snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/cortex/_complete.py +26 -5
  2. snowflake/cortex/_sse_client.py +81 -0
  3. snowflake/cortex/_util.py +105 -8
  4. snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
  5. snowflake/ml/dataset/dataset.py +15 -12
  6. snowflake/ml/dataset/dataset_factory.py +3 -4
  7. snowflake/ml/feature_store/feature_store.py +2 -2
  8. snowflake/ml/model/_client/sql/model_version.py +2 -2
  9. snowflake/ml/model/_model_composer/model_composer.py +2 -2
  10. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
  11. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  12. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  13. snowflake/ml/model/_signatures/builtins_handler.py +2 -1
  14. snowflake/ml/model/_signatures/core.py +13 -1
  15. snowflake/ml/model/_signatures/pandas_handler.py +2 -0
  16. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  17. snowflake/ml/model/model_signature.py +2 -0
  18. snowflake/ml/model/type_hints.py +1 -0
  19. snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
  20. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +156 -121
  21. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
  22. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
  23. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
  24. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
  25. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  26. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  27. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  28. snowflake/ml/modeling/cluster/birch.py +1 -1
  29. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  30. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  31. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  32. snowflake/ml/modeling/cluster/k_means.py +1 -1
  33. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  34. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  35. snowflake/ml/modeling/cluster/optics.py +1 -1
  36. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  37. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  38. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  39. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  40. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  41. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  42. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  43. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  44. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  45. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  46. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  47. snowflake/ml/modeling/covariance/oas.py +1 -1
  48. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  49. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  50. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  51. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  52. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  53. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  54. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  55. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  56. snowflake/ml/modeling/decomposition/pca.py +1 -1
  57. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  58. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  59. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  60. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  61. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  62. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  63. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  64. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  65. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  66. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  67. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  68. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  69. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  70. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  71. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  72. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  73. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  74. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  75. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  76. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  77. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  78. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  79. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  80. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  81. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  82. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  83. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  84. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  85. snowflake/ml/modeling/framework/base.py +3 -8
  86. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  87. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  88. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  89. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  90. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  91. snowflake/ml/modeling/impute/simple_imputer.py +8 -4
  92. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  93. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  94. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  95. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  96. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  97. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  98. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  99. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  100. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  101. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  102. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  103. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  104. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  105. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  106. snowflake/ml/modeling/linear_model/lars.py +1 -1
  107. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  108. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  109. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  110. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  111. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  112. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  113. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  114. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  115. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  116. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  118. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  119. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  120. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  121. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  122. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  123. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  124. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  125. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  126. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  127. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  128. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  129. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  130. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  131. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  132. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  133. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  134. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  135. snowflake/ml/modeling/manifold/isomap.py +1 -1
  136. snowflake/ml/modeling/manifold/mds.py +1 -1
  137. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  138. snowflake/ml/modeling/manifold/tsne.py +1 -1
  139. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  140. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  141. snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
  142. snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
  143. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  144. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  145. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  146. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  147. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  148. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  149. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  150. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  151. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  152. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  153. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  154. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  155. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  156. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  157. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  158. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  159. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  160. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  161. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  162. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  163. snowflake/ml/modeling/pipeline/pipeline.py +5 -0
  164. snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
  165. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
  166. snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
  167. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
  168. snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
  169. snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
  170. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
  171. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
  172. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  173. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
  174. snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  177. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  178. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  179. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  180. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  181. snowflake/ml/modeling/svm/svc.py +1 -1
  182. snowflake/ml/modeling/svm/svr.py +1 -1
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  191. snowflake/ml/version.py +1 -1
  192. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +21 -5
  193. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +196 -195
  194. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
  195. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
  196. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -13,12 +13,12 @@ from snowflake.ml._internal.exceptions import (
13
13
  exceptions,
14
14
  modeling_error_messages,
15
15
  )
16
- from snowflake.ml._internal.utils import pkg_version_utils
16
+ from snowflake.ml._internal.utils import pkg_version_utils, temp_file_utils
17
17
  from snowflake.ml._internal.utils.query_result_checker import ResultValidator
18
18
  from snowflake.ml._internal.utils.snowpark_dataframe_utils import (
19
19
  cast_snowpark_dataframe,
20
20
  )
21
- from snowflake.ml._internal.utils.temp_file_utils import get_temp_file_path
21
+ from snowflake.ml.modeling._internal import estimator_utils
22
22
  from snowflake.ml.modeling._internal.model_specifications import (
23
23
  ModelSpecifications,
24
24
  ModelSpecificationsBuilder,
@@ -306,8 +306,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
306
306
  ) # type: ignore[misc]
307
307
  def fit_wrapper_sproc(
308
308
  session: Session,
309
- stage_transform_file_name: str,
310
- stage_result_file_name: str,
311
309
  dataset_stage_name: str,
312
310
  batch_size: int,
313
311
  input_cols: List[str],
@@ -320,9 +318,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
320
318
 
321
319
  import cloudpickle as cp
322
320
 
323
- local_transform_file_name = get_temp_file_path()
321
+ local_transform_file_name = temp_file_utils.get_temp_file_path()
324
322
 
325
- session.file.get(stage_transform_file_name, local_transform_file_name, statement_params=statement_params)
323
+ session.file.get(
324
+ stage_location=dataset_stage_name,
325
+ target_directory=local_transform_file_name,
326
+ statement_params=statement_params,
327
+ )
326
328
 
327
329
  local_transform_file_path = os.path.join(
328
330
  local_transform_file_name, os.listdir(local_transform_file_name)[0]
@@ -345,13 +347,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
345
347
  sample_weight_col=sample_weight_col,
346
348
  )
347
349
 
348
- local_result_file_name = get_temp_file_path()
350
+ local_result_file_name = temp_file_utils.get_temp_file_path()
349
351
  with open(local_result_file_name, mode="w+b") as local_result_file_obj:
350
352
  cp.dump(estimator, local_result_file_obj)
351
353
 
352
354
  session.file.put(
353
- local_result_file_name,
354
- stage_result_file_name,
355
+ local_file_name=local_result_file_name,
356
+ stage_location=dataset_stage_name,
355
357
  auto_compress=False,
356
358
  overwrite=True,
357
359
  statement_params=statement_params,
@@ -394,11 +396,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
394
396
  SnowflakeMLException: For known types of user and system errors.
395
397
  e: For every unexpected exception from SnowflakeClient.
396
398
  """
397
- temp_stage_name = self._create_temp_stage()
398
- (stage_transform_file_name, stage_result_file_name) = self._upload_model_to_stage(stage_name=temp_stage_name)
399
- data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
400
-
401
- # Call fit sproc
402
399
  statement_params = telemetry.get_function_usage_statement_params(
403
400
  project=_PROJECT,
404
401
  subproject=self._subproject,
@@ -406,7 +403,16 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
406
403
  api_calls=[Session.call],
407
404
  custom_tags=None,
408
405
  )
406
+ temp_stage_name = estimator_utils.create_temp_stage(self.session)
407
+ estimator_utils.upload_model_to_stage(
408
+ stage_name=temp_stage_name,
409
+ estimator=self.estimator,
410
+ session=self.session,
411
+ statement_params=statement_params,
412
+ )
413
+ data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
409
414
 
415
+ # Call fit sproc
410
416
  model_spec = ModelSpecificationsBuilder.build(model=self.estimator)
411
417
  fit_wrapper = self._get_xgb_external_memory_fit_wrapper_sproc(
412
418
  model_spec=model_spec,
@@ -418,8 +424,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
418
424
  try:
419
425
  sproc_export_file_name = fit_wrapper(
420
426
  self.session,
421
- stage_transform_file_name,
422
- stage_result_file_name,
423
427
  temp_stage_name,
424
428
  self._batch_size,
425
429
  self.input_cols,
@@ -440,7 +444,7 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
440
444
  sproc_export_file_name = fields[0]
441
445
 
442
446
  return self._fetch_model_from_stage(
443
- dir_path=stage_result_file_name,
447
+ dir_path=temp_stage_name,
444
448
  file_name=sproc_export_file_name,
445
449
  statement_params=statement_params,
446
450
  )
@@ -296,7 +296,7 @@ class CalibratedClassifierCV(BaseTransformer):
296
296
  inspect.currentframe(), CalibratedClassifierCV.__class__.__name__
297
297
  ),
298
298
  api_calls=[Session.call],
299
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
299
+ custom_tags={"autogen": True} if self._autogenerated else None,
300
300
  )
301
301
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
302
302
  pd_df.columns = dataset.columns
@@ -271,7 +271,7 @@ class AffinityPropagation(BaseTransformer):
271
271
  inspect.currentframe(), AffinityPropagation.__class__.__name__
272
272
  ),
273
273
  api_calls=[Session.call],
274
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
274
+ custom_tags={"autogen": True} if self._autogenerated else None,
275
275
  )
276
276
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
277
277
  pd_df.columns = dataset.columns
@@ -304,7 +304,7 @@ class AgglomerativeClustering(BaseTransformer):
304
304
  inspect.currentframe(), AgglomerativeClustering.__class__.__name__
305
305
  ),
306
306
  api_calls=[Session.call],
307
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
307
+ custom_tags={"autogen": True} if self._autogenerated else None,
308
308
  )
309
309
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
310
310
  pd_df.columns = dataset.columns
@@ -262,7 +262,7 @@ class Birch(BaseTransformer):
262
262
  inspect.currentframe(), Birch.__class__.__name__
263
263
  ),
264
264
  api_calls=[Session.call],
265
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
+ custom_tags={"autogen": True} if self._autogenerated else None,
266
266
  )
267
267
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
268
268
  pd_df.columns = dataset.columns
@@ -311,7 +311,7 @@ class BisectingKMeans(BaseTransformer):
311
311
  inspect.currentframe(), BisectingKMeans.__class__.__name__
312
312
  ),
313
313
  api_calls=[Session.call],
314
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ custom_tags={"autogen": True} if self._autogenerated else None,
315
315
  )
316
316
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
317
317
  pd_df.columns = dataset.columns
@@ -279,7 +279,7 @@ class DBSCAN(BaseTransformer):
279
279
  inspect.currentframe(), DBSCAN.__class__.__name__
280
280
  ),
281
281
  api_calls=[Session.call],
282
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
282
+ custom_tags={"autogen": True} if self._autogenerated else None,
283
283
  )
284
284
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
285
285
  pd_df.columns = dataset.columns
@@ -311,7 +311,7 @@ class FeatureAgglomeration(BaseTransformer):
311
311
  inspect.currentframe(), FeatureAgglomeration.__class__.__name__
312
312
  ),
313
313
  api_calls=[Session.call],
314
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ custom_tags={"autogen": True} if self._autogenerated else None,
315
315
  )
316
316
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
317
317
  pd_df.columns = dataset.columns
@@ -306,7 +306,7 @@ class KMeans(BaseTransformer):
306
306
  inspect.currentframe(), KMeans.__class__.__name__
307
307
  ),
308
308
  api_calls=[Session.call],
309
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
309
+ custom_tags={"autogen": True} if self._autogenerated else None,
310
310
  )
311
311
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
312
312
  pd_df.columns = dataset.columns
@@ -282,7 +282,7 @@ class MeanShift(BaseTransformer):
282
282
  inspect.currentframe(), MeanShift.__class__.__name__
283
283
  ),
284
284
  api_calls=[Session.call],
285
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
285
+ custom_tags={"autogen": True} if self._autogenerated else None,
286
286
  )
287
287
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
288
288
  pd_df.columns = dataset.columns
@@ -332,7 +332,7 @@ class MiniBatchKMeans(BaseTransformer):
332
332
  inspect.currentframe(), MiniBatchKMeans.__class__.__name__
333
333
  ),
334
334
  api_calls=[Session.call],
335
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
335
+ custom_tags={"autogen": True} if self._autogenerated else None,
336
336
  )
337
337
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
338
338
  pd_df.columns = dataset.columns
@@ -352,7 +352,7 @@ class OPTICS(BaseTransformer):
352
352
  inspect.currentframe(), OPTICS.__class__.__name__
353
353
  ),
354
354
  api_calls=[Session.call],
355
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
355
+ custom_tags={"autogen": True} if self._autogenerated else None,
356
356
  )
357
357
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
358
358
  pd_df.columns = dataset.columns
@@ -290,7 +290,7 @@ class SpectralBiclustering(BaseTransformer):
290
290
  inspect.currentframe(), SpectralBiclustering.__class__.__name__
291
291
  ),
292
292
  api_calls=[Session.call],
293
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
+ custom_tags={"autogen": True} if self._autogenerated else None,
294
294
  )
295
295
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
296
296
  pd_df.columns = dataset.columns
@@ -348,7 +348,7 @@ class SpectralClustering(BaseTransformer):
348
348
  inspect.currentframe(), SpectralClustering.__class__.__name__
349
349
  ),
350
350
  api_calls=[Session.call],
351
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
351
+ custom_tags={"autogen": True} if self._autogenerated else None,
352
352
  )
353
353
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
354
354
  pd_df.columns = dataset.columns
@@ -269,7 +269,7 @@ class SpectralCoclustering(BaseTransformer):
269
269
  inspect.currentframe(), SpectralCoclustering.__class__.__name__
270
270
  ),
271
271
  api_calls=[Session.call],
272
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
272
+ custom_tags={"autogen": True} if self._autogenerated else None,
273
273
  )
274
274
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
275
275
  pd_df.columns = dataset.columns
@@ -299,7 +299,7 @@ class ColumnTransformer(BaseTransformer):
299
299
  inspect.currentframe(), ColumnTransformer.__class__.__name__
300
300
  ),
301
301
  api_calls=[Session.call],
302
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
302
+ custom_tags={"autogen": True} if self._autogenerated else None,
303
303
  )
304
304
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
305
305
  pd_df.columns = dataset.columns
@@ -260,7 +260,7 @@ class TransformedTargetRegressor(BaseTransformer):
260
260
  inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
261
261
  ),
262
262
  api_calls=[Session.call],
263
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
263
+ custom_tags={"autogen": True} if self._autogenerated else None,
264
264
  )
265
265
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
266
266
  pd_df.columns = dataset.columns
@@ -255,7 +255,7 @@ class EllipticEnvelope(BaseTransformer):
255
255
  inspect.currentframe(), EllipticEnvelope.__class__.__name__
256
256
  ),
257
257
  api_calls=[Session.call],
258
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
258
+ custom_tags={"autogen": True} if self._autogenerated else None,
259
259
  )
260
260
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
261
261
  pd_df.columns = dataset.columns
@@ -231,7 +231,7 @@ class EmpiricalCovariance(BaseTransformer):
231
231
  inspect.currentframe(), EmpiricalCovariance.__class__.__name__
232
232
  ),
233
233
  api_calls=[Session.call],
234
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
234
+ custom_tags={"autogen": True} if self._autogenerated else None,
235
235
  )
236
236
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
237
237
  pd_df.columns = dataset.columns
@@ -279,7 +279,7 @@ class GraphicalLasso(BaseTransformer):
279
279
  inspect.currentframe(), GraphicalLasso.__class__.__name__
280
280
  ),
281
281
  api_calls=[Session.call],
282
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
282
+ custom_tags={"autogen": True} if self._autogenerated else None,
283
283
  )
284
284
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
285
285
  pd_df.columns = dataset.columns
@@ -305,7 +305,7 @@ class GraphicalLassoCV(BaseTransformer):
305
305
  inspect.currentframe(), GraphicalLassoCV.__class__.__name__
306
306
  ),
307
307
  api_calls=[Session.call],
308
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
+ custom_tags={"autogen": True} if self._autogenerated else None,
309
309
  )
310
310
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
311
311
  pd_df.columns = dataset.columns
@@ -238,7 +238,7 @@ class LedoitWolf(BaseTransformer):
238
238
  inspect.currentframe(), LedoitWolf.__class__.__name__
239
239
  ),
240
240
  api_calls=[Session.call],
241
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
241
+ custom_tags={"autogen": True} if self._autogenerated else None,
242
242
  )
243
243
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
244
244
  pd_df.columns = dataset.columns
@@ -250,7 +250,7 @@ class MinCovDet(BaseTransformer):
250
250
  inspect.currentframe(), MinCovDet.__class__.__name__
251
251
  ),
252
252
  api_calls=[Session.call],
253
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
+ custom_tags={"autogen": True} if self._autogenerated else None,
254
254
  )
255
255
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
256
256
  pd_df.columns = dataset.columns
@@ -231,7 +231,7 @@ class OAS(BaseTransformer):
231
231
  inspect.currentframe(), OAS.__class__.__name__
232
232
  ),
233
233
  api_calls=[Session.call],
234
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
234
+ custom_tags={"autogen": True} if self._autogenerated else None,
235
235
  )
236
236
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
237
237
  pd_df.columns = dataset.columns
@@ -237,7 +237,7 @@ class ShrunkCovariance(BaseTransformer):
237
237
  inspect.currentframe(), ShrunkCovariance.__class__.__name__
238
238
  ),
239
239
  api_calls=[Session.call],
240
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
240
+ custom_tags={"autogen": True} if self._autogenerated else None,
241
241
  )
242
242
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
243
243
  pd_df.columns = dataset.columns
@@ -343,7 +343,7 @@ class DictionaryLearning(BaseTransformer):
343
343
  inspect.currentframe(), DictionaryLearning.__class__.__name__
344
344
  ),
345
345
  api_calls=[Session.call],
346
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
346
+ custom_tags={"autogen": True} if self._autogenerated else None,
347
347
  )
348
348
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
349
349
  pd_df.columns = dataset.columns
@@ -280,7 +280,7 @@ class FactorAnalysis(BaseTransformer):
280
280
  inspect.currentframe(), FactorAnalysis.__class__.__name__
281
281
  ),
282
282
  api_calls=[Session.call],
283
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
+ custom_tags={"autogen": True} if self._autogenerated else None,
284
284
  )
285
285
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
286
286
  pd_df.columns = dataset.columns
@@ -298,7 +298,7 @@ class FastICA(BaseTransformer):
298
298
  inspect.currentframe(), FastICA.__class__.__name__
299
299
  ),
300
300
  api_calls=[Session.call],
301
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
+ custom_tags={"autogen": True} if self._autogenerated else None,
302
302
  )
303
303
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
304
304
  pd_df.columns = dataset.columns
@@ -250,7 +250,7 @@ class IncrementalPCA(BaseTransformer):
250
250
  inspect.currentframe(), IncrementalPCA.__class__.__name__
251
251
  ),
252
252
  api_calls=[Session.call],
253
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
+ custom_tags={"autogen": True} if self._autogenerated else None,
254
254
  )
255
255
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
256
256
  pd_df.columns = dataset.columns
@@ -346,7 +346,7 @@ class KernelPCA(BaseTransformer):
346
346
  inspect.currentframe(), KernelPCA.__class__.__name__
347
347
  ),
348
348
  api_calls=[Session.call],
349
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
349
+ custom_tags={"autogen": True} if self._autogenerated else None,
350
350
  )
351
351
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
352
352
  pd_df.columns = dataset.columns
@@ -368,7 +368,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
368
368
  inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__
369
369
  ),
370
370
  api_calls=[Session.call],
371
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
371
+ custom_tags={"autogen": True} if self._autogenerated else None,
372
372
  )
373
373
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
374
374
  pd_df.columns = dataset.columns
@@ -313,7 +313,7 @@ class MiniBatchSparsePCA(BaseTransformer):
313
313
  inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__
314
314
  ),
315
315
  api_calls=[Session.call],
316
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
316
+ custom_tags={"autogen": True} if self._autogenerated else None,
317
317
  )
318
318
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
319
319
  pd_df.columns = dataset.columns
@@ -315,7 +315,7 @@ class PCA(BaseTransformer):
315
315
  inspect.currentframe(), PCA.__class__.__name__
316
316
  ),
317
317
  api_calls=[Session.call],
318
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
318
+ custom_tags={"autogen": True} if self._autogenerated else None,
319
319
  )
320
320
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
321
321
  pd_df.columns = dataset.columns
@@ -288,7 +288,7 @@ class SparsePCA(BaseTransformer):
288
288
  inspect.currentframe(), SparsePCA.__class__.__name__
289
289
  ),
290
290
  api_calls=[Session.call],
291
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
291
+ custom_tags={"autogen": True} if self._autogenerated else None,
292
292
  )
293
293
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
294
294
  pd_df.columns = dataset.columns
@@ -269,7 +269,7 @@ class TruncatedSVD(BaseTransformer):
269
269
  inspect.currentframe(), TruncatedSVD.__class__.__name__
270
270
  ),
271
271
  api_calls=[Session.call],
272
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
272
+ custom_tags={"autogen": True} if self._autogenerated else None,
273
273
  )
274
274
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
275
275
  pd_df.columns = dataset.columns
@@ -286,7 +286,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
286
286
  inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
287
287
  ),
288
288
  api_calls=[Session.call],
289
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
289
+ custom_tags={"autogen": True} if self._autogenerated else None,
290
290
  )
291
291
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
292
292
  pd_df.columns = dataset.columns
@@ -248,7 +248,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
248
248
  inspect.currentframe(), QuadraticDiscriminantAnalysis.__class__.__name__
249
249
  ),
250
250
  api_calls=[Session.call],
251
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
251
+ custom_tags={"autogen": True} if self._autogenerated else None,
252
252
  )
253
253
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
254
254
  pd_df.columns = dataset.columns
@@ -273,7 +273,7 @@ class AdaBoostClassifier(BaseTransformer):
273
273
  inspect.currentframe(), AdaBoostClassifier.__class__.__name__
274
274
  ),
275
275
  api_calls=[Session.call],
276
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
+ custom_tags={"autogen": True} if self._autogenerated else None,
277
277
  )
278
278
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
279
279
  pd_df.columns = dataset.columns
@@ -270,7 +270,7 @@ class AdaBoostRegressor(BaseTransformer):
270
270
  inspect.currentframe(), AdaBoostRegressor.__class__.__name__
271
271
  ),
272
272
  api_calls=[Session.call],
273
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
273
+ custom_tags={"autogen": True} if self._autogenerated else None,
274
274
  )
275
275
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
276
276
  pd_df.columns = dataset.columns
@@ -305,7 +305,7 @@ class BaggingClassifier(BaseTransformer):
305
305
  inspect.currentframe(), BaggingClassifier.__class__.__name__
306
306
  ),
307
307
  api_calls=[Session.call],
308
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
+ custom_tags={"autogen": True} if self._autogenerated else None,
309
309
  )
310
310
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
311
311
  pd_df.columns = dataset.columns
@@ -305,7 +305,7 @@ class BaggingRegressor(BaseTransformer):
305
305
  inspect.currentframe(), BaggingRegressor.__class__.__name__
306
306
  ),
307
307
  api_calls=[Session.call],
308
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
+ custom_tags={"autogen": True} if self._autogenerated else None,
309
309
  )
310
310
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
311
311
  pd_df.columns = dataset.columns
@@ -408,7 +408,7 @@ class ExtraTreesClassifier(BaseTransformer):
408
408
  inspect.currentframe(), ExtraTreesClassifier.__class__.__name__
409
409
  ),
410
410
  api_calls=[Session.call],
411
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
411
+ custom_tags={"autogen": True} if self._autogenerated else None,
412
412
  )
413
413
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
414
414
  pd_df.columns = dataset.columns
@@ -387,7 +387,7 @@ class ExtraTreesRegressor(BaseTransformer):
387
387
  inspect.currentframe(), ExtraTreesRegressor.__class__.__name__
388
388
  ),
389
389
  api_calls=[Session.call],
390
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
390
+ custom_tags={"autogen": True} if self._autogenerated else None,
391
391
  )
392
392
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
393
393
  pd_df.columns = dataset.columns
@@ -420,7 +420,7 @@ class GradientBoostingClassifier(BaseTransformer):
420
420
  inspect.currentframe(), GradientBoostingClassifier.__class__.__name__
421
421
  ),
422
422
  api_calls=[Session.call],
423
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
423
+ custom_tags={"autogen": True} if self._autogenerated else None,
424
424
  )
425
425
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
426
426
  pd_df.columns = dataset.columns
@@ -429,7 +429,7 @@ class GradientBoostingRegressor(BaseTransformer):
429
429
  inspect.currentframe(), GradientBoostingRegressor.__class__.__name__
430
430
  ),
431
431
  api_calls=[Session.call],
432
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
432
+ custom_tags={"autogen": True} if self._autogenerated else None,
433
433
  )
434
434
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
435
435
  pd_df.columns = dataset.columns
@@ -401,7 +401,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
401
401
  inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
402
402
  ),
403
403
  api_calls=[Session.call],
404
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
404
+ custom_tags={"autogen": True} if self._autogenerated else None,
405
405
  )
406
406
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
407
407
  pd_df.columns = dataset.columns
@@ -392,7 +392,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
392
392
  inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__
393
393
  ),
394
394
  api_calls=[Session.call],
395
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
395
+ custom_tags={"autogen": True} if self._autogenerated else None,
396
396
  )
397
397
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
398
398
  pd_df.columns = dataset.columns
@@ -292,7 +292,7 @@ class IsolationForest(BaseTransformer):
292
292
  inspect.currentframe(), IsolationForest.__class__.__name__
293
293
  ),
294
294
  api_calls=[Session.call],
295
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
295
+ custom_tags={"autogen": True} if self._autogenerated else None,
296
296
  )
297
297
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
298
298
  pd_df.columns = dataset.columns
@@ -404,7 +404,7 @@ class RandomForestClassifier(BaseTransformer):
404
404
  inspect.currentframe(), RandomForestClassifier.__class__.__name__
405
405
  ),
406
406
  api_calls=[Session.call],
407
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
407
+ custom_tags={"autogen": True} if self._autogenerated else None,
408
408
  )
409
409
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
410
410
  pd_df.columns = dataset.columns
@@ -383,7 +383,7 @@ class RandomForestRegressor(BaseTransformer):
383
383
  inspect.currentframe(), RandomForestRegressor.__class__.__name__
384
384
  ),
385
385
  api_calls=[Session.call],
386
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
386
+ custom_tags={"autogen": True} if self._autogenerated else None,
387
387
  )
388
388
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
389
389
  pd_df.columns = dataset.columns