snappy 3.3__cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (541) hide show
  1. snappy/CyOpenGL.cpython-310-aarch64-linux-gnu.so +0 -0
  2. snappy/SnapPy.cpython-310-aarch64-linux-gnu.so +0 -0
  3. snappy/SnapPy.ico +0 -0
  4. snappy/SnapPy.png +0 -0
  5. snappy/SnapPyHP.cpython-310-aarch64-linux-gnu.so +0 -0
  6. snappy/__init__.py +534 -0
  7. snappy/app.py +604 -0
  8. snappy/app_menus.py +372 -0
  9. snappy/browser.py +998 -0
  10. snappy/cache.py +25 -0
  11. snappy/canonical.py +249 -0
  12. snappy/cusps/__init__.py +280 -0
  13. snappy/cusps/cusp_area_matrix.py +98 -0
  14. snappy/cusps/cusp_areas_from_matrix.py +96 -0
  15. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  16. snappy/cusps/short_slopes_for_cusp.py +217 -0
  17. snappy/cusps/test.py +22 -0
  18. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  19. snappy/database.py +454 -0
  20. snappy/db_utilities.py +79 -0
  21. snappy/decorated_isosig.py +717 -0
  22. snappy/dev/__init__.py +0 -0
  23. snappy/dev/extended_ptolemy/__init__.py +8 -0
  24. snappy/dev/extended_ptolemy/closed.py +106 -0
  25. snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
  26. snappy/dev/extended_ptolemy/direct.py +42 -0
  27. snappy/dev/extended_ptolemy/extended.py +406 -0
  28. snappy/dev/extended_ptolemy/giac_helper.py +43 -0
  29. snappy/dev/extended_ptolemy/giac_rur.py +129 -0
  30. snappy/dev/extended_ptolemy/gluing.py +46 -0
  31. snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
  32. snappy/dev/extended_ptolemy/printMatrices.py +70 -0
  33. snappy/dev/vericlosed/__init__.py +1 -0
  34. snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
  35. snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
  36. snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
  37. snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
  38. snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
  39. snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
  40. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
  41. snappy/dev/vericlosed/orb/__init__.py +1 -0
  42. snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
  43. snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
  44. snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
  45. snappy/dev/vericlosed/test.py +54 -0
  46. snappy/dev/vericlosed/truncatedComplex.py +176 -0
  47. snappy/dev/vericlosed/verificationError.py +58 -0
  48. snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
  49. snappy/doc/_images/SnapPy-196.png +0 -0
  50. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  51. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  52. snappy/doc/_images/mac.png +0 -0
  53. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  54. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  55. snappy/doc/_images/plink-action.png +0 -0
  56. snappy/doc/_images/ubuntu.png +0 -0
  57. snappy/doc/_images/win7.png +0 -0
  58. snappy/doc/_sources/additional_classes.rst.txt +40 -0
  59. snappy/doc/_sources/bugs.rst.txt +14 -0
  60. snappy/doc/_sources/censuses.rst.txt +52 -0
  61. snappy/doc/_sources/credits.rst.txt +81 -0
  62. snappy/doc/_sources/development.rst.txt +261 -0
  63. snappy/doc/_sources/index.rst.txt +215 -0
  64. snappy/doc/_sources/installing.rst.txt +249 -0
  65. snappy/doc/_sources/manifold.rst.txt +6 -0
  66. snappy/doc/_sources/manifoldhp.rst.txt +46 -0
  67. snappy/doc/_sources/news.rst.txt +425 -0
  68. snappy/doc/_sources/other.rst.txt +25 -0
  69. snappy/doc/_sources/platonic_census.rst.txt +20 -0
  70. snappy/doc/_sources/plink.rst.txt +102 -0
  71. snappy/doc/_sources/ptolemy.rst.txt +66 -0
  72. snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
  73. snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
  74. snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
  75. snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
  76. snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
  77. snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
  78. snappy/doc/_sources/screenshots.rst.txt +21 -0
  79. snappy/doc/_sources/snap.rst.txt +87 -0
  80. snappy/doc/_sources/snappy.rst.txt +28 -0
  81. snappy/doc/_sources/spherogram.rst.txt +103 -0
  82. snappy/doc/_sources/todo.rst.txt +47 -0
  83. snappy/doc/_sources/triangulation.rst.txt +11 -0
  84. snappy/doc/_sources/tutorial.rst.txt +49 -0
  85. snappy/doc/_sources/verify.rst.txt +210 -0
  86. snappy/doc/_sources/verify_internals.rst.txt +79 -0
  87. snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
  88. snappy/doc/_static/SnapPy.ico +0 -0
  89. snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
  90. snappy/doc/_static/basic.css +906 -0
  91. snappy/doc/_static/css/badge_only.css +1 -0
  92. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
  93. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
  94. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
  95. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
  96. snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
  97. snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
  98. snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
  99. snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
  100. snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
  101. snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
  102. snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
  103. snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
  104. snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
  105. snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
  106. snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
  107. snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
  108. snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
  109. snappy/doc/_static/css/theme.css +4 -0
  110. snappy/doc/_static/doctools.js +149 -0
  111. snappy/doc/_static/documentation_options.js +13 -0
  112. snappy/doc/_static/file.png +0 -0
  113. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  114. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  115. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  116. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  117. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  118. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  119. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  120. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  121. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  122. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  123. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  124. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  125. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  126. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  127. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  128. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  129. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  130. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  131. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  132. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  133. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  134. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  135. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  136. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  137. snappy/doc/_static/jquery.js +2 -0
  138. snappy/doc/_static/js/badge_only.js +1 -0
  139. snappy/doc/_static/js/theme.js +1 -0
  140. snappy/doc/_static/js/versions.js +228 -0
  141. snappy/doc/_static/language_data.js +192 -0
  142. snappy/doc/_static/minus.png +0 -0
  143. snappy/doc/_static/plus.png +0 -0
  144. snappy/doc/_static/pygments.css +75 -0
  145. snappy/doc/_static/searchtools.js +635 -0
  146. snappy/doc/_static/snappy_furo.css +33 -0
  147. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
  148. snappy/doc/_static/sphinx_highlight.js +154 -0
  149. snappy/doc/additional_classes.html +1500 -0
  150. snappy/doc/bugs.html +132 -0
  151. snappy/doc/censuses.html +453 -0
  152. snappy/doc/credits.html +184 -0
  153. snappy/doc/development.html +385 -0
  154. snappy/doc/doc-latest/additional_classes.html +1500 -0
  155. snappy/doc/doc-latest/bugs.html +132 -0
  156. snappy/doc/doc-latest/censuses.html +453 -0
  157. snappy/doc/doc-latest/credits.html +184 -0
  158. snappy/doc/doc-latest/development.html +385 -0
  159. snappy/doc/doc-latest/genindex.html +1349 -0
  160. snappy/doc/doc-latest/index.html +287 -0
  161. snappy/doc/doc-latest/installing.html +346 -0
  162. snappy/doc/doc-latest/manifold.html +3632 -0
  163. snappy/doc/doc-latest/manifoldhp.html +180 -0
  164. snappy/doc/doc-latest/news.html +438 -0
  165. snappy/doc/doc-latest/objects.inv +0 -0
  166. snappy/doc/doc-latest/other.html +160 -0
  167. snappy/doc/doc-latest/platonic_census.html +376 -0
  168. snappy/doc/doc-latest/plink.html +210 -0
  169. snappy/doc/doc-latest/ptolemy.html +253 -0
  170. snappy/doc/doc-latest/ptolemy_classes.html +1144 -0
  171. snappy/doc/doc-latest/ptolemy_examples1.html +409 -0
  172. snappy/doc/doc-latest/ptolemy_examples2.html +471 -0
  173. snappy/doc/doc-latest/ptolemy_examples3.html +414 -0
  174. snappy/doc/doc-latest/ptolemy_examples4.html +195 -0
  175. snappy/doc/doc-latest/ptolemy_prelim.html +248 -0
  176. snappy/doc/doc-latest/py-modindex.html +165 -0
  177. snappy/doc/doc-latest/screenshots.html +141 -0
  178. snappy/doc/doc-latest/search.html +135 -0
  179. snappy/doc/doc-latest/searchindex.js +1 -0
  180. snappy/doc/doc-latest/snap.html +202 -0
  181. snappy/doc/doc-latest/snappy.html +181 -0
  182. snappy/doc/doc-latest/spherogram.html +1346 -0
  183. snappy/doc/doc-latest/todo.html +166 -0
  184. snappy/doc/doc-latest/triangulation.html +1676 -0
  185. snappy/doc/doc-latest/tutorial.html +159 -0
  186. snappy/doc/doc-latest/verify.html +330 -0
  187. snappy/doc/doc-latest/verify_internals.html +1235 -0
  188. snappy/doc/genindex.html +1349 -0
  189. snappy/doc/index.html +287 -0
  190. snappy/doc/installing.html +346 -0
  191. snappy/doc/manifold.html +3632 -0
  192. snappy/doc/manifoldhp.html +180 -0
  193. snappy/doc/news.html +438 -0
  194. snappy/doc/objects.inv +0 -0
  195. snappy/doc/other.html +160 -0
  196. snappy/doc/platonic_census.html +376 -0
  197. snappy/doc/plink.html +210 -0
  198. snappy/doc/ptolemy.html +253 -0
  199. snappy/doc/ptolemy_classes.html +1144 -0
  200. snappy/doc/ptolemy_examples1.html +409 -0
  201. snappy/doc/ptolemy_examples2.html +471 -0
  202. snappy/doc/ptolemy_examples3.html +414 -0
  203. snappy/doc/ptolemy_examples4.html +195 -0
  204. snappy/doc/ptolemy_prelim.html +248 -0
  205. snappy/doc/py-modindex.html +165 -0
  206. snappy/doc/screenshots.html +141 -0
  207. snappy/doc/search.html +135 -0
  208. snappy/doc/searchindex.js +1 -0
  209. snappy/doc/snap.html +202 -0
  210. snappy/doc/snappy.html +181 -0
  211. snappy/doc/spherogram.html +1346 -0
  212. snappy/doc/todo.html +166 -0
  213. snappy/doc/triangulation.html +1676 -0
  214. snappy/doc/tutorial.html +159 -0
  215. snappy/doc/verify.html +330 -0
  216. snappy/doc/verify_internals.html +1235 -0
  217. snappy/drilling/__init__.py +456 -0
  218. snappy/drilling/barycentric.py +103 -0
  219. snappy/drilling/constants.py +5 -0
  220. snappy/drilling/crush.py +270 -0
  221. snappy/drilling/cusps.py +125 -0
  222. snappy/drilling/debug.py +242 -0
  223. snappy/drilling/epsilons.py +6 -0
  224. snappy/drilling/exceptions.py +55 -0
  225. snappy/drilling/moves.py +620 -0
  226. snappy/drilling/peripheral_curves.py +210 -0
  227. snappy/drilling/perturb.py +188 -0
  228. snappy/drilling/shorten.py +36 -0
  229. snappy/drilling/subdivide.py +274 -0
  230. snappy/drilling/test.py +23 -0
  231. snappy/drilling/test_cases.py +132 -0
  232. snappy/drilling/tracing.py +351 -0
  233. snappy/exceptions.py +26 -0
  234. snappy/export_stl.py +120 -0
  235. snappy/exterior_to_link/__init__.py +2 -0
  236. snappy/exterior_to_link/barycentric_geometry.py +463 -0
  237. snappy/exterior_to_link/exceptions.py +6 -0
  238. snappy/exterior_to_link/geodesic_map.json +14408 -0
  239. snappy/exterior_to_link/hyp_utils.py +112 -0
  240. snappy/exterior_to_link/link_projection.py +323 -0
  241. snappy/exterior_to_link/main.py +198 -0
  242. snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
  243. snappy/exterior_to_link/mcomplex_with_link.py +687 -0
  244. snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
  245. snappy/exterior_to_link/pl_utils.py +491 -0
  246. snappy/exterior_to_link/put_in_S3.py +156 -0
  247. snappy/exterior_to_link/rational_linear_algebra.py +130 -0
  248. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
  249. snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
  250. snappy/exterior_to_link/stored_moves.py +475 -0
  251. snappy/exterior_to_link/test.py +31 -0
  252. snappy/filedialog.py +28 -0
  253. snappy/geometric_structure/__init__.py +212 -0
  254. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  255. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +691 -0
  256. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +480 -0
  257. snappy/geometric_structure/cusp_neighborhood/exceptions.py +41 -0
  258. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +294 -0
  259. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +156 -0
  260. snappy/geometric_structure/cusp_neighborhood/vertices.py +35 -0
  261. snappy/geometric_structure/geodesic/__init__.py +0 -0
  262. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  263. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  264. snappy/geometric_structure/geodesic/canonical_representatives.py +52 -0
  265. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  266. snappy/geometric_structure/geodesic/constants.py +6 -0
  267. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  268. snappy/geometric_structure/geodesic/fixed_points.py +106 -0
  269. snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
  270. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  271. snappy/geometric_structure/geodesic/line.py +30 -0
  272. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  273. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +128 -0
  274. snappy/geometric_structure/test.py +22 -0
  275. snappy/gui.py +121 -0
  276. snappy/horoviewer.py +443 -0
  277. snappy/hyperboloid/__init__.py +212 -0
  278. snappy/hyperboloid/distances.py +259 -0
  279. snappy/hyperboloid/horoball.py +19 -0
  280. snappy/hyperboloid/line.py +35 -0
  281. snappy/hyperboloid/point.py +9 -0
  282. snappy/hyperboloid/triangle.py +29 -0
  283. snappy/info_icon.gif +0 -0
  284. snappy/infowindow.py +65 -0
  285. snappy/isometry_signature.py +389 -0
  286. snappy/len_spec/__init__.py +609 -0
  287. snappy/len_spec/geodesic_info.py +129 -0
  288. snappy/len_spec/geodesic_key_info_dict.py +116 -0
  289. snappy/len_spec/geodesic_piece.py +146 -0
  290. snappy/len_spec/geometric_structure.py +182 -0
  291. snappy/len_spec/geometry.py +136 -0
  292. snappy/len_spec/length_spectrum_geodesic_info.py +185 -0
  293. snappy/len_spec/spine.py +128 -0
  294. snappy/len_spec/test.py +24 -0
  295. snappy/len_spec/test_cases.py +69 -0
  296. snappy/len_spec/tile.py +276 -0
  297. snappy/len_spec/word.py +86 -0
  298. snappy/manifolds/HTWKnots/alternating.gz +0 -0
  299. snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
  300. snappy/manifolds/__init__.py +3 -0
  301. snappy/margulis/__init__.py +332 -0
  302. snappy/margulis/cusp_neighborhood_neighborhood.py +66 -0
  303. snappy/margulis/geodesic_neighborhood.py +152 -0
  304. snappy/margulis/margulis_info.py +21 -0
  305. snappy/margulis/mu_from_neighborhood_pair.py +175 -0
  306. snappy/margulis/neighborhood.py +29 -0
  307. snappy/margulis/test.py +22 -0
  308. snappy/math_basics.py +187 -0
  309. snappy/matrix.py +525 -0
  310. snappy/number.py +657 -0
  311. snappy/numeric_output_checker.py +345 -0
  312. snappy/pari.py +41 -0
  313. snappy/phone_home.py +57 -0
  314. snappy/polyviewer.py +259 -0
  315. snappy/ptolemy/__init__.py +17 -0
  316. snappy/ptolemy/component.py +103 -0
  317. snappy/ptolemy/coordinates.py +2290 -0
  318. snappy/ptolemy/fieldExtensions.py +153 -0
  319. snappy/ptolemy/findLoops.py +473 -0
  320. snappy/ptolemy/geometricRep.py +59 -0
  321. snappy/ptolemy/homology.py +165 -0
  322. snappy/ptolemy/magma/default.magma_template +229 -0
  323. snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
  324. snappy/ptolemy/manifoldMethods.py +395 -0
  325. snappy/ptolemy/matrix.py +350 -0
  326. snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
  327. snappy/ptolemy/polynomial.py +856 -0
  328. snappy/ptolemy/processComponents.py +173 -0
  329. snappy/ptolemy/processFileBase.py +247 -0
  330. snappy/ptolemy/processFileDispatch.py +46 -0
  331. snappy/ptolemy/processMagmaFile.py +392 -0
  332. snappy/ptolemy/processRurFile.py +150 -0
  333. snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
  334. snappy/ptolemy/ptolemyObstructionClass.py +64 -0
  335. snappy/ptolemy/ptolemyVariety.py +995 -0
  336. snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
  337. snappy/ptolemy/reginaWrapper.py +698 -0
  338. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
  339. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
  340. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
  341. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
  342. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
  343. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
  344. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
  345. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
  346. snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
  347. snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
  348. snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
  349. snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
  350. snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
  351. snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
  352. snappy/ptolemy/rur.py +545 -0
  353. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
  354. snappy/ptolemy/test.py +1126 -0
  355. snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
  356. snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
  357. snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
  358. snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
  359. snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
  360. snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
  361. snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
  362. snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
  363. snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
  364. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
  365. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
  366. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
  367. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
  368. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
  369. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
  370. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
  371. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
  372. snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
  373. snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
  374. snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
  375. snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
  376. snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
  377. snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
  378. snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
  379. snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
  380. snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
  381. snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
  382. snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
  383. snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
  384. snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
  385. snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
  386. snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
  387. snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
  388. snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
  389. snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
  390. snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
  391. snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
  392. snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
  393. snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
  394. snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
  395. snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
  396. snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
  397. snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
  398. snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
  399. snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
  400. snappy/ptolemy/utilities.py +236 -0
  401. snappy/raytracing/__init__.py +64 -0
  402. snappy/raytracing/additional_horospheres.py +64 -0
  403. snappy/raytracing/additional_len_spec_choices.py +63 -0
  404. snappy/raytracing/cohomology_fractal.py +197 -0
  405. snappy/raytracing/eyeball.py +124 -0
  406. snappy/raytracing/finite_raytracing_data.py +237 -0
  407. snappy/raytracing/finite_viewer.py +590 -0
  408. snappy/raytracing/geodesic_tube_info.py +174 -0
  409. snappy/raytracing/geodesics.py +246 -0
  410. snappy/raytracing/geodesics_window.py +258 -0
  411. snappy/raytracing/gui_utilities.py +293 -0
  412. snappy/raytracing/hyperboloid_navigation.py +556 -0
  413. snappy/raytracing/hyperboloid_utilities.py +234 -0
  414. snappy/raytracing/ideal_raytracing_data.py +592 -0
  415. snappy/raytracing/inside_viewer.py +974 -0
  416. snappy/raytracing/pack.py +22 -0
  417. snappy/raytracing/raytracing_data.py +126 -0
  418. snappy/raytracing/raytracing_view.py +454 -0
  419. snappy/raytracing/shaders/Eye.png +0 -0
  420. snappy/raytracing/shaders/NonGeometric.png +0 -0
  421. snappy/raytracing/shaders/__init__.py +101 -0
  422. snappy/raytracing/shaders/fragment.glsl +1744 -0
  423. snappy/raytracing/test.py +29 -0
  424. snappy/raytracing/tooltip.py +146 -0
  425. snappy/raytracing/upper_halfspace_utilities.py +98 -0
  426. snappy/raytracing/view_scale_controller.py +98 -0
  427. snappy/raytracing/zoom_slider/__init__.py +263 -0
  428. snappy/raytracing/zoom_slider/inward.png +0 -0
  429. snappy/raytracing/zoom_slider/inward18.png +0 -0
  430. snappy/raytracing/zoom_slider/outward.png +0 -0
  431. snappy/raytracing/zoom_slider/outward18.png +0 -0
  432. snappy/raytracing/zoom_slider/test.py +20 -0
  433. snappy/sage_helper.py +119 -0
  434. snappy/settings.py +407 -0
  435. snappy/shell.py +53 -0
  436. snappy/snap/__init__.py +117 -0
  437. snappy/snap/character_varieties.py +375 -0
  438. snappy/snap/find_field.py +372 -0
  439. snappy/snap/fox_milnor.py +271 -0
  440. snappy/snap/fundamental_polyhedron.py +569 -0
  441. snappy/snap/generators.py +39 -0
  442. snappy/snap/interval_reps.py +81 -0
  443. snappy/snap/kernel_structures.py +128 -0
  444. snappy/snap/mcomplex_base.py +18 -0
  445. snappy/snap/nsagetools.py +716 -0
  446. snappy/snap/peripheral/__init__.py +1 -0
  447. snappy/snap/peripheral/dual_cellulation.py +219 -0
  448. snappy/snap/peripheral/link.py +127 -0
  449. snappy/snap/peripheral/peripheral.py +159 -0
  450. snappy/snap/peripheral/surface.py +522 -0
  451. snappy/snap/peripheral/test.py +35 -0
  452. snappy/snap/polished_reps.py +335 -0
  453. snappy/snap/shapes.py +152 -0
  454. snappy/snap/slice_obs_HKL/__init__.py +194 -0
  455. snappy/snap/slice_obs_HKL/basics.py +236 -0
  456. snappy/snap/slice_obs_HKL/direct.py +217 -0
  457. snappy/snap/slice_obs_HKL/poly_norm.py +212 -0
  458. snappy/snap/slice_obs_HKL/rep_theory.py +424 -0
  459. snappy/snap/t3mlite/__init__.py +2 -0
  460. snappy/snap/t3mlite/arrow.py +243 -0
  461. snappy/snap/t3mlite/corner.py +22 -0
  462. snappy/snap/t3mlite/edge.py +172 -0
  463. snappy/snap/t3mlite/face.py +37 -0
  464. snappy/snap/t3mlite/files.py +211 -0
  465. snappy/snap/t3mlite/homology.py +53 -0
  466. snappy/snap/t3mlite/linalg.py +419 -0
  467. snappy/snap/t3mlite/mcomplex.py +1499 -0
  468. snappy/snap/t3mlite/perm4.py +320 -0
  469. snappy/snap/t3mlite/setup.py +12 -0
  470. snappy/snap/t3mlite/simplex.py +199 -0
  471. snappy/snap/t3mlite/spun.py +297 -0
  472. snappy/snap/t3mlite/surface.py +519 -0
  473. snappy/snap/t3mlite/test.py +20 -0
  474. snappy/snap/t3mlite/test_vs_regina.py +86 -0
  475. snappy/snap/t3mlite/tetrahedron.py +109 -0
  476. snappy/snap/t3mlite/vertex.py +42 -0
  477. snappy/snap/test.py +139 -0
  478. snappy/snap/utilities.py +288 -0
  479. snappy/test.py +213 -0
  480. snappy/test_cases.py +263 -0
  481. snappy/testing.py +131 -0
  482. snappy/tiling/__init__.py +2 -0
  483. snappy/tiling/dict_based_set.py +79 -0
  484. snappy/tiling/floor.py +49 -0
  485. snappy/tiling/hyperboloid_dict.py +54 -0
  486. snappy/tiling/iter_utils.py +78 -0
  487. snappy/tiling/lifted_tetrahedron.py +22 -0
  488. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  489. snappy/tiling/quotient_dict.py +70 -0
  490. snappy/tiling/real_hash_dict.py +164 -0
  491. snappy/tiling/test.py +23 -0
  492. snappy/tiling/tile.py +224 -0
  493. snappy/tiling/triangle.py +33 -0
  494. snappy/tkterminal.py +920 -0
  495. snappy/twister/__init__.py +20 -0
  496. snappy/twister/main.py +646 -0
  497. snappy/twister/surfaces/S_0_1 +3 -0
  498. snappy/twister/surfaces/S_0_2 +3 -0
  499. snappy/twister/surfaces/S_0_4 +7 -0
  500. snappy/twister/surfaces/S_0_4_Lantern +8 -0
  501. snappy/twister/surfaces/S_1 +3 -0
  502. snappy/twister/surfaces/S_1_1 +4 -0
  503. snappy/twister/surfaces/S_1_2 +5 -0
  504. snappy/twister/surfaces/S_1_2_5 +6 -0
  505. snappy/twister/surfaces/S_2 +6 -0
  506. snappy/twister/surfaces/S_2_1 +8 -0
  507. snappy/twister/surfaces/S_2_heeg +10 -0
  508. snappy/twister/surfaces/S_3 +8 -0
  509. snappy/twister/surfaces/S_3_1 +10 -0
  510. snappy/twister/surfaces/S_4_1 +12 -0
  511. snappy/twister/surfaces/S_5_1 +14 -0
  512. snappy/twister/surfaces/heeg_fig8 +9 -0
  513. snappy/twister/twister_core.cpython-310-aarch64-linux-gnu.so +0 -0
  514. snappy/upper_halfspace/__init__.py +146 -0
  515. snappy/upper_halfspace/ideal_point.py +29 -0
  516. snappy/verify/__init__.py +13 -0
  517. snappy/verify/canonical.py +542 -0
  518. snappy/verify/complex_volume/__init__.py +18 -0
  519. snappy/verify/complex_volume/adjust_torsion.py +86 -0
  520. snappy/verify/complex_volume/closed.py +168 -0
  521. snappy/verify/complex_volume/compute_ptolemys.py +90 -0
  522. snappy/verify/complex_volume/cusped.py +56 -0
  523. snappy/verify/complex_volume/extended_bloch.py +201 -0
  524. snappy/verify/cusp_translations.py +85 -0
  525. snappy/verify/edge_equations.py +80 -0
  526. snappy/verify/exceptions.py +254 -0
  527. snappy/verify/hyperbolicity.py +224 -0
  528. snappy/verify/interval_newton_shapes_engine.py +523 -0
  529. snappy/verify/interval_tree.py +400 -0
  530. snappy/verify/krawczyk_shapes_engine.py +518 -0
  531. snappy/verify/real_algebra.py +286 -0
  532. snappy/verify/shapes.py +25 -0
  533. snappy/verify/square_extensions.py +1005 -0
  534. snappy/verify/test.py +72 -0
  535. snappy/verify/volume.py +128 -0
  536. snappy/version.py +2 -0
  537. snappy-3.3.dist-info/METADATA +58 -0
  538. snappy-3.3.dist-info/RECORD +541 -0
  539. snappy-3.3.dist-info/WHEEL +6 -0
  540. snappy-3.3.dist-info/entry_points.txt +2 -0
  541. snappy-3.3.dist-info/top_level.txt +28 -0
@@ -0,0 +1,1346 @@
1
+
2
+
3
+ <!DOCTYPE html>
4
+ <html class="writer-html5" lang="en" data-content_root="./">
5
+ <head>
6
+ <meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
7
+
8
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
9
+ <title>Links: planar diagrams and invariants &mdash; SnapPy 3.3 documentation</title>
10
+ <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
11
+ <link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
12
+ <link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
13
+
14
+
15
+ <link rel="shortcut icon" href="_static/SnapPy.ico"/>
16
+ <script src="_static/jquery.js?v=5d32c60e"></script>
17
+ <script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
18
+ <script src="_static/documentation_options.js?v=26f62d79"></script>
19
+ <script src="_static/doctools.js?v=9bcbadda"></script>
20
+ <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
21
+ <script src="_static/js/theme.js"></script>
22
+ <link rel="index" title="Index" href="genindex.html" />
23
+ <link rel="search" title="Search" href="search.html" />
24
+ <link rel="next" title="Number theory of hyperbolic 3-manifolds" href="snap.html" />
25
+ <link rel="prev" title="Using SnapPy’s link editor" href="plink.html" />
26
+ </head>
27
+
28
+ <body class="wy-body-for-nav">
29
+ <div class="wy-grid-for-nav">
30
+ <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
+ <div class="wy-side-scroll">
32
+ <div class="wy-side-nav-search" >
33
+
34
+
35
+
36
+ <a href="index.html" class="icon icon-home">
37
+ SnapPy
38
+ <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
+ </a>
40
+ <div role="search">
41
+ <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
42
+ <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
43
+ <input type="hidden" name="check_keywords" value="yes" />
44
+ <input type="hidden" name="area" value="default" />
45
+ </form>
46
+ </div>
47
+ </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
48
+ <ul class="current">
49
+ <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
50
+ <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
51
+ <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
52
+ <li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
53
+ <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
54
+ <li class="toctree-l1 current"><a class="current reference internal" href="#">Links: planar diagrams and invariants</a><ul>
55
+ <li class="toctree-l2"><a class="reference internal" href="#tutorial">Tutorial</a></li>
56
+ <li class="toctree-l2"><a class="reference internal" href="#random-links">Random Links</a><ul>
57
+ <li class="toctree-l3"><a class="reference internal" href="#spherogram.random_link"><code class="docutils literal notranslate"><span class="pre">random_link()</span></code></a></li>
58
+ </ul>
59
+ </li>
60
+ <li class="toctree-l2"><a class="reference internal" href="#the-link-class">The Link class</a><ul>
61
+ <li class="toctree-l3"><a class="reference internal" href="#spherogram.Link"><code class="docutils literal notranslate"><span class="pre">Link</span></code></a><ul>
62
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.DT_code"><code class="docutils literal notranslate"><span class="pre">Link.DT_code()</span></code></a></li>
63
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.KLPProjection"><code class="docutils literal notranslate"><span class="pre">Link.KLPProjection()</span></code></a></li>
64
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.PD_code"><code class="docutils literal notranslate"><span class="pre">Link.PD_code()</span></code></a></li>
65
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.add_band"><code class="docutils literal notranslate"><span class="pre">Link.add_band()</span></code></a></li>
66
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.alexander_matrix"><code class="docutils literal notranslate"><span class="pre">Link.alexander_matrix()</span></code></a></li>
67
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.alexander_poly"><code class="docutils literal notranslate"><span class="pre">Link.alexander_poly()</span></code></a></li>
68
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.alexander_polynomial"><code class="docutils literal notranslate"><span class="pre">Link.alexander_polynomial()</span></code></a></li>
69
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.all_crossings_oriented"><code class="docutils literal notranslate"><span class="pre">Link.all_crossings_oriented()</span></code></a></li>
70
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.alternating"><code class="docutils literal notranslate"><span class="pre">Link.alternating()</span></code></a></li>
71
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.backtrack"><code class="docutils literal notranslate"><span class="pre">Link.backtrack()</span></code></a></li>
72
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.black_graph"><code class="docutils literal notranslate"><span class="pre">Link.black_graph()</span></code></a></li>
73
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.braid_word"><code class="docutils literal notranslate"><span class="pre">Link.braid_word()</span></code></a></li>
74
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.bridge_upper_bound"><code class="docutils literal notranslate"><span class="pre">Link.bridge_upper_bound()</span></code></a></li>
75
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.connected_sum"><code class="docutils literal notranslate"><span class="pre">Link.connected_sum()</span></code></a></li>
76
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.copy"><code class="docutils literal notranslate"><span class="pre">Link.copy()</span></code></a></li>
77
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.crossing_entries"><code class="docutils literal notranslate"><span class="pre">Link.crossing_entries()</span></code></a></li>
78
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.crossing_strands"><code class="docutils literal notranslate"><span class="pre">Link.crossing_strands()</span></code></a></li>
79
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.deconnect_sum"><code class="docutils literal notranslate"><span class="pre">Link.deconnect_sum()</span></code></a></li>
80
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.determinant"><code class="docutils literal notranslate"><span class="pre">Link.determinant()</span></code></a></li>
81
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.digraph"><code class="docutils literal notranslate"><span class="pre">Link.digraph()</span></code></a></li>
82
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.dual_graph"><code class="docutils literal notranslate"><span class="pre">Link.dual_graph()</span></code></a></li>
83
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.exterior"><code class="docutils literal notranslate"><span class="pre">Link.exterior()</span></code></a></li>
84
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.faces"><code class="docutils literal notranslate"><span class="pre">Link.faces()</span></code></a></li>
85
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.goeritz_matrix"><code class="docutils literal notranslate"><span class="pre">Link.goeritz_matrix()</span></code></a></li>
86
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.is_alternating"><code class="docutils literal notranslate"><span class="pre">Link.is_alternating()</span></code></a></li>
87
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.is_planar"><code class="docutils literal notranslate"><span class="pre">Link.is_planar()</span></code></a></li>
88
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.jones_polynomial"><code class="docutils literal notranslate"><span class="pre">Link.jones_polynomial()</span></code></a></li>
89
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.knot_floer_homology"><code class="docutils literal notranslate"><span class="pre">Link.knot_floer_homology()</span></code></a></li>
90
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.knot_group"><code class="docutils literal notranslate"><span class="pre">Link.knot_group()</span></code></a></li>
91
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.linking_matrix"><code class="docutils literal notranslate"><span class="pre">Link.linking_matrix()</span></code></a></li>
92
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.linking_number"><code class="docutils literal notranslate"><span class="pre">Link.linking_number()</span></code></a></li>
93
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.many_diagrams"><code class="docutils literal notranslate"><span class="pre">Link.many_diagrams()</span></code></a></li>
94
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.mirror"><code class="docutils literal notranslate"><span class="pre">Link.mirror()</span></code></a></li>
95
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.morse_diagram"><code class="docutils literal notranslate"><span class="pre">Link.morse_diagram()</span></code></a></li>
96
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.morse_number"><code class="docutils literal notranslate"><span class="pre">Link.morse_number()</span></code></a></li>
97
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.optimize_overcrossings"><code class="docutils literal notranslate"><span class="pre">Link.optimize_overcrossings()</span></code></a></li>
98
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.overstrands"><code class="docutils literal notranslate"><span class="pre">Link.overstrands()</span></code></a></li>
99
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.peer_code"><code class="docutils literal notranslate"><span class="pre">Link.peer_code()</span></code></a></li>
100
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.ribbon_concordant_links"><code class="docutils literal notranslate"><span class="pre">Link.ribbon_concordant_links()</span></code></a></li>
101
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.sage_link"><code class="docutils literal notranslate"><span class="pre">Link.sage_link()</span></code></a></li>
102
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.seifert_matrix"><code class="docutils literal notranslate"><span class="pre">Link.seifert_matrix()</span></code></a></li>
103
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.signature"><code class="docutils literal notranslate"><span class="pre">Link.signature()</span></code></a></li>
104
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.simplify"><code class="docutils literal notranslate"><span class="pre">Link.simplify()</span></code></a></li>
105
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.split_link_diagram"><code class="docutils literal notranslate"><span class="pre">Link.split_link_diagram()</span></code></a></li>
106
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.sublink"><code class="docutils literal notranslate"><span class="pre">Link.sublink()</span></code></a></li>
107
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.view"><code class="docutils literal notranslate"><span class="pre">Link.view()</span></code></a></li>
108
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.white_graph"><code class="docutils literal notranslate"><span class="pre">Link.white_graph()</span></code></a></li>
109
+ <li class="toctree-l4"><a class="reference internal" href="#spherogram.Link.writhe"><code class="docutils literal notranslate"><span class="pre">Link.writhe()</span></code></a></li>
110
+ </ul>
111
+ </li>
112
+ </ul>
113
+ </li>
114
+ <li class="toctree-l2"><a class="reference internal" href="#the-closedbraid-class">The ClosedBraid class</a><ul>
115
+ <li class="toctree-l3"><a class="reference internal" href="#spherogram.ClosedBraid"><code class="docutils literal notranslate"><span class="pre">ClosedBraid</span></code></a></li>
116
+ </ul>
117
+ </li>
118
+ </ul>
119
+ </li>
120
+ <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
121
+ <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
122
+ <li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
123
+ <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
124
+ <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
125
+ <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
126
+ <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
127
+ <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
128
+ </ul>
129
+
130
+ </div>
131
+ </div>
132
+ </nav>
133
+
134
+ <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
135
+ <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
136
+ <a href="index.html">SnapPy</a>
137
+ </nav>
138
+
139
+ <div class="wy-nav-content">
140
+ <div class="rst-content">
141
+ <div role="navigation" aria-label="Page navigation">
142
+ <ul class="wy-breadcrumbs">
143
+ <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
144
+ <li class="breadcrumb-item active">Links: planar diagrams and invariants</li>
145
+ <li class="wy-breadcrumbs-aside">
146
+ </li>
147
+ </ul>
148
+ <hr/>
149
+ </div>
150
+ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
151
+ <div itemprop="articleBody">
152
+
153
+ <section id="links-planar-diagrams-and-invariants">
154
+ <span id="module-spherogram"></span><h1>Links: planar diagrams and invariants<a class="headerlink" href="#links-planar-diagrams-and-invariants" title="Link to this heading"></a></h1>
155
+ <section id="tutorial">
156
+ <h2>Tutorial<a class="headerlink" href="#tutorial" title="Link to this heading"></a></h2>
157
+ <p>SnapPy includes the <a class="reference external" href="https://github.com/3-manifolds/Spherogram">Spherogram</a> module which allows one to
158
+ create links programmatically. The graphical conventions used are
159
+ <a class="reference external" href="https://github.com/3-manifolds/Spherogram/raw/master/spherogram_src/links/doc.pdf">summarized here</a>.</p>
160
+ <p>First, here is the figure-8 knot assembled manually from four crossings, with conventions similar to those used by <a class="reference external" href="http://katlas.org/wiki/Planar_Diagrams">KnotTheory</a>:</p>
161
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">d</span> <span class="o">=</span> <span class="p">[</span><span class="n">Crossing</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="s1">&#39;abcd&#39;</span><span class="p">]</span>
162
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
163
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
164
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
165
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">,</span><span class="n">c</span><span class="p">,</span><span class="n">d</span><span class="p">])</span>
166
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span>
167
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
168
+ <span class="go">2.029883212819</span>
169
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">E</span><span class="p">)</span>
170
+ <span class="go">True</span>
171
+ </pre></div>
172
+ </div>
173
+ <p>We can also give the same knot as a rational tangle:</p>
174
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span><span class="o">.</span><span class="n">denominator_closure</span><span class="p">()</span>
175
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">PD_code</span><span class="p">()</span>
176
+ <span class="go">[[6, 3, 7, 4], [4, 2, 5, 1], [0, 6, 1, 5], [2, 7, 3, 0]]</span>
177
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
178
+ <span class="go">&#39;DT[dadCDAB]&#39;</span>
179
+ </pre></div>
180
+ </div>
181
+ <p>The natural algebra of tangles <a class="reference external" href="https://github.com/3-manifolds/Spherogram/raw/master/spherogram_src/links/doc.pdf">shown here</a>
182
+ all works. For instance, we can build the (-2, 3, 7) pretzel knot by
183
+ adding together three rational tangles:</p>
184
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
185
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">T</span><span class="o">.</span><span class="n">numerator_closure</span><span class="p">()</span>
186
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m016&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">())</span>
187
+ <span class="go">True</span>
188
+ </pre></div>
189
+ </div>
190
+ <p>To create the figure-8 knot as a closed braid, we first mash tangles
191
+ together horizontally using “|” to make the standard braid generators;
192
+ then multiplication in the braid group is just tangle multiplication:</p>
193
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">C</span><span class="p">,</span> <span class="n">Id</span> <span class="o">=</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">IdentityBraid</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
194
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">x</span> <span class="o">=</span> <span class="n">sigma_1</span> <span class="o">=</span> <span class="n">C</span> <span class="o">|</span> <span class="n">Id</span>
195
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">y</span> <span class="o">=</span> <span class="n">sigma_2_inverse</span> <span class="o">=</span> <span class="n">Id</span> <span class="o">|</span> <span class="o">-</span><span class="n">C</span>
196
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="n">y</span><span class="o">*</span><span class="n">x</span><span class="o">*</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">denominator_closure</span><span class="p">()</span>
197
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span>
198
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">E</span><span class="p">)</span>
199
+ <span class="go">True</span>
200
+ </pre></div>
201
+ </div>
202
+ <p>Here’s the minimally-twisted five chain from Figure 2 of <a class="reference external" href="http://arxiv.org/abs/math.GT/0209214">this paper</a>:</p>
203
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">twisted_chain</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
204
+ <span class="n">T</span> <span class="o">=</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
205
+ <span class="n">m</span> <span class="o">=</span> <span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">//</span><span class="mi">2</span>
206
+ <span class="n">base</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span><span class="o">*</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="o">-</span><span class="n">T</span><span class="p">])[:</span><span class="n">n</span><span class="p">]</span>
207
+ <span class="n">tangles</span> <span class="o">=</span> <span class="n">base</span> <span class="o">+</span> <span class="p">[</span><span class="n">RationalTangle</span><span class="p">(</span><span class="n">k</span><span class="p">)]</span>
208
+ <span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">tangles</span><span class="p">,</span> <span class="n">RationalTangle</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="p">)</span><span class="o">.</span><span class="n">bridge_closure</span><span class="p">()</span>
209
+
210
+ <span class="o">&gt;&gt;&gt;</span> <span class="n">L</span> <span class="o">=</span> <span class="n">twisted_chain</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
211
+ <span class="o">&gt;&gt;&gt;</span> <span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
212
+ <span class="mf">10.14941606410</span>
213
+ </pre></div>
214
+ </div>
215
+ <p>Spherogram includes ways to create very large random links, see below.
216
+ When used inside <a class="reference external" href="http://sagemath.org">Sage</a>, one can compute many
217
+ basic link invariants, including the Jones polynomial. See the
218
+ complete list of Link methods below.</p>
219
+ </section>
220
+ <section id="random-links">
221
+ <h2>Random Links<a class="headerlink" href="#random-links" title="Link to this heading"></a></h2>
222
+ <dl class="py function">
223
+ <dt class="sig sig-object py" id="spherogram.random_link">
224
+ <span class="sig-prename descclassname"><span class="pre">spherogram.</span></span><span class="sig-name descname"><span class="pre">random_link</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">crossings</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'any'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">initial_map_gives_link</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">alternating</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">consistent_twist_regions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'basic'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prime_decomposition</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_all_pieces</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tries</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.random_link" title="Link to this definition"></a></dt>
225
+ <dd><p>Generates a random link from a model that starts with a random
226
+ 4-valent planar graph sampled with the uniform distribution by
227
+ Schaeffer’s <a class="reference external" href="http://www.lix.polytechnique.fr/~schaeffe/PagesWeb/PlanarMap/index-en.html">PlanarMap program.</a></p>
228
+ <p>The <code class="docutils literal notranslate"><span class="pre">crossings</span></code> argument specifies the number of vertices of the
229
+ initial planar graph G; the number of crossing in the returned knot
230
+ will typically be less. The meanings of the optional arguments are as
231
+ follows:</p>
232
+ <ol class="arabic">
233
+ <li><p><code class="docutils literal notranslate"><span class="pre">num_components</span></code>: The number of components of the returned link.
234
+ The link naively associated to G may have too few or too many
235
+ components. The former situation is resolved by picking another G,
236
+ and the latter by either</p>
237
+ <ol class="loweralpha simple">
238
+ <li><p>Taking the sublink consisting of the components with the largest
239
+ self-crossing numbers.</p></li>
240
+ <li><p>Resampling G until the desired number of components is achieved;
241
+ this can take a very long time as the expected number of
242
+ components associated to G grows linearly in the number of
243
+ vertices.</p></li>
244
+ </ol>
245
+ <p>When the argument <code class="docutils literal notranslate"><span class="pre">initial_map_gives_link</span></code> is <code class="docutils literal notranslate"><span class="pre">False</span></code> the
246
+ program does (a) and this is the default behavior. If you want (b)
247
+ set this argument to <code class="docutils literal notranslate"><span class="pre">True</span></code>.</p>
248
+ <p>To get the entire link associated to G, set <code class="docutils literal notranslate"><span class="pre">num_components</span></code> to
249
+ <code class="docutils literal notranslate"><span class="pre">`any`</span></code>, which is also the default.</p>
250
+ </li>
251
+ <li><p>The 4-valent vertices of G are turned into crossings by flipping a
252
+ fair coin. If you want the unique alternating diagram associated to
253
+ G, pass <code class="docutils literal notranslate"><span class="pre">alternating=True</span></code>. If you want there to be no
254
+ obvious Type II Reidemeister moves, pass
255
+ <code class="docutils literal notranslate"><span class="pre">consistent_twist_regions=True</span></code>.</p></li>
256
+ <li><p><code class="docutils literal notranslate"><span class="pre">simplify</span></code>: Whether and how to try to reduce the number of
257
+ crossings of the link via Reidemeister moves using the method
258
+ <code class="docutils literal notranslate"><span class="pre">Link.simplify</span></code>. For no simplification, set <code class="docutils literal notranslate"><span class="pre">simplify=None</span></code>;
259
+ otherwise set <code class="docutils literal notranslate"><span class="pre">simplify</span></code> to be the appropriate mode for
260
+ <code class="docutils literal notranslate"><span class="pre">Link.simplify</span></code>, for example <code class="docutils literal notranslate"><span class="pre">basic</span></code> (the default), <code class="docutils literal notranslate"><span class="pre">level</span></code>,
261
+ or <code class="docutils literal notranslate"><span class="pre">global</span></code>.</p></li>
262
+ <li><p><code class="docutils literal notranslate"><span class="pre">prime_decomposition</span></code>: The initial link generated from G may not
263
+ be prime (and typically isn’t if <code class="docutils literal notranslate"><span class="pre">initial_map_gives_link</span></code> is
264
+ <code class="docutils literal notranslate"><span class="pre">False</span></code>). When set (the default), the program undoes any connect
265
+ sums that are “diagrammatic obvious”, simplifies the result, and
266
+ repeats until pieces are “diagrammatically prime”. If
267
+ <code class="docutils literal notranslate"><span class="pre">return_all_pieces</span></code> is <code class="docutils literal notranslate"><span class="pre">False</span></code> (the default) then only the
268
+ largest (apparently) prime component is returned; otherwise all
269
+ summands are returned as a list.</p>
270
+ <p>Warning: If <code class="docutils literal notranslate"><span class="pre">prime_decomposition=True</span></code> and
271
+ <code class="docutils literal notranslate"><span class="pre">return_all_pieces=False</span></code>, then the link returned may have
272
+ fewer components than requested. This is because a prime piece
273
+ can have fewer components than the link as a whole.</p>
274
+ </li>
275
+ </ol>
276
+ <p>Some examples:</p>
277
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">random_link</span><span class="p">(</span><span class="mi">25</span><span class="p">,</span> <span class="n">num_components</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">initial_map_gives_link</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">alternating</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
278
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span>
279
+ <span class="go">&lt;Link: 1 comp; 25 cross&gt;</span>
280
+ </pre></div>
281
+ </div>
282
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">=</span> <span class="n">random_link</span><span class="p">(</span><span class="mi">30</span><span class="p">,</span> <span class="n">consistent_twist_regions</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">simplify</span> <span class="o">=</span> <span class="s1">&#39;global&#39;</span><span class="p">)</span>
283
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">isinstance</span><span class="p">(</span><span class="n">random_link</span><span class="p">(</span><span class="mi">30</span><span class="p">,</span> <span class="n">return_all_pieces</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span> <span class="nb">list</span><span class="p">)</span>
284
+ <span class="go">True</span>
285
+ </pre></div>
286
+ </div>
287
+ </dd></dl>
288
+
289
+ </section>
290
+ <section id="the-link-class">
291
+ <h2>The Link class<a class="headerlink" href="#the-link-class" title="Link to this heading"></a></h2>
292
+ <dl class="py class">
293
+ <dt class="sig sig-object py" id="spherogram.Link">
294
+ <em class="property"><span class="k"><span class="pre">class</span></span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">spherogram.</span></span><span class="sig-name descname"><span class="pre">Link</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">crossings</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">braid_closure</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_planarity</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">build</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link" title="Link to this definition"></a></dt>
295
+ <dd><p>Links are made from Crossings. The general model is that of the PD
296
+ diagrams used in <a class="reference external" href="http://katlas.org/wiki/Planar_Diagrams">KnotTheory</a>.</p>
297
+ <p>See the file “doc.pdf” for the conventions, which can be accessed
298
+ via “spherogram.pdf_docs()”, and the <a class="reference external" href="http://www.math.uic.edu/t3m/SnapPy/spherogram.html">Spherogram tutorial</a>
299
+ for some examples of creating links.</p>
300
+ <p>Here are two ways of creating the figure-8 knot, first via a PD code</p>
301
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K1</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([[</span><span class="mi">8</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">4</span><span class="p">],[</span><span class="mi">2</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">],[</span><span class="mi">6</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">8</span><span class="p">]])</span>
302
+ </pre></div>
303
+ </div>
304
+ <p>and by directly gluing up Crossings:</p>
305
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">d</span> <span class="o">=</span> <span class="p">[</span><span class="n">Crossing</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="s1">&#39;abcd&#39;</span><span class="p">]</span>
306
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
307
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">b</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
308
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">d</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
309
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K2</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">,</span><span class="n">c</span><span class="p">,</span><span class="n">d</span><span class="p">])</span>
310
+ </pre></div>
311
+ </div>
312
+ <p>Some families of named links are available, such a torus knots</p>
313
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;T(4, 2)&#39;</span><span class="p">)</span>
314
+ <span class="go">&lt;Link: 2 comp; 6 cross&gt;</span>
315
+ </pre></div>
316
+ </div>
317
+ <p>You can also construct a link by taking the closure of a braid.</p>
318
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">])</span>
319
+ <span class="go">&lt;Link: 1 comp; 4 cross&gt;</span>
320
+ </pre></div>
321
+ </div>
322
+ <p>WARNING: In SnapPy 3.0, the convention for braids changed. See
323
+ the “doc.pdf” file for details.</p>
324
+ <p>DT codes, in their many forms, are also accepted:</p>
325
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L1</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;DT: [(4,6,2)]&#39;</span><span class="p">)</span>
326
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L2</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;DT: cacbca.001&#39;</span><span class="p">)</span>
327
+ </pre></div>
328
+ </div>
329
+ <p>You can also access the links from the Rolfsen and
330
+ Hoste-Thistlethwaite tables by name.</p>
331
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;8_20&#39;</span><span class="p">)</span>
332
+ <span class="go">&lt;Link 8_20: 1 comp; 8 cross&gt;</span>
333
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K12a123&#39;</span><span class="p">)</span>
334
+ <span class="go">&lt;Link K12a123: 1 comp; 12 cross&gt;</span>
335
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L12n123&#39;</span><span class="p">)</span>
336
+ <span class="go">&lt;Link L12n123: 2 comp; 12 cross&gt;</span>
337
+ </pre></div>
338
+ </div>
339
+ <p>You can also convert to and from SageMath braid and link types,
340
+ see the documentation for the “sage_link” method for details.</p>
341
+ <dl class="py method">
342
+ <dt class="sig sig-object py" id="spherogram.Link.DT_code">
343
+ <span class="sig-name descname"><span class="pre">DT_code</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">DT_alpha</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">flips</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.DT_code" title="Link to this definition"></a></dt>
344
+ <dd><p>The Dowker-Thistlethwaite code for the link in either numerical or
345
+ alphabetical form.</p>
346
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K8n1&#39;</span><span class="p">)</span>
347
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">DT_alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
348
+ <span class="go">&#39;DT[hahCHeAgbdf.11101000]&#39;</span>
349
+ </pre></div>
350
+ </div>
351
+ <p>In the alphabetical form, the first letter determines the
352
+ number C of crossings, the second the number L of link
353
+ components, and the next L gives the number of crossings on
354
+ each component; subsequent letters describe each crossing with
355
+ ‘a’ being 2, ‘A’ being -2, etc.</p>
356
+ </dd></dl>
357
+
358
+ <dl class="py method">
359
+ <dt class="sig sig-object py" id="spherogram.Link.KLPProjection">
360
+ <span class="sig-name descname"><span class="pre">KLPProjection</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.KLPProjection" title="Link to this definition"></a></dt>
361
+ <dd></dd></dl>
362
+
363
+ <dl class="py method">
364
+ <dt class="sig sig-object py" id="spherogram.Link.PD_code">
365
+ <span class="sig-name descname"><span class="pre">PD_code</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">KnotTheory</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_strand_index</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.PD_code" title="Link to this definition"></a></dt>
366
+ <dd><p>The planar diagram code for the link. When reconstructing a link
367
+ from its PD code, it will not change the ordering of the
368
+ components, and will preserve their orientation except
369
+ possibly for components with only two crossings.</p>
370
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L13n11308&#39;</span><span class="p">)</span>
371
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">L</span><span class="o">.</span><span class="n">link_components</span><span class="p">]</span>
372
+ <span class="go">[4, 4, 4, 6, 8]</span>
373
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L_copy</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">PD_code</span><span class="p">())</span>
374
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">L_copy</span><span class="o">.</span><span class="n">link_components</span><span class="p">]</span>
375
+ <span class="go">[4, 4, 4, 6, 8]</span>
376
+ </pre></div>
377
+ </div>
378
+ </dd></dl>
379
+
380
+ <dl class="py method">
381
+ <dt class="sig sig-object py" id="spherogram.Link.add_band">
382
+ <span class="sig-name descname"><span class="pre">add_band</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">band</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.add_band" title="Link to this definition"></a></dt>
383
+ <dd><p>Adds the specified band to the link and returns the result,
384
+ which is ribbon concordant to the original. The band must
385
+ connect one component of the link to itself in such a way that
386
+ the result has an additional component. See Figure 7 of
387
+ <a class="reference external" href="https://arXiv.org/abs/2512.21825">[Dunfield and Gong]</a>
388
+ for how the band is specified. Typically, the user invokes
389
+ <a class="reference internal" href="#spherogram.Link.ribbon_concordant_links" title="spherogram.Link.ribbon_concordant_links"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Link.ribbon_concordant_links()</span></code></a> rather than use this
390
+ method directly.</p>
391
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K6a3&#39;</span><span class="p">)</span>
392
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">band</span> <span class="o">=</span> <span class="p">([(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">0</span><span class="p">)],</span> <span class="p">[</span><span class="kc">True</span><span class="p">],</span> <span class="mi">1</span><span class="p">)</span>
393
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">add_band</span><span class="p">(</span><span class="n">band</span><span class="p">)</span>
394
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;global&#39;</span><span class="p">)</span>
395
+ <span class="go">True</span>
396
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span>
397
+ <span class="go">&lt;Link K6a3+band: 0 comp; 0 cross&gt;</span>
398
+ </pre></div>
399
+ </div>
400
+ </dd></dl>
401
+
402
+ <dl class="py method">
403
+ <dt class="sig sig-object py" id="spherogram.Link.alexander_matrix">
404
+ <span class="sig-name descname"><span class="pre">alexander_matrix</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mv</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.alexander_matrix" title="Link to this definition"></a></dt>
405
+ <dd><p>Returns the Alexander matrix of the link:</p>
406
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;3_1&#39;</span><span class="p">)</span>
407
+ <span class="n">sage</span><span class="p">:</span> <span class="n">A</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_matrix</span><span class="p">()</span>
408
+ <span class="n">sage</span><span class="p">:</span> <span class="n">A</span> <span class="c1"># doctest: +SKIP</span>
409
+ <span class="p">([</span> <span class="o">-</span><span class="mi">1</span> <span class="n">t</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">t</span><span class="p">]</span>
410
+ <span class="p">[</span><span class="mi">1</span> <span class="o">-</span> <span class="n">t</span> <span class="o">-</span><span class="mi">1</span> <span class="n">t</span><span class="p">]</span>
411
+ <span class="p">[</span> <span class="n">t</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">t</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="n">t</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">t</span><span class="p">])</span>
412
+
413
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">1</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)])</span>
414
+ <span class="n">sage</span><span class="p">:</span> <span class="n">A</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_matrix</span><span class="p">()</span>
415
+ <span class="n">sage</span><span class="p">:</span> <span class="n">A</span> <span class="c1"># doctest: +SKIP</span>
416
+ <span class="p">([</span> <span class="o">-</span><span class="mi">1</span> <span class="o">+</span> <span class="n">t1</span><span class="o">^-</span><span class="mi">1</span> <span class="n">t1</span><span class="o">^-</span><span class="mi">1</span><span class="o">*</span><span class="n">t2</span> <span class="o">-</span> <span class="n">t1</span><span class="o">^-</span><span class="mi">1</span><span class="p">]</span>
417
+ <span class="p">[</span><span class="n">t1</span><span class="o">*</span><span class="n">t2</span><span class="o">^-</span><span class="mi">1</span> <span class="o">-</span> <span class="n">t2</span><span class="o">^-</span><span class="mi">1</span> <span class="o">-</span><span class="mi">1</span> <span class="o">+</span> <span class="n">t2</span><span class="o">^-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="n">t2</span><span class="p">,</span> <span class="n">t1</span><span class="p">])</span>
418
+ </pre></div>
419
+ </div>
420
+ </dd></dl>
421
+
422
+ <dl class="py method">
423
+ <dt class="sig sig-object py" id="spherogram.Link.alexander_poly">
424
+ <span class="sig-name descname"><span class="pre">alexander_poly</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.alexander_poly" title="Link to this definition"></a></dt>
425
+ <dd><p>Please use the “alexander_polynomial” method instead.</p>
426
+ </dd></dl>
427
+
428
+ <dl class="py method">
429
+ <dt class="sig sig-object py" id="spherogram.Link.alexander_polynomial">
430
+ <span class="sig-name descname"><span class="pre">alexander_polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">multivar</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'no'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">norm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">factored</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.alexander_polynomial" title="Link to this definition"></a></dt>
431
+ <dd><p>Calculates the Alexander polynomial of the link.</p>
432
+ <p>For links with one component,
433
+ can evaluate the alexander polynomial at v:</p>
434
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
435
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
436
+ <span class="n">t</span><span class="o">^</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">3</span><span class="o">*</span><span class="n">t</span> <span class="o">+</span> <span class="mi">1</span>
437
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">(</span><span class="n">v</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span>
438
+ <span class="mi">5</span>
439
+
440
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L7n1&#39;</span><span class="p">)</span>
441
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">(</span><span class="n">norm</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
442
+ <span class="n">t1</span><span class="o">^-</span><span class="mi">1</span><span class="o">*</span><span class="n">t2</span><span class="o">^-</span><span class="mi">1</span> <span class="o">+</span> <span class="n">t1</span><span class="o">^-</span><span class="mi">2</span><span class="o">*</span><span class="n">t2</span><span class="o">^-</span><span class="mi">4</span>
443
+ </pre></div>
444
+ </div>
445
+ <p>The default algorithm for <em>knots</em> is Bar-Natan’s super-fast
446
+ tangle-based algorithm. For links, we apply Fox calculus to a
447
+ Wirtinger presentation for the link:</p>
448
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K13n123&#39;</span><span class="p">)</span>
449
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span> <span class="o">==</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">(</span><span class="n">method</span><span class="o">=</span><span class="s1">&#39;wirtinger&#39;</span><span class="p">)</span>
450
+ <span class="kc">True</span>
451
+ </pre></div>
452
+ </div>
453
+ </dd></dl>
454
+
455
+ <dl class="py method">
456
+ <dt class="sig sig-object py" id="spherogram.Link.all_crossings_oriented">
457
+ <span class="sig-name descname"><span class="pre">all_crossings_oriented</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.all_crossings_oriented" title="Link to this definition"></a></dt>
458
+ <dd></dd></dl>
459
+
460
+ <dl class="py method">
461
+ <dt class="sig sig-object py" id="spherogram.Link.alternating">
462
+ <span class="sig-name descname"><span class="pre">alternating</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.alternating" title="Link to this definition"></a></dt>
463
+ <dd><p>Returns the alternating link with the same planar graph. No attempt
464
+ is made to preserve the order of the link components or ensure
465
+ that the DT code of the result has all positive entries (as
466
+ opposed to all negative).</p>
467
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L14n12345&#39;</span><span class="p">)</span>
468
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">A</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">alternating</span><span class="p">()</span>
469
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">A</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">identify</span><span class="p">()</span>
470
+ <span class="go">[L14a5150(0,0)(0,0)]</span>
471
+ </pre></div>
472
+ </div>
473
+ </dd></dl>
474
+
475
+ <dl class="py method">
476
+ <dt class="sig sig-object py" id="spherogram.Link.backtrack">
477
+ <span class="sig-name descname"><span class="pre">backtrack</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">steps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prob_type_1</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prob_type_2</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.backtrack" title="Link to this definition"></a></dt>
478
+ <dd><p>Performs a sequence of Reidemeister moves which increase or maintain
479
+ the number of crossings in a diagram. The number of such
480
+ moves is the parameter steps. The diagram is modified in place.</p>
481
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L14a7689&#39;</span><span class="p">)</span>
482
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span>
483
+ <span class="go">&lt;Link L14a7689: 2 comp; 14 cross&gt;</span>
484
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">backtrack</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="n">prob_type_1</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">prob_type_2</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
485
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">crossings</span><span class="p">)</span>
486
+ <span class="go">19</span>
487
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">backtrack</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="n">prob_type_1</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">prob_type_2</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
488
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">crossings</span><span class="p">)</span>
489
+ <span class="go">29</span>
490
+ </pre></div>
491
+ </div>
492
+ </dd></dl>
493
+
494
+ <dl class="py method">
495
+ <dt class="sig sig-object py" id="spherogram.Link.black_graph">
496
+ <span class="sig-name descname"><span class="pre">black_graph</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.black_graph" title="Link to this definition"></a></dt>
497
+ <dd><p>Returns the black graph of K.</p>
498
+ <p>If the black graph is disconnected (which can only happen for
499
+ a split link diagram), returns one connected component. The
500
+ edges are labeled by the crossings they correspond to.</p>
501
+ <p>Example:</p>
502
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">=</span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;5_1&#39;</span><span class="p">)</span>
503
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">black_graph</span><span class="p">()</span>
504
+ <span class="n">Subgraph</span> <span class="n">of</span> <span class="p">():</span> <span class="n">Multi</span><span class="o">-</span><span class="n">graph</span> <span class="n">on</span> <span class="mi">2</span> <span class="n">vertices</span>
505
+ </pre></div>
506
+ </div>
507
+ <p>WARNING: While there is also a “white_graph” method, it need
508
+ not be the case that these two graphs are complementary in the
509
+ expected way.</p>
510
+ </dd></dl>
511
+
512
+ <dl class="py method">
513
+ <dt class="sig sig-object py" id="spherogram.Link.braid_word">
514
+ <span class="sig-name descname"><span class="pre">braid_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">as_sage_braid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.braid_word" title="Link to this definition"></a></dt>
515
+ <dd><p>Return a list of integers which defines a braid word whose closure is the
516
+ given link. The natural numbers 1, 2, 3, etc are the generators and the
517
+ negatives are the inverses.</p>
518
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K6a2&#39;</span><span class="p">)</span>
519
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">word</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">braid_word</span><span class="p">()</span>
520
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="n">word</span><span class="p">)</span>
521
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">identify</span><span class="p">()</span>
522
+ <span class="go">[m289(0,0), 6_2(0,0), K5_19(0,0), K6a2(0,0)]</span>
523
+ </pre></div>
524
+ </div>
525
+ <p>Within Sage, you can get the answer as an element of the
526
+ appropriate BraidGroup and also check our earlier work:</p>
527
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K6a2&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">braid_word</span><span class="p">(</span><span class="n">as_sage_braid</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
528
+ <span class="p">(</span><span class="n">s0</span><span class="o">*</span><span class="n">s1</span><span class="o">^-</span><span class="mi">1</span><span class="p">)</span><span class="o">^</span><span class="mi">2</span><span class="o">*</span><span class="n">s0</span><span class="o">^</span><span class="mi">2</span>
529
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">(),</span> <span class="n">B</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
530
+ <span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">)</span>
531
+ </pre></div>
532
+ </div>
533
+ <p>Implementation follows P. Vogel, “Representation of links by
534
+ braids, a new algorithm”.</p>
535
+ </dd></dl>
536
+
537
+ <dl class="py method">
538
+ <dt class="sig sig-object py" id="spherogram.Link.bridge_upper_bound">
539
+ <span class="sig-name descname"><span class="pre">bridge_upper_bound</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'plain</span> <span class="pre">sphere'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_meridians</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.bridge_upper_bound" title="Link to this definition"></a></dt>
540
+ <dd><p>Computes an upper bound on the bridge number of the given link.
541
+ By default, it computes the plain sphere number rho(D) of the
542
+ diagram D from <a class="reference internal" href="#bkp2025" id="id2"><span>[BKP2025]</span></a>, but with <code class="docutils literal notranslate"><span class="pre">method='wirtinger'</span></code>, it
543
+ computes the weaker Wirtinger number omega(D) from <a class="reference internal" href="#bkvv2020" id="id3"><span>[BKVV2020]</span></a>.
544
+ The latter is significantly faster to compute.</p>
545
+ <p>If <code class="docutils literal notranslate"><span class="pre">return_meridians=True</span></code> is set, returns a list of meridians
546
+ generating the knot group, where each meridian is specified by the
547
+ index of the crossing for which it is the 0 input strand.</p>
548
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;14n1527&#39;</span><span class="p">)</span>
549
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">bridge_upper_bound</span><span class="p">()</span>
550
+ <span class="go">3</span>
551
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">bridge_upper_bound</span><span class="p">(</span><span class="n">method</span><span class="o">=</span><span class="s1">&#39;wirtinger&#39;</span><span class="p">)</span>
552
+ <span class="go">4</span>
553
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">bridge_upper_bound</span><span class="p">(</span><span class="n">return_meridians</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
554
+ <span class="go">[2, 3, 9]</span>
555
+ </pre></div>
556
+ </div>
557
+ <div role="list" class="citation-list">
558
+ <div class="citation" id="bkp2025" role="doc-biblioentry">
559
+ <span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">BKP2025</a><span class="fn-bracket">]</span></span>
560
+ <p>R. Blair, A. Kjuchukova, and E. Pfaff,
561
+ <em>The Plain Sphere Number of a Link.</em>
562
+ <a class="reference external" href="https://arxiv.org/abs/2504.10517">https://arxiv.org/abs/2504.10517</a></p>
563
+ </div>
564
+ <div class="citation" id="bkvv2020" role="doc-biblioentry">
565
+ <span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">BKVV2020</a><span class="fn-bracket">]</span></span>
566
+ <p>R. Blair, A. Kjuchukova, R. Velazquez, and P. Villanueva,
567
+ <em>Wirtinger systems of generators of knot groups.</em>
568
+ <a class="reference external" href="https://dx.doi.org/10.4310/CAG.2020.v28.n2.a2">https://dx.doi.org/10.4310/CAG.2020.v28.n2.a2</a></p>
569
+ </div>
570
+ </div>
571
+ </dd></dl>
572
+
573
+ <dl class="py method">
574
+ <dt class="sig sig-object py" id="spherogram.Link.connected_sum">
575
+ <span class="sig-name descname"><span class="pre">connected_sum</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">other_knot</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.connected_sum" title="Link to this definition"></a></dt>
576
+ <dd><p>Returns the connected sum of two knots.</p>
577
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">fig8</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">1</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">6</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">)]</span>
578
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">fig8</span><span class="p">)</span>
579
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">connected_sum</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
580
+ <span class="go">&lt;Link: 1 comp; 8 cross&gt;</span>
581
+ </pre></div>
582
+ </div>
583
+ </dd></dl>
584
+
585
+ <dl class="py method">
586
+ <dt class="sig sig-object py" id="spherogram.Link.copy">
587
+ <span class="sig-name descname"><span class="pre">copy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">recursively</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.copy" title="Link to this definition"></a></dt>
588
+ <dd><p>Returns a copy of the link.</p>
589
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L14n467&#39;</span><span class="p">)</span>
590
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">copy</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">copy</span><span class="p">();</span> <span class="n">copy</span>
591
+ <span class="go">&lt;Link L14n467: 2 comp; 14 cross&gt;</span>
592
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">PD_code</span><span class="p">()</span> <span class="o">==</span> <span class="n">copy</span><span class="o">.</span><span class="n">PD_code</span><span class="p">()</span>
593
+ <span class="go">True</span>
594
+ </pre></div>
595
+ </div>
596
+ </dd></dl>
597
+
598
+ <dl class="py method">
599
+ <dt class="sig sig-object py" id="spherogram.Link.crossing_entries">
600
+ <span class="sig-name descname"><span class="pre">crossing_entries</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.crossing_entries" title="Link to this definition"></a></dt>
601
+ <dd></dd></dl>
602
+
603
+ <dl class="py method">
604
+ <dt class="sig sig-object py" id="spherogram.Link.crossing_strands">
605
+ <span class="sig-name descname"><span class="pre">crossing_strands</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.crossing_strands" title="Link to this definition"></a></dt>
606
+ <dd></dd></dl>
607
+
608
+ <dl class="py method">
609
+ <dt class="sig sig-object py" id="spherogram.Link.deconnect_sum">
610
+ <span class="sig-name descname"><span class="pre">deconnect_sum</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">destroy_original</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.deconnect_sum" title="Link to this definition"></a></dt>
611
+ <dd><p>Undoes all connect sums that are diagramatically obvious,
612
+ i.e. those where there is a circle which meets the projection
613
+ in two points.</p>
614
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K5a1</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">9</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">6</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">4</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">0</span><span class="p">)]</span>
615
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">K5a1</span><span class="p">)</span>
616
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">connected_sum</span><span class="p">(</span><span class="n">K</span><span class="p">);</span> <span class="n">L</span>
617
+ <span class="go">&lt;Link: 1 comp; 10 cross&gt;</span>
618
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">deconnect_sum</span><span class="p">()</span>
619
+ <span class="go">[&lt;Link: 1 comp; 5 cross&gt;, &lt;Link: 1 comp; 5 cross&gt;]</span>
620
+ </pre></div>
621
+ </div>
622
+ </dd></dl>
623
+
624
+ <dl class="py method">
625
+ <dt class="sig sig-object py" id="spherogram.Link.determinant">
626
+ <span class="sig-name descname"><span class="pre">determinant</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'goeritz'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.determinant" title="Link to this definition"></a></dt>
627
+ <dd><p>Returns the determinant of the link, a non-negative integer.</p>
628
+ <p>Possible methods are ‘wirt’, using the Wirtinger presentation; ‘goeritz’,
629
+ using the Goeritz matrix, and ‘color’, using the ‘colorability matrix’, or
630
+ anything else, to compute the Alexander polynomial at -1. Example:</p>
631
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span> <span class="p">[(</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">6</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">3</span><span class="p">),(</span><span class="mi">8</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">),(</span><span class="mi">2</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">)]</span> <span class="p">)</span> <span class="c1"># Figure 8 knot</span>
632
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">determinant</span><span class="p">()</span>
633
+ <span class="mi">5</span>
634
+ </pre></div>
635
+ </div>
636
+ </dd></dl>
637
+
638
+ <dl class="py method">
639
+ <dt class="sig sig-object py" id="spherogram.Link.digraph">
640
+ <span class="sig-name descname"><span class="pre">digraph</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.digraph" title="Link to this definition"></a></dt>
641
+ <dd><p>The underlying directed graph for the link diagram.</p>
642
+ </dd></dl>
643
+
644
+ <dl class="py method">
645
+ <dt class="sig sig-object py" id="spherogram.Link.dual_graph">
646
+ <span class="sig-name descname"><span class="pre">dual_graph</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.dual_graph" title="Link to this definition"></a></dt>
647
+ <dd><p>The dual graph to a link diagram D, whose vertices correspond to
648
+ complementary regions (faces) of D and whose edges are dual to the
649
+ edges of D.</p>
650
+ </dd></dl>
651
+
652
+ <dl class="py method">
653
+ <dt class="sig sig-object py" id="spherogram.Link.exterior">
654
+ <span class="sig-name descname"><span class="pre">exterior</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">with_hyperbolic_structure</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">remove_finite_vertices</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.exterior" title="Link to this definition"></a></dt>
655
+ <dd><p>The exterior or complement of the link L, that is, S^3 minus L.</p>
656
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
657
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span>
658
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
659
+ <span class="go">2.02988321</span>
660
+ </pre></div>
661
+ </div>
662
+ <p>By default, SnapPy will try to find a hyperbolic structure on the
663
+ exterior. To return a Triangulation instead of a Manifold, set the
664
+ flag with_hyperbolic_structure to False. If you want to get the
665
+ intermediate triangulation with extra vertices above and below the
666
+ projection plane, set the flag remove_finite_vertices to False.</p>
667
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">exterior</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
668
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">(),</span> <span class="n">M</span><span class="o">.</span><span class="n">_num_fake_cusps</span><span class="p">())</span>
669
+ <span class="go">(1, 2)</span>
670
+ </pre></div>
671
+ </div>
672
+ </dd></dl>
673
+
674
+ <dl class="py method">
675
+ <dt class="sig sig-object py" id="spherogram.Link.faces">
676
+ <span class="sig-name descname"><span class="pre">faces</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.faces" title="Link to this definition"></a></dt>
677
+ <dd><p>The faces are the complementary regions of the link diagram.
678
+ Each face is given as a list of corners of crossings as one
679
+ goes around <em>clockwise</em>. These corners are recorded as
680
+ CrossingStrands, where CrossingStrand(c, j) denotes the corner
681
+ of the face abutting crossing c between strand j and j + 1.</p>
682
+ <p>Alternatively, the sequence of CrossingStrands can be regarded
683
+ as the <em>heads</em> of the oriented edges of the face.</p>
684
+ </dd></dl>
685
+
686
+ <dl class="py method">
687
+ <dt class="sig sig-object py" id="spherogram.Link.goeritz_matrix">
688
+ <span class="sig-name descname"><span class="pre">goeritz_matrix</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">return_graph</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.goeritz_matrix" title="Link to this definition"></a></dt>
689
+ <dd><p>Call self.white_graph() and return the Goeritz matrix of the result.
690
+ If the return_graph flag is set, also return the graph:</p>
691
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">=</span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
692
+ <span class="n">sage</span><span class="p">:</span> <span class="nb">abs</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">goeritz_matrix</span><span class="p">()</span><span class="o">.</span><span class="n">det</span><span class="p">())</span>
693
+ <span class="mi">5</span>
694
+ </pre></div>
695
+ </div>
696
+ </dd></dl>
697
+
698
+ <dl class="py method">
699
+ <dt class="sig sig-object py" id="spherogram.Link.is_alternating">
700
+ <span class="sig-name descname"><span class="pre">is_alternating</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.is_alternating" title="Link to this definition"></a></dt>
701
+ <dd><p>Returns whether or not this link diagram is alternating.</p>
702
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K9a1&#39;</span><span class="p">)</span>
703
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K10n1&#39;</span><span class="p">)</span>
704
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">is_alternating</span><span class="p">(),</span> <span class="n">L</span><span class="o">.</span><span class="n">is_alternating</span><span class="p">()</span>
705
+ <span class="go">(True, False)</span>
706
+ </pre></div>
707
+ </div>
708
+ <p>Of course, this is a property of the <em>diagram</em> not the isotopy
709
+ class. Here is the Hopf link with two silly extra crossings:</p>
710
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">4</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">),(</span><span class="mi">3</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">),(</span><span class="mi">6</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">7</span><span class="p">)])</span>
711
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">is_alternating</span><span class="p">()</span>
712
+ <span class="go">False</span>
713
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">simplify</span><span class="p">()</span>
714
+ <span class="go">True</span>
715
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">is_alternating</span><span class="p">()</span>
716
+ <span class="go">True</span>
717
+ </pre></div>
718
+ </div>
719
+ </dd></dl>
720
+
721
+ <dl class="py method">
722
+ <dt class="sig sig-object py" id="spherogram.Link.is_planar">
723
+ <span class="sig-name descname"><span class="pre">is_planar</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.is_planar" title="Link to this definition"></a></dt>
724
+ <dd><p>Whether the 4-valent graph underlying the link projection is planar.</p>
725
+ <p>Should always be <code class="docutils literal notranslate"><span class="pre">True</span></code> for any actual Link.</p>
726
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">Crossing</span><span class="p">()</span>
727
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="c1"># Punctured torus gluing</span>
728
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">bad</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([</span><span class="n">c</span><span class="p">],</span> <span class="n">check_planarity</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
729
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">bad</span><span class="o">.</span><span class="n">is_planar</span><span class="p">()</span>
730
+ <span class="go">False</span>
731
+ </pre></div>
732
+ </div>
733
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">1</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">6</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">9</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="p">(</span><span class="mi">9</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">)])</span>
734
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">is_planar</span><span class="p">()</span>
735
+ <span class="go">True</span>
736
+ </pre></div>
737
+ </div>
738
+ <p>A valid split link:
739
+ &gt;&gt;&gt; S = Link([(1, 1, 2, 2), (3, 3, 4, 4)])
740
+ &gt;&gt;&gt; S.is_planar()
741
+ True
742
+ &gt;&gt;&gt; len(S.split_link_diagram())
743
+ 2</p>
744
+ <p>A split link with one component planar and the other nonplanar
745
+ &gt;&gt;&gt; a, b = Crossing(), Crossing()
746
+ &gt;&gt;&gt; a[0], a[2] = a[1], a[3]
747
+ &gt;&gt;&gt; b[0], b[1] = b[2], b[3]
748
+ &gt;&gt;&gt; N = Link([a, b], check_planarity=False)
749
+ &gt;&gt;&gt; N.is_planar()
750
+ False
751
+ &gt;&gt;&gt; sorted(C.is_planar() for C in N.split_link_diagram())
752
+ [False, True]</p>
753
+ </dd></dl>
754
+
755
+ <dl class="py method">
756
+ <dt class="sig sig-object py" id="spherogram.Link.jones_polynomial">
757
+ <span class="sig-name descname"><span class="pre">jones_polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">variable</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">new_convention</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.jones_polynomial" title="Link to this definition"></a></dt>
758
+ <dd><p>Returns the Jones polynomial of the link, following the
759
+ conventions of <a class="reference external" href="https://arxiv.org/abs/math/0201043">https://arxiv.org/abs/math/0201043</a></p>
760
+ <p>In particular, it obeys the oriented skein relation:</p>
761
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">q</span><span class="o">^</span><span class="mi">2</span> <span class="n">V</span><span class="p">(</span><span class="n">L</span><span class="o">-</span><span class="p">)</span> <span class="o">-</span> <span class="n">q</span><span class="o">^-</span><span class="mi">2</span> <span class="n">V</span><span class="p">(</span><span class="n">L</span><span class="o">+</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">q</span> <span class="o">-</span> <span class="n">q</span><span class="o">^-</span><span class="mi">1</span><span class="p">)</span> <span class="n">V</span><span class="p">(</span><span class="n">L0</span><span class="p">)</span>
762
+ </pre></div>
763
+ </div>
764
+ <p>and V(n-component unlink) = (q + q^-1)^(n-1).</p>
765
+ <p>WARNING: The default conventions changed in SnapPy 3.0. You
766
+ can recover the old conventions as illustrated below:</p>
767
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;8_5&#39;</span><span class="p">)</span>
768
+ <span class="n">sage</span><span class="p">:</span> <span class="n">J</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">();</span> <span class="n">J</span>
769
+ <span class="mi">1</span> <span class="o">-</span> <span class="n">q</span><span class="o">^</span><span class="mi">2</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">4</span> <span class="o">-</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">6</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">8</span> <span class="o">-</span> <span class="mi">4</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">10</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">12</span> <span class="o">-</span> <span class="mi">2</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">14</span> <span class="o">+</span> <span class="n">q</span><span class="o">^</span><span class="mi">16</span>
770
+ <span class="n">sage</span><span class="p">:</span> <span class="n">Jold</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">(</span><span class="n">new_convention</span><span class="o">=</span><span class="kc">False</span><span class="p">);</span> <span class="n">Jold</span>
771
+ <span class="mi">1</span> <span class="o">-</span> <span class="n">q</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">3</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">4</span> <span class="o">-</span> <span class="mi">4</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">5</span> <span class="o">+</span> <span class="mi">3</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">6</span> <span class="o">-</span> <span class="mi">2</span><span class="o">*</span><span class="n">q</span><span class="o">^</span><span class="mi">7</span> <span class="o">+</span> <span class="n">q</span><span class="o">^</span><span class="mi">8</span>
772
+ </pre></div>
773
+ </div>
774
+ <p>Here are the values one unlinks with 4 and 5 components:</p>
775
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">U4</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">3</span><span class="p">])</span>
776
+ <span class="n">sage</span><span class="p">:</span> <span class="n">U5</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="o">-</span><span class="mi">4</span><span class="p">])</span>
777
+ <span class="n">sage</span><span class="p">:</span> <span class="n">U4</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">()</span><span class="o">.</span><span class="n">factor</span><span class="p">()</span>
778
+ <span class="p">(</span><span class="n">q</span><span class="o">^-</span><span class="mi">3</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">q</span><span class="o">^</span><span class="mi">2</span><span class="p">)</span><span class="o">^</span><span class="mi">3</span>
779
+ <span class="n">sage</span><span class="p">:</span> <span class="n">U5</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">()</span><span class="o">.</span><span class="n">factor</span><span class="p">()</span>
780
+ <span class="p">(</span><span class="n">q</span><span class="o">^-</span><span class="mi">4</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">q</span><span class="o">^</span><span class="mi">2</span><span class="p">)</span><span class="o">^</span><span class="mi">4</span>
781
+ <span class="n">sage</span><span class="p">:</span> <span class="n">U4</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">(</span><span class="n">new_convention</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">factor</span><span class="p">()</span>
782
+ <span class="p">(</span><span class="o">-</span><span class="n">q</span><span class="o">^-</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">q</span><span class="p">)</span><span class="o">^</span><span class="mi">3</span>
783
+ <span class="n">sage</span><span class="p">:</span> <span class="n">U5</span><span class="o">.</span><span class="n">jones_polynomial</span><span class="p">(</span><span class="n">new_convention</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">factor</span><span class="p">()</span>
784
+ <span class="p">(</span><span class="n">q</span><span class="o">^-</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">q</span><span class="p">)</span><span class="o">^</span><span class="mi">4</span>
785
+ </pre></div>
786
+ </div>
787
+ </dd></dl>
788
+
789
+ <dl class="py method">
790
+ <dt class="sig sig-object py" id="spherogram.Link.knot_floer_homology">
791
+ <span class="sig-name descname"><span class="pre">knot_floer_homology</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">prime</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">complex</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.knot_floer_homology" title="Link to this definition"></a></dt>
792
+ <dd><p>Uses Zoltán Szabó’s HFK Calculator to compute the knot Floer
793
+ homology. This also gives the Seifert genus, whether the knot
794
+ fibers, etc:</p>
795
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K3a1&#39;</span><span class="p">)</span>
796
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">knot_floer_homology</span><span class="p">()</span>
797
+ <span class="go">{&#39;L_space_knot&#39;: True,</span>
798
+ <span class="go"> &#39;epsilon&#39;: 1,</span>
799
+ <span class="go"> &#39;fibered&#39;: True,</span>
800
+ <span class="go"> &#39;modulus&#39;: 2,</span>
801
+ <span class="go"> &#39;nu&#39;: 1,</span>
802
+ <span class="go"> &#39;ranks&#39;: {(-1, -2): 1, (0, -1): 1, (1, 0): 1},</span>
803
+ <span class="go"> &#39;seifert_genus&#39;: 1,</span>
804
+ <span class="go"> &#39;tau&#39;: 1,</span>
805
+ <span class="go"> &#39;total_rank&#39;: 3}</span>
806
+ </pre></div>
807
+ </div>
808
+ <p>The homology itself is encoded by ‘ranks’, with the form:</p>
809
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">(</span><span class="n">Alexander</span> <span class="n">grading</span><span class="p">,</span> <span class="n">Maslov</span> <span class="n">grading</span><span class="p">):</span> <span class="n">dimension</span>
810
+ </pre></div>
811
+ </div>
812
+ <p>For example, here is the Conway knot, which has Alexander
813
+ polynomial 1 and genus 3:</p>
814
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K11n34&#39;</span><span class="p">)</span>
815
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">ranks</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">knot_floer_homology</span><span class="p">()[</span><span class="s1">&#39;ranks&#39;</span><span class="p">]</span>
816
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">[(</span><span class="n">a</span><span class="p">,</span> <span class="n">m</span><span class="p">)</span> <span class="k">for</span> <span class="n">a</span><span class="p">,</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">ranks</span> <span class="k">if</span> <span class="n">a</span> <span class="o">==</span> <span class="mi">3</span><span class="p">]</span>
817
+ <span class="go">[(3, 3), (3, 4)]</span>
818
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">ranks</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="n">ranks</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]</span>
819
+ <span class="go">(1, 1)</span>
820
+ </pre></div>
821
+ </div>
822
+ <p>Computation is done over F_2 by default, other primes less
823
+ than 2^15 can be used instead via the optional “prime”
824
+ parameter.</p>
825
+ <p>If the parameter <cite>complex</cite> is set to True, then the simplified
826
+ “UV = 0” knot Floer chain complex is returned. This complex is
827
+ computed over the ring F[U,V]/(UV = 0), where F is the integers
828
+ mod the chosen prime; this corresponds to only the horizontal and
829
+ vertical arrows in the full knot Floer complex. The complex is
830
+ specified by:</p>
831
+ <ul class="simple">
832
+ <li><p>generators: a dictionary from the generator names to their
833
+ (Alexander, Maslov) gradings. The number of generators is
834
+ equal to the total_rank.</p></li>
835
+ <li><p>differential: a dictionary whose value on (a, b) is an integer
836
+ specifying the coefficient on the differential from generator a
837
+ to generator b, where only nonzero differentials are
838
+ recorded. (The coefficient on the differential is really an
839
+ element of F[U,V]/(UV = 0), but the power of U or V can be
840
+ recovered from the gradings on a and b so only the element of F
841
+ is recorded.)</p></li>
842
+ </ul>
843
+ <p>For example, to compute the vertical differential, whose homology
844
+ is HFhat(S^3), you can do:</p>
845
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">data</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">knot_floer_homology</span><span class="p">(</span><span class="n">prime</span><span class="o">=</span><span class="mi">31991</span><span class="p">,</span> <span class="nb">complex</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
846
+ <span class="n">sage</span><span class="p">:</span> <span class="n">gens</span><span class="p">,</span> <span class="n">diff</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;generators&#39;</span><span class="p">],</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;differentials&#39;</span><span class="p">]</span>
847
+ <span class="n">sage</span><span class="p">:</span> <span class="n">vert</span> <span class="o">=</span> <span class="p">{(</span><span class="n">i</span><span class="p">,</span><span class="n">j</span><span class="p">):</span><span class="n">diff</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">diff</span>
848
+ <span class="o">...</span> <span class="k">if</span> <span class="n">gens</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="n">gens</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mi">1</span><span class="p">}</span>
849
+ <span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">sage.all</span> <span class="kn">import</span> <span class="n">matrix</span><span class="p">,</span> <span class="n">GF</span>
850
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">matrix</span><span class="p">(</span><span class="n">GF</span><span class="p">(</span><span class="mi">31991</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">gens</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">gens</span><span class="p">),</span> <span class="n">vert</span><span class="p">,</span> <span class="n">sparse</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
851
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">*</span><span class="n">M</span> <span class="o">==</span> <span class="mi">0</span>
852
+ <span class="kc">True</span>
853
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">right_kernel</span><span class="p">()</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="n">M</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span>
854
+ <span class="mi">1</span>
855
+ </pre></div>
856
+ </div>
857
+ </dd></dl>
858
+
859
+ <dl class="py method">
860
+ <dt class="sig sig-object py" id="spherogram.Link.knot_group">
861
+ <span class="sig-name descname"><span class="pre">knot_group</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.knot_group" title="Link to this definition"></a></dt>
862
+ <dd><p>Computes the knot group using the Wirtinger presentation.</p>
863
+ <p>Returns a finitely presented group:</p>
864
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: K = Link(&#39;3_1&#39;)
865
+ sage: G = K.knot_group()
866
+ sage: type(G)
867
+ &lt;class &#39;sage.groups.finitely_presented.FinitelyPresentedGroup_with_category&#39;&gt;
868
+ </pre></div>
869
+ </div>
870
+ </dd></dl>
871
+
872
+ <dl class="py method">
873
+ <dt class="sig sig-object py" id="spherogram.Link.linking_matrix">
874
+ <span class="sig-name descname"><span class="pre">linking_matrix</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.linking_matrix" title="Link to this definition"></a></dt>
875
+ <dd><p>Calculates the linking number for each pair of link components.</p>
876
+ <p>Returns a linking matrix, in which the (i,j)th component is the
877
+ linking number of the ith and jth link components.</p>
878
+ </dd></dl>
879
+
880
+ <dl class="py method">
881
+ <dt class="sig sig-object py" id="spherogram.Link.linking_number">
882
+ <span class="sig-name descname"><span class="pre">linking_number</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.linking_number" title="Link to this definition"></a></dt>
883
+ <dd><p>Returns the linking number of self if self has two components;
884
+ or the sum of the linking numbers of all pairs of components
885
+ in general.</p>
886
+ </dd></dl>
887
+
888
+ <dl class="py method">
889
+ <dt class="sig sig-object py" id="spherogram.Link.many_diagrams">
890
+ <span class="sig-name descname"><span class="pre">many_diagrams</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tries</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'backtrack'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.many_diagrams" title="Link to this definition"></a></dt>
891
+ <dd><p>Try to generate <code class="docutils literal notranslate"><span class="pre">target</span></code> distinct diagrams of the given link,
892
+ each of which has been simplified with <code class="docutils literal notranslate"><span class="pre">mode='global'</span></code>.</p>
893
+ <p>The two methods are:</p>
894
+ <ul class="simple">
895
+ <li><p><code class="docutils literal notranslate"><span class="pre">backtrack</span></code>: Does 100 random Reidemeister I, II, and III
896
+ moves and then simplifies.</p></li>
897
+ <li><p><code class="docutils literal notranslate"><span class="pre">exterior</span></code>: Takes the exterior of the link and then applies
898
+ SnapPy’s <code class="docutils literal notranslate"><span class="pre">exterior_to_link</span></code> to that triangulation to get a
899
+ new diagram.</p></li>
900
+ </ul>
901
+ <p>Both methods involve much randomziation, and the <code class="docutils literal notranslate"><span class="pre">tries</span></code>
902
+ argument is the maximum number of link diagrams considered in
903
+ hopes of finding <code class="docutils literal notranslate"><span class="pre">target</span></code> distinct ones.</p>
904
+ <p>The diagrams returned are moreover required to have
905
+ non-isomorphic <a class="reference internal" href="#spherogram.Link.dual_graph" title="spherogram.Link.dual_graph"><code class="xref py py-meth docutils literal notranslate"><span class="pre">dual</span> <span class="pre">graphs</span></code></a>. A copy
906
+ of the initial diagram is always included in the links
907
+ returned.</p>
908
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K8n1&#39;</span><span class="p">)</span>
909
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">many_diagrams</span><span class="p">(</span><span class="n">target</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
910
+ <span class="go">2</span>
911
+ </pre></div>
912
+ </div>
913
+ </dd></dl>
914
+
915
+ <dl class="py method">
916
+ <dt class="sig sig-object py" id="spherogram.Link.mirror">
917
+ <span class="sig-name descname"><span class="pre">mirror</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.mirror" title="Link to this definition"></a></dt>
918
+ <dd><p>Returns the mirror image of the link, preserving link orientations and
919
+ component order.</p>
920
+ </dd></dl>
921
+
922
+ <dl class="py method">
923
+ <dt class="sig sig-object py" id="spherogram.Link.morse_diagram">
924
+ <span class="sig-name descname"><span class="pre">morse_diagram</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.morse_diagram" title="Link to this definition"></a></dt>
925
+ <dd><p>Returns a MorseLinkDiagram of this link diagram, that is a choice
926
+ of height function which realizes the Morse number:</p>
927
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L8n2&#39;</span><span class="p">)</span>
928
+ <span class="n">sage</span><span class="p">:</span> <span class="n">D</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">morse_diagram</span><span class="p">()</span>
929
+ <span class="n">sage</span><span class="p">:</span> <span class="n">D</span><span class="o">.</span><span class="n">morse_number</span> <span class="o">==</span> <span class="n">L</span><span class="o">.</span><span class="n">morse_number</span><span class="p">()</span>
930
+ <span class="kc">True</span>
931
+ <span class="n">sage</span><span class="p">:</span> <span class="n">D</span><span class="o">.</span><span class="n">is_bridge</span><span class="p">()</span>
932
+ <span class="kc">True</span>
933
+ <span class="n">sage</span><span class="p">:</span> <span class="n">B</span> <span class="o">=</span> <span class="n">D</span><span class="o">.</span><span class="n">bridge</span><span class="p">()</span>
934
+ <span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">B</span><span class="o">.</span><span class="n">bohua_code</span><span class="p">())</span>
935
+ <span class="mi">64</span>
936
+ </pre></div>
937
+ </div>
938
+ </dd></dl>
939
+
940
+ <dl class="py method">
941
+ <dt class="sig sig-object py" id="spherogram.Link.morse_number">
942
+ <span class="sig-name descname"><span class="pre">morse_number</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">solver</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'GLPK'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.morse_number" title="Link to this definition"></a></dt>
943
+ <dd><p>The <em>Morse number</em> of a planar link diagram D is</p>
944
+ <blockquote>
945
+ <div><p>m(D) = min { # of maxima of h on D }</p>
946
+ </div></blockquote>
947
+ <p>where h is a height function on R^2 which is generic on D; alternatively,
948
+ this is the minimum number of cups/caps in a <a class="reference external" href="http://katlas.math.toronto.edu/wiki/MorseLink_Presentations">MorseLink presentation</a>
949
+ of the diagram D. The Morse number is very closely related to the more
950
+ traditional bridge number. Examples:</p>
951
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;5_2&#39;</span><span class="p">)</span>
952
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">morse_number</span><span class="p">()</span>
953
+ <span class="mi">2</span>
954
+ <span class="n">sage</span><span class="p">:</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;6^3_2&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">morse_number</span><span class="p">()</span>
955
+ <span class="mi">3</span>
956
+ </pre></div>
957
+ </div>
958
+ </dd></dl>
959
+
960
+ <dl class="py method">
961
+ <dt class="sig sig-object py" id="spherogram.Link.optimize_overcrossings">
962
+ <span class="sig-name descname"><span class="pre">optimize_overcrossings</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.optimize_overcrossings" title="Link to this definition"></a></dt>
963
+ <dd><p>Minimizes the number of crossings of a strand which crosses entirely
964
+ above the diagram by finding the path crossing over the diagram with
965
+ the least number of overcrossings. It begins with the longest
966
+ overcrossing, and continues with smaller ones until it successfully
967
+ reduces the number of crossings. Returns number of crossings removed.</p>
968
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
969
+ <span class="gp">... </span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
970
+ <span class="gp">... </span> <span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span>
971
+ <span class="gp">... </span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">9</span><span class="p">),</span>
972
+ <span class="gp">... </span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">7</span><span class="p">),</span>
973
+ <span class="gp">... </span> <span class="p">(</span><span class="mi">11</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
974
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">L</span><span class="p">)</span>
975
+ <span class="go">6</span>
976
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s1">&#39;level&#39;</span><span class="p">)</span>
977
+ <span class="go">False</span>
978
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">optimize_overcrossings</span><span class="p">()</span>
979
+ <span class="go">1</span>
980
+ </pre></div>
981
+ </div>
982
+ </dd></dl>
983
+
984
+ <dl class="py method">
985
+ <dt class="sig sig-object py" id="spherogram.Link.overstrands">
986
+ <span class="sig-name descname"><span class="pre">overstrands</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.overstrands" title="Link to this definition"></a></dt>
987
+ <dd><p>Returns a list of the sequences of overcrossings (which are lists of
988
+ CrossingEntryPoints), sorted in descending order of length.</p>
989
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L14n1000&#39;</span><span class="p">)</span>
990
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">overstrands</span><span class="p">()[</span><span class="mi">0</span><span class="p">])</span>
991
+ <span class="go">3</span>
992
+ </pre></div>
993
+ </div>
994
+ </dd></dl>
995
+
996
+ <dl class="py method">
997
+ <dt class="sig sig-object py" id="spherogram.Link.peer_code">
998
+ <span class="sig-name descname"><span class="pre">peer_code</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.peer_code" title="Link to this definition"></a></dt>
999
+ <dd></dd></dl>
1000
+
1001
+ <dl class="py method">
1002
+ <dt class="sig sig-object py" id="spherogram.Link.ribbon_concordant_links">
1003
+ <span class="sig-name descname"><span class="pre">ribbon_concordant_links</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_bands</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_twists</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_band_len</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paths</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'shortest'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">filter_for_plausibly_slice</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">certificates</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">print_progress</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.ribbon_concordant_links" title="Link to this definition"></a></dt>
1004
+ <dd><p>Given a link L_0, generate ribbon concordant links L_i. Here,
1005
+ each L_i is obtained from L_0 by adding bands and deleting any
1006
+ unknotted and unlinked components. The arguments include:</p>
1007
+ <ul class="simple">
1008
+ <li><p><code class="docutils literal notranslate"><span class="pre">max_bands</span></code>: The maximum number of bands to attach.</p></li>
1009
+ <li><p><code class="docutils literal notranslate"><span class="pre">max_twists</span></code> and <code class="docutils literal notranslate"><span class="pre">max_band_len</span></code> specify now complicated
1010
+ each band can be. Here the length of a band is the number
1011
+ of strands of the link it crosses plus 2.</p></li>
1012
+ <li><p><code class="docutils literal notranslate"><span class="pre">paths=='shortest'</span></code> means the band must represent a
1013
+ shortest-length path in the dual 1-skeleton to the link
1014
+ diagram. Having <code class="docutils literal notranslate"><span class="pre">paths=='simple'</span></code> allows the band to
1015
+ follow any simple path.</p></li>
1016
+ <li><p>When <code class="docutils literal notranslate"><span class="pre">filter_for_plausibly_slice</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, it only
1017
+ generates links where the linking numbers and signature
1018
+ vanish and the Alexander polynomial satisfies Fox-Milnor. It
1019
+ also stops as soon as it arrives at the unlink and uses
1020
+ <a class="reference internal" href="censuses.html#snappy.RibbonLinks" title="snappy.RibbonLinks"><code class="xref py py-class docutils literal notranslate"><span class="pre">snappy.RibbonLinks</span></code></a> to short cut to the unknot.</p></li>
1021
+ <li><p>When <code class="docutils literal notranslate"><span class="pre">certificates</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, it returns a
1022
+ dictionary whose keys are the new links. The value for each
1023
+ L_i is the sequence of bands and intermediate links which
1024
+ turn L_0 into L_1. When L_1 is the unknot, such
1025
+ certificates can be checked by using
1026
+ <code class="docutils literal notranslate"><span class="pre">spherogram.links.bands.verify_ribbon_to_unknot</span></code>.</p></li>
1027
+ </ul>
1028
+ <p>Note: For ease of identification, the unknot is returned as a string:</p>
1029
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K6a3&#39;</span><span class="p">)</span>
1030
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">ribbon_concordant_links</span><span class="p">(</span><span class="n">max_twists</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="c1">#doctest: +SNAPPY</span>
1031
+ <span class="p">[</span><span class="s1">&#39;unknot&#39;</span><span class="p">]</span>
1032
+ </pre></div>
1033
+ </div>
1034
+ <p>An example of acceleration using <a class="reference internal" href="censuses.html#snappy.RibbonLinks" title="snappy.RibbonLinks"><code class="xref py py-class docutils literal notranslate"><span class="pre">snappy.RibbonLinks</span></code></a>.
1035
+ This knot has fusion number 2, but we detect that it is ribbon
1036
+ with by adding a single band and getting a known ribbon link:</p>
1037
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;DT[papbdGaHImCEopnfklj]&#39;</span><span class="p">)</span> <span class="c1"># This is 16n61264</span>
1038
+ <span class="n">sage</span><span class="p">:</span> <span class="n">cert</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">ribbon_concordant_links</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">certificates</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="c1">#doctest: +SNAPPY</span>
1039
+ <span class="n">sage</span><span class="p">:</span> <span class="n">cert</span><span class="p">[</span><span class="s1">&#39;unknot&#39;</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="c1">#doctest: +SNAPPY</span>
1040
+ <span class="s1">&#39;ribbon_2_10_7ecd0dc0&#39;</span>
1041
+ </pre></div>
1042
+ </div>
1043
+ <p>See Section 2 of <a class="reference external" href="https://arXiv.org/abs/2512.21825">[Dunfield and Gong]</a>
1044
+ for more details.</p>
1045
+ </dd></dl>
1046
+
1047
+ <dl class="py method">
1048
+ <dt class="sig sig-object py" id="spherogram.Link.sage_link">
1049
+ <span class="sig-name descname"><span class="pre">sage_link</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.sage_link" title="Link to this definition"></a></dt>
1050
+ <dd><p>Convert to a SageMath Knot or Link:</p>
1051
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K10n11&#39;</span><span class="p">)</span> <span class="c1"># Spherogram link</span>
1052
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">sage_link</span><span class="p">();</span> <span class="n">K</span>
1053
+ <span class="n">Knot</span> <span class="n">represented</span> <span class="n">by</span> <span class="mi">10</span> <span class="n">crossings</span>
1054
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span><span class="o">/</span><span class="n">K</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span> <span class="c1"># Agree up to units</span>
1055
+ <span class="o">-</span><span class="n">t</span><span class="o">^</span><span class="mi">3</span>
1056
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">(),</span> <span class="n">K</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1057
+ <span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="o">-</span><span class="mi">4</span><span class="p">)</span>
1058
+ </pre></div>
1059
+ </div>
1060
+ <p>Can also go the other way:</p>
1061
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K11n11&#39;</span><span class="p">)</span>
1062
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">sage_link</span><span class="p">())</span>
1063
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">(),</span> <span class="n">M</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1064
+ <span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">)</span>
1065
+ </pre></div>
1066
+ </div>
1067
+ <p>Can also take a braid group perspective:</p>
1068
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">B</span> <span class="o">=</span> <span class="n">BraidGroup</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
1069
+ <span class="n">sage</span><span class="p">:</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="n">B</span><span class="o">.</span><span class="n">gens</span><span class="p">()</span>
1070
+ <span class="n">sage</span><span class="p">:</span> <span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="p">(</span><span class="n">a</span><span class="o">**-</span><span class="mi">3</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">b</span><span class="o">**</span><span class="mi">4</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">c</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">a</span> <span class="o">*</span> <span class="n">b</span> <span class="o">*</span> <span class="n">c</span> <span class="p">)</span>
1071
+ <span class="o">&lt;</span><span class="n">Link</span><span class="p">:</span> <span class="mi">2</span> <span class="n">comp</span><span class="p">;</span> <span class="mi">12</span> <span class="n">cross</span><span class="o">&gt;</span>
1072
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">a</span> <span class="o">*</span> <span class="n">b</span> <span class="o">*</span> <span class="n">c</span><span class="p">);</span> <span class="n">L</span>
1073
+ <span class="o">&lt;</span><span class="n">Link</span><span class="p">:</span> <span class="mi">1</span> <span class="n">comp</span><span class="p">;</span> <span class="mi">3</span> <span class="n">cross</span><span class="o">&gt;</span>
1074
+ <span class="n">sage</span><span class="p">:</span> <span class="n">S</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">sage_link</span><span class="p">();</span> <span class="n">S</span>
1075
+ <span class="n">Knot</span> <span class="n">represented</span> <span class="n">by</span> <span class="mi">3</span> <span class="n">crossings</span>
1076
+ <span class="n">sage</span><span class="p">:</span> <span class="n">Link</span><span class="p">(</span><span class="n">S</span><span class="p">)</span>
1077
+ <span class="o">&lt;</span><span class="n">Link</span><span class="p">:</span> <span class="mi">1</span> <span class="n">comp</span><span class="p">;</span> <span class="mi">3</span> <span class="n">cross</span><span class="o">&gt;</span>
1078
+ </pre></div>
1079
+ </div>
1080
+ </dd></dl>
1081
+
1082
+ <dl class="py method">
1083
+ <dt class="sig sig-object py" id="spherogram.Link.seifert_matrix">
1084
+ <span class="sig-name descname"><span class="pre">seifert_matrix</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.seifert_matrix" title="Link to this definition"></a></dt>
1085
+ <dd><p>Returns the Seifert matrix of the link:</p>
1086
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K10n11&#39;</span><span class="p">)</span>
1087
+ <span class="n">sage</span><span class="p">:</span> <span class="n">A</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">seifert_matrix</span><span class="p">()</span>
1088
+ <span class="n">sage</span><span class="p">:</span> <span class="n">alex</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
1089
+ <span class="n">sage</span><span class="p">:</span> <span class="n">t</span> <span class="o">=</span> <span class="n">alex</span><span class="o">.</span><span class="n">parent</span><span class="p">()</span><span class="o">.</span><span class="n">gen</span><span class="p">()</span>
1090
+ <span class="n">sage</span><span class="p">:</span> <span class="n">B</span> <span class="o">=</span> <span class="n">t</span><span class="o">*</span><span class="n">A</span> <span class="o">-</span> <span class="n">A</span><span class="o">.</span><span class="n">transpose</span><span class="p">()</span>
1091
+ <span class="n">sage</span><span class="p">:</span> <span class="n">t</span><span class="o">**</span><span class="mi">4</span> <span class="o">*</span> <span class="n">alex</span> <span class="o">==</span> <span class="o">-</span><span class="n">B</span><span class="o">.</span><span class="n">det</span><span class="p">()</span>
1092
+ <span class="kc">True</span>
1093
+ </pre></div>
1094
+ </div>
1095
+ <p>Uses the algorithm described in</p>
1096
+ <p>J. Collins, “An algorithm for computing the Seifert matrix of a link
1097
+ from a braid representation.” (2007).</p>
1098
+ <p>after first making the link isotopic to a braid closure.</p>
1099
+ </dd></dl>
1100
+
1101
+ <dl class="py method">
1102
+ <dt class="sig sig-object py" id="spherogram.Link.signature">
1103
+ <span class="sig-name descname"><span class="pre">signature</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">new_convention</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.signature" title="Link to this definition"></a></dt>
1104
+ <dd><p>Returns the signature of the link, computed from the Goeritz matrix using
1105
+ the algorithm of Gordon and Litherland:</p>
1106
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;4a1&#39;</span><span class="p">)</span>
1107
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1108
+ <span class="mi">0</span>
1109
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;9^3_12&#39;</span><span class="p">)</span>
1110
+ <span class="n">sage</span><span class="p">:</span> <span class="n">Lbar</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">mirror</span><span class="p">()</span>
1111
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span> <span class="o">+</span> <span class="n">Lbar</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1112
+ <span class="mi">0</span>
1113
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">braid_closure</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
1114
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1115
+ <span class="o">-</span><span class="mi">6</span>
1116
+ </pre></div>
1117
+ </div>
1118
+ <p>SnapPy 3.0 switched the sign convention for the signature so
1119
+ that “positive knots have negative signatures”. You can
1120
+ recover the previous default by:</p>
1121
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;3a1&#39;</span><span class="p">)</span>
1122
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">()</span>
1123
+ <span class="o">-</span><span class="mi">2</span>
1124
+ <span class="n">sage</span><span class="p">:</span> <span class="n">L</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">new_convention</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1125
+ <span class="mi">2</span>
1126
+ </pre></div>
1127
+ </div>
1128
+ </dd></dl>
1129
+
1130
+ <dl class="py method">
1131
+ <dt class="sig sig-object py" id="spherogram.Link.simplify">
1132
+ <span class="sig-name descname"><span class="pre">simplify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'basic'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">type_III_limit</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.simplify" title="Link to this definition"></a></dt>
1133
+ <dd><p>Tries to simplify the link projection. Returns whether it succeeded
1134
+ in reducing the number of crossings. Modifies the link in
1135
+ place, and unknot components which are also unlinked may be
1136
+ silently discarded. The ordering of <code class="docutils literal notranslate"><span class="pre">link_components</span></code> is not
1137
+ always preserved.</p>
1138
+ <p>The following strategies can be employed.</p>
1139
+ <ol class="arabic simple">
1140
+ <li><p>In the default <code class="docutils literal notranslate"><span class="pre">basic</span></code> mode, it does Reidemeister I and II moves
1141
+ until none are possible.</p></li>
1142
+ <li><p>In <code class="docutils literal notranslate"><span class="pre">level</span></code> mode, it does random Reidemeister III moves, reducing
1143
+ the number of crossings via type I and II moves whenever possible.
1144
+ The process stops when it has done <code class="docutils literal notranslate"><span class="pre">type_III_limit</span></code> <em>consecutive</em>
1145
+ type III moves without any simplification.</p></li>
1146
+ <li><p>In <code class="docutils literal notranslate"><span class="pre">pickup</span></code> mode, it also minimizes the number of crossings of
1147
+ strands which cross entirely above (or below) the diagram by
1148
+ finding the path crossing over the diagram with the least number of
1149
+ overcrossings (or undercrossings); this has the effect of doing
1150
+ “picking up” strands and putting them down elsewhere.</p></li>
1151
+ <li><p>Finally, the <code class="docutils literal notranslate"><span class="pre">global</span></code> mode is the combination of 2 and 3.</p></li>
1152
+ </ol>
1153
+ <p>Some examples:</p>
1154
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">13</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">11</span><span class="p">),</span> <span class="p">(</span><span class="mi">11</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">4</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">12</span><span class="p">),</span>
1155
+ <span class="gp">... </span><span class="p">(</span><span class="mi">9</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">6</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">8</span><span class="p">)])</span>
1156
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span>
1157
+ <span class="go">&lt;Link: 1 comp; 7 cross&gt;</span>
1158
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;basic&#39;</span><span class="p">)</span>
1159
+ <span class="go">True</span>
1160
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span>
1161
+ <span class="go">&lt;Link: 1 comp; 4 cross&gt;</span>
1162
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;basic&#39;</span><span class="p">)</span> <span class="c1"># Already done all it can</span>
1163
+ <span class="go">False</span>
1164
+ </pre></div>
1165
+ </div>
1166
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">5</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">14</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">),</span> <span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">11</span><span class="p">),</span>
1167
+ <span class="gp">... </span><span class="p">(</span><span class="mi">17</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">9</span><span class="p">),</span> <span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">10</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">16</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">15</span><span class="p">),</span> <span class="p">(</span><span class="mi">16</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">17</span><span class="p">,</span><span class="mi">7</span><span class="p">)])</span>
1168
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span>
1169
+ <span class="go">&lt;Link: 3 comp; 9 cross&gt;</span>
1170
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;basic&#39;</span><span class="p">)</span>
1171
+ <span class="go">False</span>
1172
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;level&#39;</span><span class="p">)</span>
1173
+ <span class="go">True</span>
1174
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="c1"># Trivial unlinked component has been discarded!</span>
1175
+ <span class="go">&lt;Link: 2 comp; 2 cross&gt;</span>
1176
+ </pre></div>
1177
+ </div>
1178
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;K14n2345&#39;</span><span class="p">)</span>
1179
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">backtrack</span><span class="p">(</span><span class="mi">30</span><span class="p">)</span>
1180
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">simplify</span><span class="p">(</span><span class="s1">&#39;global&#39;</span><span class="p">)</span>
1181
+ <span class="go">True</span>
1182
+ </pre></div>
1183
+ </div>
1184
+ </dd></dl>
1185
+
1186
+ <dl class="py method">
1187
+ <dt class="sig sig-object py" id="spherogram.Link.split_link_diagram">
1188
+ <span class="sig-name descname"><span class="pre">split_link_diagram</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">destroy_original</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.split_link_diagram" title="Link to this definition"></a></dt>
1189
+ <dd><p>Breaks the given link diagram into pieces, one for each connected
1190
+ component of the underlying 4-valent graph.</p>
1191
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">([(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">)],</span> <span class="n">check_planarity</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1192
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">split_link_diagram</span><span class="p">()</span>
1193
+ <span class="go">[&lt;Link: 1 comp; 1 cross&gt;, &lt;Link: 1 comp; 1 cross&gt;]</span>
1194
+ </pre></div>
1195
+ </div>
1196
+ </dd></dl>
1197
+
1198
+ <dl class="py method">
1199
+ <dt class="sig sig-object py" id="spherogram.Link.sublink">
1200
+ <span class="sig-name descname"><span class="pre">sublink</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">components</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.sublink" title="Link to this definition"></a></dt>
1201
+ <dd><p>Returns the sublink consisting of the specified components; see the
1202
+ example below for the various accepted forms.</p>
1203
+ <p>Warnings: Components in the sublink that are both unknotted
1204
+ and unlinked may be silently thrown away. The order of the
1205
+ components in the sublink need not correspond to their order
1206
+ in the original link.</p>
1207
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="s1">&#39;L14n64110&#39;</span><span class="p">)</span>
1208
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span>
1209
+ <span class="go">&lt;Link L14n64110: 5 comp; 14 cross&gt;</span>
1210
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">sublink</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span>
1211
+ <span class="go">&lt;Link: 4 comp; 10 cross&gt;</span>
1212
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">comps</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">link_components</span>
1213
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">sublink</span><span class="p">([</span><span class="n">comps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">comps</span><span class="p">[</span><span class="mi">1</span><span class="p">]])</span>
1214
+ <span class="go">&lt;Link: 2 comp; 2 cross&gt;</span>
1215
+ </pre></div>
1216
+ </div>
1217
+ <p>If you just want one component you can do this:</p>
1218
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">L11a127</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">17</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">13</span><span class="p">),</span> <span class="p">(</span><span class="mi">9</span><span class="p">,</span><span class="mi">17</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">16</span><span class="p">),</span> <span class="p">(</span><span class="mi">11</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span>
1219
+ <span class="gp">... </span><span class="p">(</span><span class="mi">19</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="mi">15</span><span class="p">),</span> <span class="p">(</span><span class="mi">21</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">18</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">18</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">19</span><span class="p">),</span> <span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="mi">16</span><span class="p">,</span><span class="mi">21</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">10</span><span class="p">),</span>
1220
+ <span class="gp">... </span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">7</span><span class="p">),</span> <span class="p">(</span><span class="mi">13</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">1</span><span class="p">)]</span>
1221
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span><span class="n">L11a127</span><span class="p">)</span>
1222
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">sublink</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
1223
+ <span class="go">&lt;Link: 1 comp; 7 cross&gt;</span>
1224
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">sublink</span><span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">link_components</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
1225
+ <span class="go">&lt;Link: 0 comp; 0 cross&gt;</span>
1226
+ </pre></div>
1227
+ </div>
1228
+ <p>The last answer is empty because the second component is unknotted.</p>
1229
+ </dd></dl>
1230
+
1231
+ <dl class="py method">
1232
+ <dt class="sig sig-object py" id="spherogram.Link.view">
1233
+ <span class="sig-name descname"><span class="pre">view</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">viewer</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">show_crossing_labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.view" title="Link to this definition"></a></dt>
1234
+ <dd><p>Opens a Plink link viewer window displaying the current link.
1235
+ The strands of the links are unions of edges in the standard
1236
+ integer grid, following the work of <a class="reference external" href="https://dx.doi.org/10.1137/0216030">Tamassia</a> and <a class="reference external" href="ftp://ftp.cs.brown.edu/pub/techreports/99/cs99-04.pdf">Bridgeman
1237
+ et. al.</a></p>
1238
+ </dd></dl>
1239
+
1240
+ <dl class="py method">
1241
+ <dt class="sig sig-object py" id="spherogram.Link.white_graph">
1242
+ <span class="sig-name descname"><span class="pre">white_graph</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.white_graph" title="Link to this definition"></a></dt>
1243
+ <dd><p>Return the white graph of a non-split link projection.</p>
1244
+ <p>This method generates a multigraph whose vertices correspond
1245
+ to the faces of the diagram, with an edge joining two
1246
+ vertices whenever the corresponding faces contain opposite
1247
+ corners at some crossing. To avoid hashability issues, the
1248
+ vertex corresponding to a face is the index of the face in the
1249
+ list returned by Link.faces().</p>
1250
+ <p>According to the conventions of “Gordon, C. McA. and
1251
+ Litherland, R. A, ‘On the signature of a link’, Inventiones
1252
+ math. 47, 23-69 (1978)”, in a checkerboard coloring of a link
1253
+ diagram the unbounded region is always the first white region.
1254
+ Of course, the choice of which region is unbounded is
1255
+ arbitrary; it is just a matter of which region on S^2 contains
1256
+ the point at infinity. In this method an equivalent arbitrary
1257
+ choice is made by just returning the second component of the
1258
+ multigraph, as determined by Graph.connected_components().
1259
+ (Empirically, the second component tends to be smaller than
1260
+ the first.)</p>
1261
+ <p>Note that this may produce a meaningless result in the case of
1262
+ a split link diagram. Consequently if the diagram is split,
1263
+ i.e if the multigraph has more than 2 components, a ValueError
1264
+ is raised:</p>
1265
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">=</span><span class="n">Link</span><span class="p">(</span><span class="s1">&#39;5_1&#39;</span><span class="p">)</span>
1266
+ <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">white_graph</span><span class="p">()</span>
1267
+ <span class="n">Subgraph</span> <span class="n">of</span> <span class="p">():</span> <span class="n">Multi</span><span class="o">-</span><span class="n">graph</span> <span class="n">on</span> <span class="mi">2</span> <span class="n">vertices</span>
1268
+ </pre></div>
1269
+ </div>
1270
+ <p>WARNING: While there is also a “black_graph” method, it need
1271
+ not be the case that these two graphs are complementary in the
1272
+ expected way.</p>
1273
+ </dd></dl>
1274
+
1275
+ <dl class="py method">
1276
+ <dt class="sig sig-object py" id="spherogram.Link.writhe">
1277
+ <span class="sig-name descname"><span class="pre">writhe</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.Link.writhe" title="Link to this definition"></a></dt>
1278
+ <dd><p>Finds the writhe of a knot.</p>
1279
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Link</span><span class="p">(</span> <span class="p">[(</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="p">(</span><span class="mi">6</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">)]</span> <span class="p">)</span> <span class="c1"># Figure 8 knot</span>
1280
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span><span class="o">.</span><span class="n">writhe</span><span class="p">()</span>
1281
+ <span class="go">0</span>
1282
+ </pre></div>
1283
+ </div>
1284
+ </dd></dl>
1285
+
1286
+ </dd></dl>
1287
+
1288
+ </section>
1289
+ <section id="the-closedbraid-class">
1290
+ <h2>The ClosedBraid class<a class="headerlink" href="#the-closedbraid-class" title="Link to this heading"></a></h2>
1291
+ <p>The ClosedBraid class provides an alternative way to construct links
1292
+ as closed braids. It is a subclass of Link, and currently defines
1293
+ the same methods and attributes.</p>
1294
+ <dl class="py class">
1295
+ <dt class="sig sig-object py" id="spherogram.ClosedBraid">
1296
+ <em class="property"><span class="k"><span class="pre">class</span></span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">spherogram.</span></span><span class="sig-name descname"><span class="pre">ClosedBraid</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#spherogram.ClosedBraid" title="Link to this definition"></a></dt>
1297
+ <dd><p>This is a convenience class for constructing closed braids.</p>
1298
+ <p>The constructor accepts either a single argument, which should be a list of
1299
+ integers to be passed to the Link constructor as the braid_closure
1300
+ parameter, or one or more integer arguments which will be packaged as a list
1301
+ and used as the braid_closure parameter.</p>
1302
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">B</span> <span class="o">=</span> <span class="n">ClosedBraid</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
1303
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span>
1304
+ <span class="go">ClosedBraid(1, -2, 3)</span>
1305
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span> <span class="o">=</span> <span class="n">ClosedBraid</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">]</span><span class="o">*</span><span class="mi">3</span><span class="p">)</span>
1306
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span>
1307
+ <span class="go">ClosedBraid(1, -2, 3, 1, -2, 3, 1, -2, 3)</span>
1308
+ </pre></div>
1309
+ </div>
1310
+ </dd></dl>
1311
+
1312
+ </section>
1313
+ </section>
1314
+
1315
+
1316
+ </div>
1317
+ </div>
1318
+ <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
1319
+ <a href="plink.html" class="btn btn-neutral float-left" title="Using SnapPy’s link editor" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
1320
+ <a href="snap.html" class="btn btn-neutral float-right" title="Number theory of hyperbolic 3-manifolds" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
1321
+ </div>
1322
+
1323
+ <hr/>
1324
+
1325
+ <div role="contentinfo">
1326
+ <p>&#169; Copyright 2009-2026, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
1327
+ </div>
1328
+
1329
+ Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
1330
+ <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
1331
+ provided by <a href="https://readthedocs.org">Read the Docs</a>.
1332
+
1333
+
1334
+ </footer>
1335
+ </div>
1336
+ </div>
1337
+ </section>
1338
+ </div>
1339
+ <script>
1340
+ jQuery(function () {
1341
+ SphinxRtdTheme.Navigation.enable(true);
1342
+ });
1343
+ </script>
1344
+
1345
+ </body>
1346
+ </html>