snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +26 -5
- snowflake/cortex/_sse_client.py +81 -0
- snowflake/cortex/_util.py +105 -8
- snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
- snowflake/ml/dataset/dataset.py +15 -12
- snowflake/ml/dataset/dataset_factory.py +3 -4
- snowflake/ml/feature_store/feature_store.py +2 -2
- snowflake/ml/model/_client/sql/model_version.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
- snowflake/ml/model/_signatures/builtins_handler.py +2 -1
- snowflake/ml/model/_signatures/core.py +13 -1
- snowflake/ml/model/_signatures/pandas_handler.py +2 -0
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/model_signature.py +2 -0
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +156 -121
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
- snowflake/ml/modeling/cluster/birch.py +1 -1
- snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
- snowflake/ml/modeling/cluster/dbscan.py +1 -1
- snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
- snowflake/ml/modeling/cluster/k_means.py +1 -1
- snowflake/ml/modeling/cluster/mean_shift.py +1 -1
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
- snowflake/ml/modeling/cluster/optics.py +1 -1
- snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
- snowflake/ml/modeling/compose/column_transformer.py +1 -1
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
- snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
- snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
- snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
- snowflake/ml/modeling/covariance/oas.py +1 -1
- snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
- snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
- snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
- snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
- snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/pca.py +1 -1
- snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
- snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
- snowflake/ml/modeling/framework/base.py +3 -8
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
- snowflake/ml/modeling/impute/knn_imputer.py +1 -1
- snowflake/ml/modeling/impute/missing_indicator.py +1 -1
- snowflake/ml/modeling/impute/simple_imputer.py +8 -4
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +1 -1
- snowflake/ml/modeling/manifold/mds.py +1 -1
- snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
- snowflake/ml/modeling/manifold/tsne.py +1 -1
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
- snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
- snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/pipeline/pipeline.py +5 -0
- snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
- snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
- snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +21 -5
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +196 -195
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -13,12 +13,12 @@ from snowflake.ml._internal.exceptions import (
|
|
13
13
|
exceptions,
|
14
14
|
modeling_error_messages,
|
15
15
|
)
|
16
|
-
from snowflake.ml._internal.utils import pkg_version_utils
|
16
|
+
from snowflake.ml._internal.utils import pkg_version_utils, temp_file_utils
|
17
17
|
from snowflake.ml._internal.utils.query_result_checker import ResultValidator
|
18
18
|
from snowflake.ml._internal.utils.snowpark_dataframe_utils import (
|
19
19
|
cast_snowpark_dataframe,
|
20
20
|
)
|
21
|
-
from snowflake.ml._internal
|
21
|
+
from snowflake.ml.modeling._internal import estimator_utils
|
22
22
|
from snowflake.ml.modeling._internal.model_specifications import (
|
23
23
|
ModelSpecifications,
|
24
24
|
ModelSpecificationsBuilder,
|
@@ -306,8 +306,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
306
306
|
) # type: ignore[misc]
|
307
307
|
def fit_wrapper_sproc(
|
308
308
|
session: Session,
|
309
|
-
stage_transform_file_name: str,
|
310
|
-
stage_result_file_name: str,
|
311
309
|
dataset_stage_name: str,
|
312
310
|
batch_size: int,
|
313
311
|
input_cols: List[str],
|
@@ -320,9 +318,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
320
318
|
|
321
319
|
import cloudpickle as cp
|
322
320
|
|
323
|
-
local_transform_file_name = get_temp_file_path()
|
321
|
+
local_transform_file_name = temp_file_utils.get_temp_file_path()
|
324
322
|
|
325
|
-
session.file.get(
|
323
|
+
session.file.get(
|
324
|
+
stage_location=dataset_stage_name,
|
325
|
+
target_directory=local_transform_file_name,
|
326
|
+
statement_params=statement_params,
|
327
|
+
)
|
326
328
|
|
327
329
|
local_transform_file_path = os.path.join(
|
328
330
|
local_transform_file_name, os.listdir(local_transform_file_name)[0]
|
@@ -345,13 +347,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
345
347
|
sample_weight_col=sample_weight_col,
|
346
348
|
)
|
347
349
|
|
348
|
-
local_result_file_name = get_temp_file_path()
|
350
|
+
local_result_file_name = temp_file_utils.get_temp_file_path()
|
349
351
|
with open(local_result_file_name, mode="w+b") as local_result_file_obj:
|
350
352
|
cp.dump(estimator, local_result_file_obj)
|
351
353
|
|
352
354
|
session.file.put(
|
353
|
-
local_result_file_name,
|
354
|
-
|
355
|
+
local_file_name=local_result_file_name,
|
356
|
+
stage_location=dataset_stage_name,
|
355
357
|
auto_compress=False,
|
356
358
|
overwrite=True,
|
357
359
|
statement_params=statement_params,
|
@@ -394,11 +396,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
394
396
|
SnowflakeMLException: For known types of user and system errors.
|
395
397
|
e: For every unexpected exception from SnowflakeClient.
|
396
398
|
"""
|
397
|
-
temp_stage_name = self._create_temp_stage()
|
398
|
-
(stage_transform_file_name, stage_result_file_name) = self._upload_model_to_stage(stage_name=temp_stage_name)
|
399
|
-
data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
|
400
|
-
|
401
|
-
# Call fit sproc
|
402
399
|
statement_params = telemetry.get_function_usage_statement_params(
|
403
400
|
project=_PROJECT,
|
404
401
|
subproject=self._subproject,
|
@@ -406,7 +403,16 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
406
403
|
api_calls=[Session.call],
|
407
404
|
custom_tags=None,
|
408
405
|
)
|
406
|
+
temp_stage_name = estimator_utils.create_temp_stage(self.session)
|
407
|
+
estimator_utils.upload_model_to_stage(
|
408
|
+
stage_name=temp_stage_name,
|
409
|
+
estimator=self.estimator,
|
410
|
+
session=self.session,
|
411
|
+
statement_params=statement_params,
|
412
|
+
)
|
413
|
+
data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
|
409
414
|
|
415
|
+
# Call fit sproc
|
410
416
|
model_spec = ModelSpecificationsBuilder.build(model=self.estimator)
|
411
417
|
fit_wrapper = self._get_xgb_external_memory_fit_wrapper_sproc(
|
412
418
|
model_spec=model_spec,
|
@@ -418,8 +424,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
418
424
|
try:
|
419
425
|
sproc_export_file_name = fit_wrapper(
|
420
426
|
self.session,
|
421
|
-
stage_transform_file_name,
|
422
|
-
stage_result_file_name,
|
423
427
|
temp_stage_name,
|
424
428
|
self._batch_size,
|
425
429
|
self.input_cols,
|
@@ -440,7 +444,7 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
440
444
|
sproc_export_file_name = fields[0]
|
441
445
|
|
442
446
|
return self._fetch_model_from_stage(
|
443
|
-
dir_path=
|
447
|
+
dir_path=temp_stage_name,
|
444
448
|
file_name=sproc_export_file_name,
|
445
449
|
statement_params=statement_params,
|
446
450
|
)
|
@@ -296,7 +296,7 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
296
296
|
inspect.currentframe(), CalibratedClassifierCV.__class__.__name__
|
297
297
|
),
|
298
298
|
api_calls=[Session.call],
|
299
|
-
custom_tags=
|
299
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
300
300
|
)
|
301
301
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
302
302
|
pd_df.columns = dataset.columns
|
@@ -271,7 +271,7 @@ class AffinityPropagation(BaseTransformer):
|
|
271
271
|
inspect.currentframe(), AffinityPropagation.__class__.__name__
|
272
272
|
),
|
273
273
|
api_calls=[Session.call],
|
274
|
-
custom_tags=
|
274
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
275
275
|
)
|
276
276
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
277
|
pd_df.columns = dataset.columns
|
@@ -304,7 +304,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
304
304
|
inspect.currentframe(), AgglomerativeClustering.__class__.__name__
|
305
305
|
),
|
306
306
|
api_calls=[Session.call],
|
307
|
-
custom_tags=
|
307
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
308
308
|
)
|
309
309
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
310
310
|
pd_df.columns = dataset.columns
|
@@ -262,7 +262,7 @@ class Birch(BaseTransformer):
|
|
262
262
|
inspect.currentframe(), Birch.__class__.__name__
|
263
263
|
),
|
264
264
|
api_calls=[Session.call],
|
265
|
-
custom_tags=
|
265
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
266
266
|
)
|
267
267
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
268
268
|
pd_df.columns = dataset.columns
|
@@ -311,7 +311,7 @@ class BisectingKMeans(BaseTransformer):
|
|
311
311
|
inspect.currentframe(), BisectingKMeans.__class__.__name__
|
312
312
|
),
|
313
313
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
314
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
315
|
)
|
316
316
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
317
|
pd_df.columns = dataset.columns
|
@@ -279,7 +279,7 @@ class DBSCAN(BaseTransformer):
|
|
279
279
|
inspect.currentframe(), DBSCAN.__class__.__name__
|
280
280
|
),
|
281
281
|
api_calls=[Session.call],
|
282
|
-
custom_tags=
|
282
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
283
283
|
)
|
284
284
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
285
|
pd_df.columns = dataset.columns
|
@@ -311,7 +311,7 @@ class FeatureAgglomeration(BaseTransformer):
|
|
311
311
|
inspect.currentframe(), FeatureAgglomeration.__class__.__name__
|
312
312
|
),
|
313
313
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
314
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
315
|
)
|
316
316
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
317
|
pd_df.columns = dataset.columns
|
@@ -306,7 +306,7 @@ class KMeans(BaseTransformer):
|
|
306
306
|
inspect.currentframe(), KMeans.__class__.__name__
|
307
307
|
),
|
308
308
|
api_calls=[Session.call],
|
309
|
-
custom_tags=
|
309
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
310
310
|
)
|
311
311
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
312
312
|
pd_df.columns = dataset.columns
|
@@ -282,7 +282,7 @@ class MeanShift(BaseTransformer):
|
|
282
282
|
inspect.currentframe(), MeanShift.__class__.__name__
|
283
283
|
),
|
284
284
|
api_calls=[Session.call],
|
285
|
-
custom_tags=
|
285
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
286
286
|
)
|
287
287
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
288
288
|
pd_df.columns = dataset.columns
|
@@ -332,7 +332,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
332
332
|
inspect.currentframe(), MiniBatchKMeans.__class__.__name__
|
333
333
|
),
|
334
334
|
api_calls=[Session.call],
|
335
|
-
custom_tags=
|
335
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
336
336
|
)
|
337
337
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
338
338
|
pd_df.columns = dataset.columns
|
@@ -352,7 +352,7 @@ class OPTICS(BaseTransformer):
|
|
352
352
|
inspect.currentframe(), OPTICS.__class__.__name__
|
353
353
|
),
|
354
354
|
api_calls=[Session.call],
|
355
|
-
custom_tags=
|
355
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
356
356
|
)
|
357
357
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
358
358
|
pd_df.columns = dataset.columns
|
@@ -290,7 +290,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
290
290
|
inspect.currentframe(), SpectralBiclustering.__class__.__name__
|
291
291
|
),
|
292
292
|
api_calls=[Session.call],
|
293
|
-
custom_tags=
|
293
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
294
294
|
)
|
295
295
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
296
|
pd_df.columns = dataset.columns
|
@@ -348,7 +348,7 @@ class SpectralClustering(BaseTransformer):
|
|
348
348
|
inspect.currentframe(), SpectralClustering.__class__.__name__
|
349
349
|
),
|
350
350
|
api_calls=[Session.call],
|
351
|
-
custom_tags=
|
351
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
352
352
|
)
|
353
353
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
354
354
|
pd_df.columns = dataset.columns
|
@@ -269,7 +269,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
269
269
|
inspect.currentframe(), SpectralCoclustering.__class__.__name__
|
270
270
|
),
|
271
271
|
api_calls=[Session.call],
|
272
|
-
custom_tags=
|
272
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
273
273
|
)
|
274
274
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
275
|
pd_df.columns = dataset.columns
|
@@ -299,7 +299,7 @@ class ColumnTransformer(BaseTransformer):
|
|
299
299
|
inspect.currentframe(), ColumnTransformer.__class__.__name__
|
300
300
|
),
|
301
301
|
api_calls=[Session.call],
|
302
|
-
custom_tags=
|
302
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
303
303
|
)
|
304
304
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
305
305
|
pd_df.columns = dataset.columns
|
@@ -260,7 +260,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
260
260
|
inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
|
261
261
|
),
|
262
262
|
api_calls=[Session.call],
|
263
|
-
custom_tags=
|
263
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
264
264
|
)
|
265
265
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
266
266
|
pd_df.columns = dataset.columns
|
@@ -255,7 +255,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
255
255
|
inspect.currentframe(), EllipticEnvelope.__class__.__name__
|
256
256
|
),
|
257
257
|
api_calls=[Session.call],
|
258
|
-
custom_tags=
|
258
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
259
259
|
)
|
260
260
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
261
261
|
pd_df.columns = dataset.columns
|
@@ -231,7 +231,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
231
231
|
inspect.currentframe(), EmpiricalCovariance.__class__.__name__
|
232
232
|
),
|
233
233
|
api_calls=[Session.call],
|
234
|
-
custom_tags=
|
234
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
235
235
|
)
|
236
236
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
237
237
|
pd_df.columns = dataset.columns
|
@@ -279,7 +279,7 @@ class GraphicalLasso(BaseTransformer):
|
|
279
279
|
inspect.currentframe(), GraphicalLasso.__class__.__name__
|
280
280
|
),
|
281
281
|
api_calls=[Session.call],
|
282
|
-
custom_tags=
|
282
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
283
283
|
)
|
284
284
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
285
|
pd_df.columns = dataset.columns
|
@@ -305,7 +305,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
305
305
|
inspect.currentframe(), GraphicalLassoCV.__class__.__name__
|
306
306
|
),
|
307
307
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
308
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
309
|
)
|
310
310
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
311
|
pd_df.columns = dataset.columns
|
@@ -238,7 +238,7 @@ class LedoitWolf(BaseTransformer):
|
|
238
238
|
inspect.currentframe(), LedoitWolf.__class__.__name__
|
239
239
|
),
|
240
240
|
api_calls=[Session.call],
|
241
|
-
custom_tags=
|
241
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
242
242
|
)
|
243
243
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
244
244
|
pd_df.columns = dataset.columns
|
@@ -250,7 +250,7 @@ class MinCovDet(BaseTransformer):
|
|
250
250
|
inspect.currentframe(), MinCovDet.__class__.__name__
|
251
251
|
),
|
252
252
|
api_calls=[Session.call],
|
253
|
-
custom_tags=
|
253
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
254
254
|
)
|
255
255
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
256
256
|
pd_df.columns = dataset.columns
|
@@ -231,7 +231,7 @@ class OAS(BaseTransformer):
|
|
231
231
|
inspect.currentframe(), OAS.__class__.__name__
|
232
232
|
),
|
233
233
|
api_calls=[Session.call],
|
234
|
-
custom_tags=
|
234
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
235
235
|
)
|
236
236
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
237
237
|
pd_df.columns = dataset.columns
|
@@ -237,7 +237,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
237
237
|
inspect.currentframe(), ShrunkCovariance.__class__.__name__
|
238
238
|
),
|
239
239
|
api_calls=[Session.call],
|
240
|
-
custom_tags=
|
240
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
241
241
|
)
|
242
242
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
243
|
pd_df.columns = dataset.columns
|
@@ -343,7 +343,7 @@ class DictionaryLearning(BaseTransformer):
|
|
343
343
|
inspect.currentframe(), DictionaryLearning.__class__.__name__
|
344
344
|
),
|
345
345
|
api_calls=[Session.call],
|
346
|
-
custom_tags=
|
346
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
347
347
|
)
|
348
348
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
349
349
|
pd_df.columns = dataset.columns
|
@@ -280,7 +280,7 @@ class FactorAnalysis(BaseTransformer):
|
|
280
280
|
inspect.currentframe(), FactorAnalysis.__class__.__name__
|
281
281
|
),
|
282
282
|
api_calls=[Session.call],
|
283
|
-
custom_tags=
|
283
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
284
284
|
)
|
285
285
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
286
286
|
pd_df.columns = dataset.columns
|
@@ -298,7 +298,7 @@ class FastICA(BaseTransformer):
|
|
298
298
|
inspect.currentframe(), FastICA.__class__.__name__
|
299
299
|
),
|
300
300
|
api_calls=[Session.call],
|
301
|
-
custom_tags=
|
301
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
302
302
|
)
|
303
303
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
304
304
|
pd_df.columns = dataset.columns
|
@@ -250,7 +250,7 @@ class IncrementalPCA(BaseTransformer):
|
|
250
250
|
inspect.currentframe(), IncrementalPCA.__class__.__name__
|
251
251
|
),
|
252
252
|
api_calls=[Session.call],
|
253
|
-
custom_tags=
|
253
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
254
254
|
)
|
255
255
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
256
256
|
pd_df.columns = dataset.columns
|
@@ -346,7 +346,7 @@ class KernelPCA(BaseTransformer):
|
|
346
346
|
inspect.currentframe(), KernelPCA.__class__.__name__
|
347
347
|
),
|
348
348
|
api_calls=[Session.call],
|
349
|
-
custom_tags=
|
349
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
350
350
|
)
|
351
351
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
352
352
|
pd_df.columns = dataset.columns
|
@@ -368,7 +368,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
368
368
|
inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__
|
369
369
|
),
|
370
370
|
api_calls=[Session.call],
|
371
|
-
custom_tags=
|
371
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
372
372
|
)
|
373
373
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
374
374
|
pd_df.columns = dataset.columns
|
@@ -313,7 +313,7 @@ class MiniBatchSparsePCA(BaseTransformer):
|
|
313
313
|
inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__
|
314
314
|
),
|
315
315
|
api_calls=[Session.call],
|
316
|
-
custom_tags=
|
316
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
317
317
|
)
|
318
318
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
319
|
pd_df.columns = dataset.columns
|
@@ -315,7 +315,7 @@ class PCA(BaseTransformer):
|
|
315
315
|
inspect.currentframe(), PCA.__class__.__name__
|
316
316
|
),
|
317
317
|
api_calls=[Session.call],
|
318
|
-
custom_tags=
|
318
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
319
319
|
)
|
320
320
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
321
321
|
pd_df.columns = dataset.columns
|
@@ -288,7 +288,7 @@ class SparsePCA(BaseTransformer):
|
|
288
288
|
inspect.currentframe(), SparsePCA.__class__.__name__
|
289
289
|
),
|
290
290
|
api_calls=[Session.call],
|
291
|
-
custom_tags=
|
291
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
292
292
|
)
|
293
293
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
294
294
|
pd_df.columns = dataset.columns
|
@@ -269,7 +269,7 @@ class TruncatedSVD(BaseTransformer):
|
|
269
269
|
inspect.currentframe(), TruncatedSVD.__class__.__name__
|
270
270
|
),
|
271
271
|
api_calls=[Session.call],
|
272
|
-
custom_tags=
|
272
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
273
273
|
)
|
274
274
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
275
|
pd_df.columns = dataset.columns
|
@@ -286,7 +286,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
286
286
|
inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
|
287
287
|
),
|
288
288
|
api_calls=[Session.call],
|
289
|
-
custom_tags=
|
289
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
290
290
|
)
|
291
291
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
292
292
|
pd_df.columns = dataset.columns
|
@@ -248,7 +248,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
248
248
|
inspect.currentframe(), QuadraticDiscriminantAnalysis.__class__.__name__
|
249
249
|
),
|
250
250
|
api_calls=[Session.call],
|
251
|
-
custom_tags=
|
251
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
252
252
|
)
|
253
253
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
254
|
pd_df.columns = dataset.columns
|
@@ -273,7 +273,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
273
273
|
inspect.currentframe(), AdaBoostClassifier.__class__.__name__
|
274
274
|
),
|
275
275
|
api_calls=[Session.call],
|
276
|
-
custom_tags=
|
276
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
277
277
|
)
|
278
278
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
279
279
|
pd_df.columns = dataset.columns
|
@@ -270,7 +270,7 @@ class AdaBoostRegressor(BaseTransformer):
|
|
270
270
|
inspect.currentframe(), AdaBoostRegressor.__class__.__name__
|
271
271
|
),
|
272
272
|
api_calls=[Session.call],
|
273
|
-
custom_tags=
|
273
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
274
274
|
)
|
275
275
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
276
276
|
pd_df.columns = dataset.columns
|
@@ -305,7 +305,7 @@ class BaggingClassifier(BaseTransformer):
|
|
305
305
|
inspect.currentframe(), BaggingClassifier.__class__.__name__
|
306
306
|
),
|
307
307
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
308
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
309
|
)
|
310
310
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
311
|
pd_df.columns = dataset.columns
|
@@ -305,7 +305,7 @@ class BaggingRegressor(BaseTransformer):
|
|
305
305
|
inspect.currentframe(), BaggingRegressor.__class__.__name__
|
306
306
|
),
|
307
307
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
308
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
309
|
)
|
310
310
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
311
|
pd_df.columns = dataset.columns
|
@@ -408,7 +408,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
408
408
|
inspect.currentframe(), ExtraTreesClassifier.__class__.__name__
|
409
409
|
),
|
410
410
|
api_calls=[Session.call],
|
411
|
-
custom_tags=
|
411
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
412
412
|
)
|
413
413
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
414
414
|
pd_df.columns = dataset.columns
|
@@ -387,7 +387,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
387
387
|
inspect.currentframe(), ExtraTreesRegressor.__class__.__name__
|
388
388
|
),
|
389
389
|
api_calls=[Session.call],
|
390
|
-
custom_tags=
|
390
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
391
391
|
)
|
392
392
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
393
393
|
pd_df.columns = dataset.columns
|
@@ -420,7 +420,7 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
420
420
|
inspect.currentframe(), GradientBoostingClassifier.__class__.__name__
|
421
421
|
),
|
422
422
|
api_calls=[Session.call],
|
423
|
-
custom_tags=
|
423
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
424
424
|
)
|
425
425
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
426
426
|
pd_df.columns = dataset.columns
|
@@ -429,7 +429,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
429
429
|
inspect.currentframe(), GradientBoostingRegressor.__class__.__name__
|
430
430
|
),
|
431
431
|
api_calls=[Session.call],
|
432
|
-
custom_tags=
|
432
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
433
433
|
)
|
434
434
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
435
435
|
pd_df.columns = dataset.columns
|
@@ -401,7 +401,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
401
401
|
inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
|
402
402
|
),
|
403
403
|
api_calls=[Session.call],
|
404
|
-
custom_tags=
|
404
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
405
405
|
)
|
406
406
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
407
407
|
pd_df.columns = dataset.columns
|
@@ -392,7 +392,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
392
392
|
inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__
|
393
393
|
),
|
394
394
|
api_calls=[Session.call],
|
395
|
-
custom_tags=
|
395
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
396
396
|
)
|
397
397
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
398
398
|
pd_df.columns = dataset.columns
|
@@ -292,7 +292,7 @@ class IsolationForest(BaseTransformer):
|
|
292
292
|
inspect.currentframe(), IsolationForest.__class__.__name__
|
293
293
|
),
|
294
294
|
api_calls=[Session.call],
|
295
|
-
custom_tags=
|
295
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
296
296
|
)
|
297
297
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
298
|
pd_df.columns = dataset.columns
|
@@ -404,7 +404,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
404
404
|
inspect.currentframe(), RandomForestClassifier.__class__.__name__
|
405
405
|
),
|
406
406
|
api_calls=[Session.call],
|
407
|
-
custom_tags=
|
407
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
408
408
|
)
|
409
409
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
410
410
|
pd_df.columns = dataset.columns
|
@@ -383,7 +383,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
383
383
|
inspect.currentframe(), RandomForestRegressor.__class__.__name__
|
384
384
|
),
|
385
385
|
api_calls=[Session.call],
|
386
|
-
custom_tags=
|
386
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
387
387
|
)
|
388
388
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
389
389
|
pd_df.columns = dataset.columns
|