeBHXsJi45ySruSn7-dbGFF7xM,73145
345
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=MvIqNHzC5Ts2ItIyjkcGNOhin4NH2rG8Y0XEjlKZ_Fg,33558
346
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=gSwdmWWAaoufqEs9mLNh5UFn-7uE-eI2h3NzLn_J7jw,48829
347
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
348
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
348
349
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
349
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=vPZpcNzAz6OHZ2lg-C7XzmcSL4gtixB-msDXYfDXErk,49262
350
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=IgxW3IPDcvQIxxS4uT3eMsPug04eupol9D8WEzySwvY,49611
350
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=JNqyn8_mBpFd2KNFw3yV73nf2OPCzzdc_2MiRS7vlkI,49254
351
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=xpqYChOh09EkR4JYoQHYAjQZCciayBwy10YfQLND-Ic,49603
351
352
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
352
- snowflake/ml/modeling/svm/linear_svc.py,sha256=i_znmcHZrkckFsS0kHk0a45No7P9HDwdmjLfQtHQJpg,52072
353
- snowflake/ml/modeling/svm/linear_svr.py,sha256=382GKS7wsJuBc53HwAz1C1HkrVEzOVU3csd42ejbTgU,50425
354
- snowflake/ml/modeling/svm/nu_svc.py,sha256=WTDL1Lda1kPngX0LQZs71c1rCcaaod1_N7xfqbq1Yys,52384
355
- snowflake/ml/modeling/svm/nu_svr.py,sha256=PHNEZab30oT_dJC0rcvp0p02oYAq9VqF1ldb6Yuw6Dc,49463
356
- snowflake/ml/modeling/svm/svc.py,sha256=F97dqp0qbaN3Z3TtQlp_TeiArKt4FquLQvYYZi6u_vY,52533
357
- snowflake/ml/modeling/svm/svr.py,sha256=_qtdYsHXzWT0plErs4OmplD0czneD4yRzMuDQLAcI5I,49652
353
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=V_TjCNEWxcYsVRH54BzTYQxXO_uZPS4guyNW4oKL9Zw,52064
354
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=WNUOPuV44w3a0DrocdTl5cmblyuMjMG1gHryqMY4k9Y,50417
355
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=2v328m5Hma68-BFyrn9-U0kH2fAyJJCxTTBhhW9yWSU,52376
356
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=WCR-dZGzFAXI_uU1H6zjvbDgPzQYQzlOd-hnH8cRqUw,49455
357
+ snowflake/ml/modeling/svm/svc.py,sha256=zViOG2YXKJeigjfay0hUHcOOBK-Hsf5fJrkMlh1xI6g,52525
358
+ snowflake/ml/modeling/svm/svr.py,sha256=WeJVanTur3gixpYQE1R4IEvHRdh1MG6_ukdw_euxmqA,49644
358
359
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
359
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=xa_Yejarir39_NCXeX2SG0T4RYP7kPepoTiuyqGFfRM,54809
360
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=cM5jUf2ss4H0VXWta3qpHiLcgV7M8oPlMNdyzYNd48E,53508
361
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=6Up4VeZFdLDNz9gtZ9g13huOygyqMIf3gDYAEBmjOts,54151
362
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=jLgNO9cARnC28SIpNE08kFKT3LIbIkxCiBu0KKmnE7U,52859
360
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=NKlBReihnRitvNcHWF_lnCawd1XjGYSEh4oMKnOT9lY,54801
361
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=XjZU24CGl4sw_FKGofqE8lR-gao-9x_bLfVeEbHdmZo,53500
362
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=IGCdc76GRioanYSBFfwr3-qRtJdrPje_E-EeGuNyn3k,54143
363
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=fveGEGkR__qFajfH0ULWb06c6vKoE4bLmd5wpn5DisA,52851
363
364
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
364
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ks13HZjSW932bqwXsAJpq5XKwzD5T2r186N1wBCZcBY,59807
365
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=I7A6EgOQEEqv6HX319WScpFXGTl0uG8KUFe1qlTRzyk,59306
366
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=kOpNKFdmJMBk2BkNs2IllIjpMffiAuduO0ykUny1FO4,59983
367
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=0p-DOClBejaVS2iIrpQqAUzhxO4YUVtKl5BMqKjTdaw,59509
365
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_seC-DVsdqi7Q5tk-xjT_zqluT7xfiyCdzkjmrHV8nU,59799
366
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=wAuZ__0CBwOznAWEXNCt4QrVTw9ZiG430xeObePwk9I,59298
367
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=52378Wq21gp7LXfZbFYhM8UxwBC0z6xY953p9yNWnS8,59975
368
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=EUwkEFWgeFWqNssI2eBrIJLKyqDe7RZoLYkEMGc9Z8I,59501
368
369
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
369
370
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
370
371
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -377,8 +378,8 @@ snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93Py
377
378
  snowflake/ml/registry/_manager/model_manager.py,sha256=9JL_pmSu-R7IWq6sTj-XkMLLW_BDFZbMwUlmf2AlB3o,9664
378
379
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
379
380
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
380
- snowflake_ml_python-1.5.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
381
- snowflake_ml_python-1.5.2.dist-info/METADATA,sha256=2uurYHIZr8w4_zzZgT0Y8ZhC9_JwmaUQy2UGJNZuYEo,52392
382
- snowflake_ml_python-1.5.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
383
- snowflake_ml_python-1.5.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
384
- snowflake_ml_python-1.5.2.dist-info/RECORD,,
381
+ snowflake_ml_python-1.5.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
382
+ snowflake_ml_python-1.5.3.dist-info/METADATA,sha256=QA_B6mf84du8scBIHopk8Lfi_q2AzdD-8Z7YCwL69r0,53001
383
+ snowflake_ml_python-1.5.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
384
+ snowflake_ml_python-1.5.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
385
+ snowflake_ml_python-1.5.3.dist-info/RECORD,,