snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +26 -5
- snowflake/cortex/_sse_client.py +81 -0
- snowflake/cortex/_util.py +105 -8
- snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
- snowflake/ml/dataset/dataset.py +15 -12
- snowflake/ml/dataset/dataset_factory.py +3 -4
- snowflake/ml/feature_store/feature_store.py +2 -2
- snowflake/ml/model/_client/sql/model_version.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
- snowflake/ml/model/_signatures/builtins_handler.py +2 -1
- snowflake/ml/model/_signatures/core.py +13 -1
- snowflake/ml/model/_signatures/pandas_handler.py +2 -0
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/model_signature.py +2 -0
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +156 -121
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
- snowflake/ml/modeling/cluster/birch.py +1 -1
- snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
- snowflake/ml/modeling/cluster/dbscan.py +1 -1
- snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
- snowflake/ml/modeling/cluster/k_means.py +1 -1
- snowflake/ml/modeling/cluster/mean_shift.py +1 -1
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
- snowflake/ml/modeling/cluster/optics.py +1 -1
- snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
- snowflake/ml/modeling/compose/column_transformer.py +1 -1
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
- snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
- snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
- snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
- snowflake/ml/modeling/covariance/oas.py +1 -1
- snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
- snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
- snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
- snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
- snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/pca.py +1 -1
- snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
- snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
- snowflake/ml/modeling/framework/base.py +3 -8
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
- snowflake/ml/modeling/impute/knn_imputer.py +1 -1
- snowflake/ml/modeling/impute/missing_indicator.py +1 -1
- snowflake/ml/modeling/impute/simple_imputer.py +8 -4
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +1 -1
- snowflake/ml/modeling/manifold/mds.py +1 -1
- snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
- snowflake/ml/modeling/manifold/tsne.py +1 -1
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
- snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
- snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/pipeline/pipeline.py +5 -0
- snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
- snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
- snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +21 -5
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +196 -195
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -37,12 +37,15 @@ class RobustScaler(base.BaseTransformer):
|
|
37
37
|
the dataset is scaled down. If less than 1, the dataset is scaled up.
|
38
38
|
|
39
39
|
input_cols: Optional[Union[str, List[str]]], default=None
|
40
|
-
The name(s) of one or more columns in
|
40
|
+
The name(s) of one or more columns in the input DataFrame containing feature(s) to be scaled. Input
|
41
|
+
columns must be specified before fit with this argument or after initialization with the
|
42
|
+
`set_input_cols` method. This argument is optional for API consistency.
|
41
43
|
|
42
44
|
output_cols: Optional[Union[str, List[str]]], default=None
|
43
|
-
The name(s)
|
44
|
-
columns specified must
|
45
|
-
|
45
|
+
The name(s) to assign output columns in the output DataFrame. The number of
|
46
|
+
columns specified must equal the number of input columns. Output columns must be specified before transform
|
47
|
+
with this argument or after initialization with the `set_output_cols` method. This argument is optional for
|
48
|
+
API consistency.
|
46
49
|
|
47
50
|
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
48
51
|
A string or a list of strings indicating column names to be excluded from any
|
@@ -26,11 +26,15 @@ class StandardScaler(base.BaseTransformer):
|
|
26
26
|
If True, scale the data unit variance (i.e. unit standard deviation).
|
27
27
|
|
28
28
|
input_cols: Optional[Union[str, List[str]]], default=None
|
29
|
-
The name(s) of one or more columns in
|
29
|
+
The name(s) of one or more columns in the input DataFrame containing feature(s) to be scaled. Input
|
30
|
+
columns must be specified before fit with this argument or after initialization with the
|
31
|
+
`set_input_cols` method. This argument is optional for API consistency.
|
30
32
|
|
31
33
|
output_cols: Optional[Union[str, List[str]]], default=None
|
32
|
-
The name(s)
|
33
|
-
columns specified must
|
34
|
+
The name(s) to assign output columns in the output DataFrame. The number of
|
35
|
+
columns specified must equal the number of input columns. Output columns must be specified before transform
|
36
|
+
with this argument or after initialization with the `set_output_cols` method. This argument is optional for
|
37
|
+
API consistency.
|
34
38
|
|
35
39
|
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
36
40
|
A string or a list of strings indicating column names to be excluded from any
|
@@ -257,7 +257,7 @@ class LabelPropagation(BaseTransformer):
|
|
257
257
|
inspect.currentframe(), LabelPropagation.__class__.__name__
|
258
258
|
),
|
259
259
|
api_calls=[Session.call],
|
260
|
-
custom_tags=
|
260
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
261
261
|
)
|
262
262
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
263
263
|
pd_df.columns = dataset.columns
|
@@ -266,7 +266,7 @@ class LabelSpreading(BaseTransformer):
|
|
266
266
|
inspect.currentframe(), LabelSpreading.__class__.__name__
|
267
267
|
),
|
268
268
|
api_calls=[Session.call],
|
269
|
-
custom_tags=
|
269
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
270
270
|
)
|
271
271
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
272
272
|
pd_df.columns = dataset.columns
|
@@ -322,7 +322,7 @@ class LinearSVC(BaseTransformer):
|
|
322
322
|
inspect.currentframe(), LinearSVC.__class__.__name__
|
323
323
|
),
|
324
324
|
api_calls=[Session.call],
|
325
|
-
custom_tags=
|
325
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
326
326
|
)
|
327
327
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
328
328
|
pd_df.columns = dataset.columns
|
@@ -294,7 +294,7 @@ class LinearSVR(BaseTransformer):
|
|
294
294
|
inspect.currentframe(), LinearSVR.__class__.__name__
|
295
295
|
),
|
296
296
|
api_calls=[Session.call],
|
297
|
-
custom_tags=
|
297
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
298
298
|
)
|
299
299
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
300
300
|
pd_df.columns = dataset.columns
|
@@ -328,7 +328,7 @@ class NuSVC(BaseTransformer):
|
|
328
328
|
inspect.currentframe(), NuSVC.__class__.__name__
|
329
329
|
),
|
330
330
|
api_calls=[Session.call],
|
331
|
-
custom_tags=
|
331
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
332
332
|
)
|
333
333
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
334
334
|
pd_df.columns = dataset.columns
|
@@ -289,7 +289,7 @@ class NuSVR(BaseTransformer):
|
|
289
289
|
inspect.currentframe(), NuSVR.__class__.__name__
|
290
290
|
),
|
291
291
|
api_calls=[Session.call],
|
292
|
-
custom_tags=
|
292
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
293
293
|
)
|
294
294
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
295
295
|
pd_df.columns = dataset.columns
|
snowflake/ml/modeling/svm/svc.py
CHANGED
@@ -331,7 +331,7 @@ class SVC(BaseTransformer):
|
|
331
331
|
inspect.currentframe(), SVC.__class__.__name__
|
332
332
|
),
|
333
333
|
api_calls=[Session.call],
|
334
|
-
custom_tags=
|
334
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
335
335
|
)
|
336
336
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
337
337
|
pd_df.columns = dataset.columns
|
snowflake/ml/modeling/svm/svr.py
CHANGED
@@ -292,7 +292,7 @@ class SVR(BaseTransformer):
|
|
292
292
|
inspect.currentframe(), SVR.__class__.__name__
|
293
293
|
),
|
294
294
|
api_calls=[Session.call],
|
295
|
-
custom_tags=
|
295
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
296
296
|
)
|
297
297
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
298
|
pd_df.columns = dataset.columns
|
@@ -359,7 +359,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
359
359
|
inspect.currentframe(), DecisionTreeClassifier.__class__.__name__
|
360
360
|
),
|
361
361
|
api_calls=[Session.call],
|
362
|
-
custom_tags=
|
362
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
363
363
|
)
|
364
364
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
365
365
|
pd_df.columns = dataset.columns
|
@@ -341,7 +341,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
341
341
|
inspect.currentframe(), DecisionTreeRegressor.__class__.__name__
|
342
342
|
),
|
343
343
|
api_calls=[Session.call],
|
344
|
-
custom_tags=
|
344
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
345
345
|
)
|
346
346
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
347
347
|
pd_df.columns = dataset.columns
|
@@ -351,7 +351,7 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
351
351
|
inspect.currentframe(), ExtraTreeClassifier.__class__.__name__
|
352
352
|
),
|
353
353
|
api_calls=[Session.call],
|
354
|
-
custom_tags=
|
354
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
355
355
|
)
|
356
356
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
357
357
|
pd_df.columns = dataset.columns
|
@@ -333,7 +333,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
333
333
|
inspect.currentframe(), ExtraTreeRegressor.__class__.__name__
|
334
334
|
),
|
335
335
|
api_calls=[Session.call],
|
336
|
-
custom_tags=
|
336
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
337
337
|
)
|
338
338
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
339
339
|
pd_df.columns = dataset.columns
|
@@ -451,7 +451,7 @@ class XGBClassifier(BaseTransformer):
|
|
451
451
|
inspect.currentframe(), XGBClassifier.__class__.__name__
|
452
452
|
),
|
453
453
|
api_calls=[Session.call],
|
454
|
-
custom_tags=
|
454
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
455
455
|
)
|
456
456
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
457
457
|
pd_df.columns = dataset.columns
|
@@ -450,7 +450,7 @@ class XGBRegressor(BaseTransformer):
|
|
450
450
|
inspect.currentframe(), XGBRegressor.__class__.__name__
|
451
451
|
),
|
452
452
|
api_calls=[Session.call],
|
453
|
-
custom_tags=
|
453
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
454
454
|
)
|
455
455
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
456
456
|
pd_df.columns = dataset.columns
|
@@ -455,7 +455,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
455
455
|
inspect.currentframe(), XGBRFClassifier.__class__.__name__
|
456
456
|
),
|
457
457
|
api_calls=[Session.call],
|
458
|
-
custom_tags=
|
458
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
459
459
|
)
|
460
460
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
461
461
|
pd_df.columns = dataset.columns
|
@@ -455,7 +455,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
455
455
|
inspect.currentframe(), XGBRFRegressor.__class__.__name__
|
456
456
|
),
|
457
457
|
api_calls=[Session.call],
|
458
|
-
custom_tags=
|
458
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
459
459
|
)
|
460
460
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
461
461
|
pd_df.columns = dataset.columns
|
snowflake/ml/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION="1.5.
|
1
|
+
VERSION="1.5.3"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: snowflake-ml-python
|
3
|
-
Version: 1.5.
|
3
|
+
Version: 1.5.3
|
4
4
|
Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
|
5
5
|
Author-email: "Snowflake, Inc" <support@snowflake.com>
|
6
6
|
License:
|
@@ -250,7 +250,7 @@ Requires-Dist: s3fs <2024,>=2022.11
|
|
250
250
|
Requires-Dist: scikit-learn <1.4,>=1.2.1
|
251
251
|
Requires-Dist: scipy <2,>=1.9
|
252
252
|
Requires-Dist: snowflake-connector-python[pandas] <4,>=3.5.0
|
253
|
-
Requires-Dist: snowflake-snowpark-python
|
253
|
+
Requires-Dist: snowflake-snowpark-python <2,>=1.15.0
|
254
254
|
Requires-Dist: sqlparse <1,>=0.4
|
255
255
|
Requires-Dist: typing-extensions <5,>=4.1.0
|
256
256
|
Requires-Dist: xgboost <2,>=1.7.3
|
@@ -373,7 +373,23 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
|
|
373
373
|
|
374
374
|
# Release History
|
375
375
|
|
376
|
-
## 1.5.
|
376
|
+
## 1.5.3
|
377
|
+
|
378
|
+
### Bug Fixes
|
379
|
+
|
380
|
+
- Modeling: Fix an issue causing lineage information to be missing for
|
381
|
+
`Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
|
382
|
+
- Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
|
383
|
+
of `ModelVersion.run` method in Stored Procedure.
|
384
|
+
|
385
|
+
### Behavior Changes
|
386
|
+
|
387
|
+
### New Features
|
388
|
+
|
389
|
+
- Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
|
390
|
+
- Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
|
391
|
+
|
392
|
+
## 1.5.2 (06-10-2024)
|
377
393
|
|
378
394
|
### Bug Fixes
|
379
395
|
|
@@ -385,7 +401,7 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
|
|
385
401
|
|
386
402
|
### New Features
|
387
403
|
|
388
|
-
## 1.5.1
|
404
|
+
## 1.5.1 (05-22-2024)
|
389
405
|
|
390
406
|
### Bug Fixes
|
391
407
|
|
@@ -410,7 +426,7 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
|
|
410
426
|
permissions to operate on schema. Please call
|
411
427
|
`import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
|
412
428
|
|
413
|
-
## 1.5.0
|
429
|
+
## 1.5.0 (05-01-2024)
|
414
430
|
|
415
431
|
### Bug Fixes
|
416
432
|
|