snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/cortex/_complete.py +26 -5
  2. snowflake/cortex/_sse_client.py +81 -0
  3. snowflake/cortex/_util.py +105 -8
  4. snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
  5. snowflake/ml/dataset/dataset.py +15 -12
  6. snowflake/ml/dataset/dataset_factory.py +3 -4
  7. snowflake/ml/feature_store/feature_store.py +2 -2
  8. snowflake/ml/model/_client/sql/model_version.py +2 -2
  9. snowflake/ml/model/_model_composer/model_composer.py +2 -2
  10. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
  11. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  12. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  13. snowflake/ml/model/_signatures/builtins_handler.py +2 -1
  14. snowflake/ml/model/_signatures/core.py +13 -1
  15. snowflake/ml/model/_signatures/pandas_handler.py +2 -0
  16. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  17. snowflake/ml/model/model_signature.py +2 -0
  18. snowflake/ml/model/type_hints.py +1 -0
  19. snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
  20. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +156 -121
  21. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
  22. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
  23. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
  24. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
  25. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  26. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  27. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  28. snowflake/ml/modeling/cluster/birch.py +1 -1
  29. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  30. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  31. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  32. snowflake/ml/modeling/cluster/k_means.py +1 -1
  33. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  34. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  35. snowflake/ml/modeling/cluster/optics.py +1 -1
  36. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  37. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  38. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  39. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  40. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  41. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  42. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  43. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  44. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  45. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  46. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  47. snowflake/ml/modeling/covariance/oas.py +1 -1
  48. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  49. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  50. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  51. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  52. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  53. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  54. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  55. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  56. snowflake/ml/modeling/decomposition/pca.py +1 -1
  57. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  58. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  59. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  60. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  61. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  62. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  63. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  64. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  65. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  66. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  67. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  68. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  69. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  70. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  71. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  72. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  73. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  74. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  75. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  76. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  77. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  78. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  79. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  80. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  81. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  82. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  83. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  84. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  85. snowflake/ml/modeling/framework/base.py +3 -8
  86. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  87. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  88. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  89. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  90. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  91. snowflake/ml/modeling/impute/simple_imputer.py +8 -4
  92. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  93. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  94. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  95. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  96. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  97. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  98. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  99. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  100. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  101. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  102. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  103. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  104. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  105. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  106. snowflake/ml/modeling/linear_model/lars.py +1 -1
  107. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  108. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  109. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  110. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  111. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  112. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  113. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  114. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  115. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  116. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  118. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  119. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  120. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  121. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  122. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  123. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  124. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  125. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  126. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  127. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  128. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  129. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  130. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  131. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  132. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  133. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  134. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  135. snowflake/ml/modeling/manifold/isomap.py +1 -1
  136. snowflake/ml/modeling/manifold/mds.py +1 -1
  137. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  138. snowflake/ml/modeling/manifold/tsne.py +1 -1
  139. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  140. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  141. snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
  142. snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
  143. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  144. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  145. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  146. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  147. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  148. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  149. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  150. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  151. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  152. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  153. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  154. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  155. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  156. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  157. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  158. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  159. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  160. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  161. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  162. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  163. snowflake/ml/modeling/pipeline/pipeline.py +5 -0
  164. snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
  165. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
  166. snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
  167. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
  168. snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
  169. snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
  170. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
  171. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
  172. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  173. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
  174. snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  177. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  178. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  179. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  180. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  181. snowflake/ml/modeling/svm/svc.py +1 -1
  182. snowflake/ml/modeling/svm/svr.py +1 -1
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  191. snowflake/ml/version.py +1 -1
  192. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +21 -5
  193. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +196 -195
  194. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
  195. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
  196. {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -37,12 +37,15 @@ class RobustScaler(base.BaseTransformer):
37
37
  the dataset is scaled down. If less than 1, the dataset is scaled up.
38
38
 
39
39
  input_cols: Optional[Union[str, List[str]]], default=None
40
- The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
40
+ The name(s) of one or more columns in the input DataFrame containing feature(s) to be scaled. Input
41
+ columns must be specified before fit with this argument or after initialization with the
42
+ `set_input_cols` method. This argument is optional for API consistency.
41
43
 
42
44
  output_cols: Optional[Union[str, List[str]]], default=None
43
- The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
44
- columns specified must match the number of input columns. For dense output, the column names specified are
45
- used as base names for the columns created for each category.
45
+ The name(s) to assign output columns in the output DataFrame. The number of
46
+ columns specified must equal the number of input columns. Output columns must be specified before transform
47
+ with this argument or after initialization with the `set_output_cols` method. This argument is optional for
48
+ API consistency.
46
49
 
47
50
  passthrough_cols: Optional[Union[str, List[str]]], default=None
48
51
  A string or a list of strings indicating column names to be excluded from any
@@ -26,11 +26,15 @@ class StandardScaler(base.BaseTransformer):
26
26
  If True, scale the data unit variance (i.e. unit standard deviation).
27
27
 
28
28
  input_cols: Optional[Union[str, List[str]]], default=None
29
- The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
29
+ The name(s) of one or more columns in the input DataFrame containing feature(s) to be scaled. Input
30
+ columns must be specified before fit with this argument or after initialization with the
31
+ `set_input_cols` method. This argument is optional for API consistency.
30
32
 
31
33
  output_cols: Optional[Union[str, List[str]]], default=None
32
- The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
33
- columns specified must match the number of input columns.
34
+ The name(s) to assign output columns in the output DataFrame. The number of
35
+ columns specified must equal the number of input columns. Output columns must be specified before transform
36
+ with this argument or after initialization with the `set_output_cols` method. This argument is optional for
37
+ API consistency.
34
38
 
35
39
  passthrough_cols: Optional[Union[str, List[str]]], default=None
36
40
  A string or a list of strings indicating column names to be excluded from any
@@ -257,7 +257,7 @@ class LabelPropagation(BaseTransformer):
257
257
  inspect.currentframe(), LabelPropagation.__class__.__name__
258
258
  ),
259
259
  api_calls=[Session.call],
260
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
260
+ custom_tags={"autogen": True} if self._autogenerated else None,
261
261
  )
262
262
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
263
263
  pd_df.columns = dataset.columns
@@ -266,7 +266,7 @@ class LabelSpreading(BaseTransformer):
266
266
  inspect.currentframe(), LabelSpreading.__class__.__name__
267
267
  ),
268
268
  api_calls=[Session.call],
269
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
269
+ custom_tags={"autogen": True} if self._autogenerated else None,
270
270
  )
271
271
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
272
272
  pd_df.columns = dataset.columns
@@ -322,7 +322,7 @@ class LinearSVC(BaseTransformer):
322
322
  inspect.currentframe(), LinearSVC.__class__.__name__
323
323
  ),
324
324
  api_calls=[Session.call],
325
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
+ custom_tags={"autogen": True} if self._autogenerated else None,
326
326
  )
327
327
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
328
328
  pd_df.columns = dataset.columns
@@ -294,7 +294,7 @@ class LinearSVR(BaseTransformer):
294
294
  inspect.currentframe(), LinearSVR.__class__.__name__
295
295
  ),
296
296
  api_calls=[Session.call],
297
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
297
+ custom_tags={"autogen": True} if self._autogenerated else None,
298
298
  )
299
299
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
300
300
  pd_df.columns = dataset.columns
@@ -328,7 +328,7 @@ class NuSVC(BaseTransformer):
328
328
  inspect.currentframe(), NuSVC.__class__.__name__
329
329
  ),
330
330
  api_calls=[Session.call],
331
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
331
+ custom_tags={"autogen": True} if self._autogenerated else None,
332
332
  )
333
333
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
334
334
  pd_df.columns = dataset.columns
@@ -289,7 +289,7 @@ class NuSVR(BaseTransformer):
289
289
  inspect.currentframe(), NuSVR.__class__.__name__
290
290
  ),
291
291
  api_calls=[Session.call],
292
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
+ custom_tags={"autogen": True} if self._autogenerated else None,
293
293
  )
294
294
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
295
295
  pd_df.columns = dataset.columns
@@ -331,7 +331,7 @@ class SVC(BaseTransformer):
331
331
  inspect.currentframe(), SVC.__class__.__name__
332
332
  ),
333
333
  api_calls=[Session.call],
334
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
334
+ custom_tags={"autogen": True} if self._autogenerated else None,
335
335
  )
336
336
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
337
337
  pd_df.columns = dataset.columns
@@ -292,7 +292,7 @@ class SVR(BaseTransformer):
292
292
  inspect.currentframe(), SVR.__class__.__name__
293
293
  ),
294
294
  api_calls=[Session.call],
295
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
295
+ custom_tags={"autogen": True} if self._autogenerated else None,
296
296
  )
297
297
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
298
298
  pd_df.columns = dataset.columns
@@ -359,7 +359,7 @@ class DecisionTreeClassifier(BaseTransformer):
359
359
  inspect.currentframe(), DecisionTreeClassifier.__class__.__name__
360
360
  ),
361
361
  api_calls=[Session.call],
362
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
362
+ custom_tags={"autogen": True} if self._autogenerated else None,
363
363
  )
364
364
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
365
365
  pd_df.columns = dataset.columns
@@ -341,7 +341,7 @@ class DecisionTreeRegressor(BaseTransformer):
341
341
  inspect.currentframe(), DecisionTreeRegressor.__class__.__name__
342
342
  ),
343
343
  api_calls=[Session.call],
344
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
344
+ custom_tags={"autogen": True} if self._autogenerated else None,
345
345
  )
346
346
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
347
347
  pd_df.columns = dataset.columns
@@ -351,7 +351,7 @@ class ExtraTreeClassifier(BaseTransformer):
351
351
  inspect.currentframe(), ExtraTreeClassifier.__class__.__name__
352
352
  ),
353
353
  api_calls=[Session.call],
354
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
354
+ custom_tags={"autogen": True} if self._autogenerated else None,
355
355
  )
356
356
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
357
357
  pd_df.columns = dataset.columns
@@ -333,7 +333,7 @@ class ExtraTreeRegressor(BaseTransformer):
333
333
  inspect.currentframe(), ExtraTreeRegressor.__class__.__name__
334
334
  ),
335
335
  api_calls=[Session.call],
336
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
+ custom_tags={"autogen": True} if self._autogenerated else None,
337
337
  )
338
338
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
339
339
  pd_df.columns = dataset.columns
@@ -451,7 +451,7 @@ class XGBClassifier(BaseTransformer):
451
451
  inspect.currentframe(), XGBClassifier.__class__.__name__
452
452
  ),
453
453
  api_calls=[Session.call],
454
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
454
+ custom_tags={"autogen": True} if self._autogenerated else None,
455
455
  )
456
456
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
457
457
  pd_df.columns = dataset.columns
@@ -450,7 +450,7 @@ class XGBRegressor(BaseTransformer):
450
450
  inspect.currentframe(), XGBRegressor.__class__.__name__
451
451
  ),
452
452
  api_calls=[Session.call],
453
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
453
+ custom_tags={"autogen": True} if self._autogenerated else None,
454
454
  )
455
455
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
456
456
  pd_df.columns = dataset.columns
@@ -455,7 +455,7 @@ class XGBRFClassifier(BaseTransformer):
455
455
  inspect.currentframe(), XGBRFClassifier.__class__.__name__
456
456
  ),
457
457
  api_calls=[Session.call],
458
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
458
+ custom_tags={"autogen": True} if self._autogenerated else None,
459
459
  )
460
460
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
461
461
  pd_df.columns = dataset.columns
@@ -455,7 +455,7 @@ class XGBRFRegressor(BaseTransformer):
455
455
  inspect.currentframe(), XGBRFRegressor.__class__.__name__
456
456
  ),
457
457
  api_calls=[Session.call],
458
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
458
+ custom_tags={"autogen": True} if self._autogenerated else None,
459
459
  )
460
460
  pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
461
461
  pd_df.columns = dataset.columns
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.5.2"
1
+ VERSION="1.5.3"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.5.2
3
+ Version: 1.5.3
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -250,7 +250,7 @@ Requires-Dist: s3fs <2024,>=2022.11
250
250
  Requires-Dist: scikit-learn <1.4,>=1.2.1
251
251
  Requires-Dist: scipy <2,>=1.9
252
252
  Requires-Dist: snowflake-connector-python[pandas] <4,>=3.5.0
253
- Requires-Dist: snowflake-snowpark-python !=1.12.0,<2,>=1.11.1
253
+ Requires-Dist: snowflake-snowpark-python <2,>=1.15.0
254
254
  Requires-Dist: sqlparse <1,>=0.4
255
255
  Requires-Dist: typing-extensions <5,>=4.1.0
256
256
  Requires-Dist: xgboost <2,>=1.7.3
@@ -373,7 +373,23 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
373
373
 
374
374
  # Release History
375
375
 
376
- ## 1.5.2
376
+ ## 1.5.3
377
+
378
+ ### Bug Fixes
379
+
380
+ - Modeling: Fix an issue causing lineage information to be missing for
381
+ `Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
382
+ - Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
383
+ of `ModelVersion.run` method in Stored Procedure.
384
+
385
+ ### Behavior Changes
386
+
387
+ ### New Features
388
+
389
+ - Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
390
+ - Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
391
+
392
+ ## 1.5.2 (06-10-2024)
377
393
 
378
394
  ### Bug Fixes
379
395
 
@@ -385,7 +401,7 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
385
401
 
386
402
  ### New Features
387
403
 
388
- ## 1.5.1
404
+ ## 1.5.1 (05-22-2024)
389
405
 
390
406
  ### Bug Fixes
391
407
 
@@ -410,7 +426,7 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
410
426
  permissions to operate on schema. Please call
411
427
  `import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
412
428
 
413
- ## 1.5.0
429
+ ## 1.5.0 (05-01-2024)
414
430
 
415
431
  ### Bug Fixes
416
432