snappy 3.3__cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snappy/CyOpenGL.cpython-310-aarch64-linux-gnu.so +0 -0
- snappy/SnapPy.cpython-310-aarch64-linux-gnu.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-310-aarch64-linux-gnu.so +0 -0
- snappy/__init__.py +534 -0
- snappy/app.py +604 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +280 -0
- snappy/cusps/cusp_area_matrix.py +98 -0
- snappy/cusps/cusp_areas_from_matrix.py +96 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/short_slopes_for_cusp.py +217 -0
- snappy/cusps/test.py +22 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +717 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +52 -0
- snappy/doc/_sources/credits.rst.txt +81 -0
- snappy/doc/_sources/development.rst.txt +261 -0
- snappy/doc/_sources/index.rst.txt +215 -0
- snappy/doc/_sources/installing.rst.txt +249 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +425 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +906 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +149 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +192 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +635 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +453 -0
- snappy/doc/credits.html +184 -0
- snappy/doc/development.html +385 -0
- snappy/doc/doc-latest/additional_classes.html +1500 -0
- snappy/doc/doc-latest/bugs.html +132 -0
- snappy/doc/doc-latest/censuses.html +453 -0
- snappy/doc/doc-latest/credits.html +184 -0
- snappy/doc/doc-latest/development.html +385 -0
- snappy/doc/doc-latest/genindex.html +1349 -0
- snappy/doc/doc-latest/index.html +287 -0
- snappy/doc/doc-latest/installing.html +346 -0
- snappy/doc/doc-latest/manifold.html +3632 -0
- snappy/doc/doc-latest/manifoldhp.html +180 -0
- snappy/doc/doc-latest/news.html +438 -0
- snappy/doc/doc-latest/objects.inv +0 -0
- snappy/doc/doc-latest/other.html +160 -0
- snappy/doc/doc-latest/platonic_census.html +376 -0
- snappy/doc/doc-latest/plink.html +210 -0
- snappy/doc/doc-latest/ptolemy.html +253 -0
- snappy/doc/doc-latest/ptolemy_classes.html +1144 -0
- snappy/doc/doc-latest/ptolemy_examples1.html +409 -0
- snappy/doc/doc-latest/ptolemy_examples2.html +471 -0
- snappy/doc/doc-latest/ptolemy_examples3.html +414 -0
- snappy/doc/doc-latest/ptolemy_examples4.html +195 -0
- snappy/doc/doc-latest/ptolemy_prelim.html +248 -0
- snappy/doc/doc-latest/py-modindex.html +165 -0
- snappy/doc/doc-latest/screenshots.html +141 -0
- snappy/doc/doc-latest/search.html +135 -0
- snappy/doc/doc-latest/searchindex.js +1 -0
- snappy/doc/doc-latest/snap.html +202 -0
- snappy/doc/doc-latest/snappy.html +181 -0
- snappy/doc/doc-latest/spherogram.html +1346 -0
- snappy/doc/doc-latest/todo.html +166 -0
- snappy/doc/doc-latest/triangulation.html +1676 -0
- snappy/doc/doc-latest/tutorial.html +159 -0
- snappy/doc/doc-latest/verify.html +330 -0
- snappy/doc/doc-latest/verify_internals.html +1235 -0
- snappy/doc/genindex.html +1349 -0
- snappy/doc/index.html +287 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3632 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +438 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +160 -0
- snappy/doc/platonic_census.html +376 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +253 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1346 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1676 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +132 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +198 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +130 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +691 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +480 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +41 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +294 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +156 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +35 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_representatives.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +106 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +128 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +259 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +389 -0
- snappy/len_spec/__init__.py +609 -0
- snappy/len_spec/geodesic_info.py +129 -0
- snappy/len_spec/geodesic_key_info_dict.py +116 -0
- snappy/len_spec/geodesic_piece.py +146 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +136 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +185 -0
- snappy/len_spec/spine.py +128 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +276 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/margulis/__init__.py +332 -0
- snappy/margulis/cusp_neighborhood_neighborhood.py +66 -0
- snappy/margulis/geodesic_neighborhood.py +152 -0
- snappy/margulis/margulis_info.py +21 -0
- snappy/margulis/mu_from_neighborhood_pair.py +175 -0
- snappy/margulis/neighborhood.py +29 -0
- snappy/margulis/test.py +22 -0
- snappy/math_basics.py +187 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +856 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +995 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +124 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +119 -0
- snappy/settings.py +407 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +117 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fox_milnor.py +271 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +716 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL/__init__.py +194 -0
- snappy/snap/slice_obs_HKL/basics.py +236 -0
- snappy/snap/slice_obs_HKL/direct.py +217 -0
- snappy/snap/slice_obs_HKL/poly_norm.py +212 -0
- snappy/snap/slice_obs_HKL/rep_theory.py +424 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +139 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +213 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/quotient_dict.py +70 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +224 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-310-aarch64-linux-gnu.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +29 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +72 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.3.dist-info/METADATA +58 -0
- snappy-3.3.dist-info/RECORD +541 -0
- snappy-3.3.dist-info/WHEEL +6 -0
- snappy-3.3.dist-info/entry_points.txt +2 -0
- snappy-3.3.dist-info/top_level.txt +28 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
Search.setIndex({"alltitles":{"A comparison of m003 and m004":[[16,"a-comparison-of-m003-and-m004"]],"A non-hyperbolic example":[[16,"a-non-hyperbolic-example"]],"A short cut for a PSL(N, C) Ptolemy variety":[[15,"a-short-cut-for-a-psl-n-c-ptolemy-variety"]],"AbelianGroup":[[0,"abeliangroup"]],"Additional Classes":[[0,null]],"Boundary-unipotent":[[19,"boundary-unipotent"]],"Census manifolds":[[2,null]],"Censuses of Platonic manifolds":[[11,null]],"Citing SnapPy":[[3,"citing-snappy"]],"Classes":[[14,null]],"Compute the matrices for a representation":[[15,"compute-the-matrices-for-a-representation"]],"Compute the trace field for a PSL(2, C)-representation":[[15,"compute-the-trace-field-for-a-psl-2-c-representation"]],"Compute the traces":[[15,"compute-the-traces"]],"Compute the volume":[[15,"compute-the-volume"]],"Computing cross ratios from Ptolemy coordinates":[[16,"computing-cross-ratios-from-ptolemy-coordinates"]],"Computing numerical solutions directly":[[16,"computing-numerical-solutions-directly"]],"Computing solutions with magma or sage vs retrieving solutions":[[17,"computing-solutions-with-magma-or-sage-vs-retrieving-solutions"]],"Computing the complex volume":[[17,"computing-the-complex-volume"]],"Computing the images of the peripheral curves for a representation":[[17,"computing-the-images-of-the-peripheral-curves-for-a-representation"]],"Computing the matrices for a different presentation":[[17,"computing-the-matrices-for-a-different-presentation"]],"Conda":[[6,"conda"]],"Converting exact solutions into numerical solutions":[[16,"converting-exact-solutions-into-numerical-solutions"]],"Credits":[[3,null],[5,"credits"]],"CrossRatios":[[14,"crossratios"]],"CuspNeighborhood":[[0,"cuspneighborhood"]],"Development Basics":[[4,null]],"DirichletDomain":[[0,"dirichletdomain"]],"Documentation":[[5,"documentation"],[13,"documentation"]],"Drawing Basics":[[12,"drawing-basics"]],"Exact computations for cusp cross sections":[[28,"module-snappy.verify.square_extensions"]],"Exceptions":[[28,"module-snappy.verify.exceptions"]],"FAQ":[[8,"faq"]],"Finding a witness point for a positively dimensional component of the Ptolemy variety":[[17,"finding-a-witness-point-for-a-positively-dimensional-component-of-the-ptolemy-variety"]],"Finding non-zero dimensional families of boundary-unipotent representations":[[17,"finding-non-zero-dimensional-families-of-boundary-unipotent-representations"]],"Flattening nested structures":[[16,"flattening-nested-structures"]],"Flattenings":[[14,"flattenings"]],"FundamentalGroup":[[0,"fundamentalgroup"]],"Future work":[[19,"future-work"]],"Generating certified shape intervals":[[28,"generating-certified-shape-intervals"]],"Generically decorated representations":[[19,"generically-decorated-representations"]],"Increase precision":[[15,"increase-precision"]],"Installing SnapPy":[[6,null]],"Internals of verified computations":[[28,null]],"Introduction":[[27,"introduction"]],"Kitchen sink":[[6,"kitchen-sink"]],"Lack of tab-autocompletion for nested structures":[[16,"lack-of-tab-autocompletion-for-nested-structures"]],"Links: planar diagrams and invariants":[[23,null]],"Linux":[[4,"linux"]],"Linux (Ubuntu 13.10)":[[20,"linux-ubuntu-13-10"]],"Linux app":[[6,"linux-app"]],"Mac OS X":[[20,"mac-os-x"]],"Manifold: the main class":[[7,null]],"ManifoldHP: High-precision variant":[[8,null]],"Mathematical preliminaries":[[19,null]],"Miscellaneous Features":[[12,"miscellaneous-features"]],"Naming":[[28,"naming"]],"News":[[5,"news"],[9,null]],"NonZeroDimensionalComponent":[[14,"nonzerodimensionalcomponent"]],"Number theory of hyperbolic 3-manifolds":[[21,null]],"Obstruction class":[[19,"obstruction-class"]],"Other components":[[10,null]],"Other functions":[[14,"other-functions"]],"Overview":[[27,"overview"]],"Ptolemy module":[[10,"ptolemy-module"]],"Ptolemy varieties for PSL(N, C)-representations":[[15,"ptolemy-varieties-for-psl-n-c-representations"]],"PtolemyCoordinates":[[14,"ptolemycoordinates"]],"PtolemyVariety":[[14,"ptolemyvariety"]],"Python Modules for Linux":[[6,"python-modules-for-linux"]],"Python Modules for macOS or Windows":[[6,"python-modules-for-macos-or-windows"]],"Random Links":[[23,"random-links"]],"Rational Univariate Representation":[[18,"rational-univariate-representation"]],"Reduced Ptolemy variety":[[19,"reduced-ptolemy-variety"]],"References":[[19,"references"]],"Reporting bugs and other problems":[[1,null]],"Representations that are the same as PSL(2, C)-representations":[[17,"representations-that-are-the-same-as-psl-2-c-representations"]],"Retrieving exact solutions from the database":[[15,"retrieving-exact-solutions-from-the-database"]],"SL(N, C) vs PSL(N, C)":[[19,"sl-n-c-vs-psl-n-c"]],"SageMath":[[6,"sagemath"]],"Screenshots: SnapPy in action":[[20,null]],"SnapPy":[[5,null]],"Source code":[[6,"source-code"]],"Step-by-step examples: Part 1":[[15,null]],"Step-by-step examples: Part 2":[[16,null]],"Step-by-step examples: Part 3":[[17,null]],"Step-by-step examples: Part 4":[[18,null]],"Submitting patches":[[4,"submitting-patches"]],"SymmetryGroup":[[0,"symmetrygroup"]],"TODO":[[18,"todo"]],"The ClosedBraid class":[[23,"the-closedbraid-class"]],"The Link class":[[23,"the-link-class"]],"The Ptolemy list type":[[16,"the-ptolemy-list-type"]],"The Ptolemy variety for SL(N, C)":[[15,"the-ptolemy-variety-for-sl-n-c"]],"The dimension of a component":[[16,"the-dimension-of-a-component"]],"The ptolemy module":[[13,null]],"The snappy module and its classes":[[22,null]],"The structure of an exact solution":[[18,"the-structure-of-an-exact-solution"]],"To Do List":[[24,null]],"Triangulation":[[25,null]],"Tutorial":[[23,"tutorial"],[26,null]],"Twister":[[10,"twister"]],"Using SnapPy\u2019s link editor":[[12,null]],"Using auto-completion":[[15,"using-auto-completion"]],"Using the Ptolemy list type recursively":[[16,"using-the-ptolemy-list-type-recursively"]],"Verification of hyperbolicity":[[28,"verification-of-hyperbolicity"]],"Verified canonical cell decompositions":[[28,"verified-canonical-cell-decompositions"]],"Verified computation topics":[[27,"verified-computation-topics"]],"Verified computations":[[27,null]],"What is SnapPy?":[[5,"what-is-snappy"]],"What is the ptolemy module?":[[13,"what-is-the-ptolemy-module"]],"Windows":[[4,"windows"],[6,"windows"]],"Windows 7":[[20,"windows-7"]],"Working with exact vs numerical solutions":[[16,"working-with-exact-vs-numerical-solutions"]],"macOS":[[4,"macos"],[6,"macos"]]},"docnames":["additional_classes","bugs","censuses","credits","development","index","installing","manifold","manifoldhp","news","other","platonic_census","plink","ptolemy","ptolemy_classes","ptolemy_examples1","ptolemy_examples2","ptolemy_examples3","ptolemy_examples4","ptolemy_prelim","screenshots","snap","snappy","spherogram","todo","triangulation","tutorial","verify","verify_internals"],"envversion":{"sphinx":65,"sphinx.domains.c":3,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":9,"sphinx.domains.index":1,"sphinx.domains.javascript":3,"sphinx.domains.math":2,"sphinx.domains.python":4,"sphinx.domains.rst":2,"sphinx.domains.std":2},"filenames":["additional_classes.rst","bugs.rst","censuses.rst","credits.rst","development.rst","index.rst","installing.rst","manifold.rst","manifoldhp.rst","news.rst","other.rst","platonic_census.rst","plink.rst","ptolemy.rst","ptolemy_classes.rst","ptolemy_examples1.rst","ptolemy_examples2.rst","ptolemy_examples3.rst","ptolemy_examples4.rst","ptolemy_prelim.rst","screenshots.rst","snap.rst","snappy.rst","spherogram.rst","todo.rst","triangulation.rst","tutorial.rst","verify.rst","verify_internals.rst"],"indexentries":{"abelian_description() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.abelian_description",false]],"abeliangroup (class in snappy)":[[0,"snappy.AbelianGroup",false]],"abelianization() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.abelianization",false]],"add_band() (spherogram.link method)":[[23,"spherogram.Link.add_band",false]],"alexander_matrix() (spherogram.link method)":[[23,"spherogram.Link.alexander_matrix",false]],"alexander_poly() (spherogram.link method)":[[23,"spherogram.Link.alexander_poly",false]],"alexander_polynomial() (snappy.manifold method)":[[7,"snappy.Manifold.alexander_polynomial",false]],"alexander_polynomial() (snappy.triangulation method)":[[25,"snappy.Triangulation.alexander_polynomial",false]],"alexander_polynomial() (spherogram.link method)":[[23,"spherogram.Link.alexander_polynomial",false]],"all_crossings_oriented() (spherogram.link method)":[[23,"spherogram.Link.all_crossings_oriented",false]],"all_translations() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.all_translations",false]],"alternating() (spherogram.link method)":[[23,"spherogram.Link.alternating",false]],"alternatingknotexteriors (class in snappy)":[[2,"snappy.AlternatingKnotExteriors",false]],"backtrack() (spherogram.link method)":[[23,"spherogram.Link.backtrack",false]],"betti_number() (snappy.abeliangroup method)":[[0,"snappy.AbelianGroup.betti_number",false]],"black_graph() (spherogram.link method)":[[23,"spherogram.Link.black_graph",false]],"braid_word() (spherogram.link method)":[[23,"spherogram.Link.braid_word",false]],"bridge_upper_bound() (spherogram.link method)":[[23,"spherogram.Link.bridge_upper_bound",false]],"browse() (snappy.manifold method)":[[7,"snappy.Manifold.browse",false]],"canonical_retriangulation() (snappy.manifold method)":[[7,"snappy.Manifold.canonical_retriangulation",false]],"canonize() (snappy.manifold method)":[[7,"snappy.Manifold.canonize",false]],"category() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.category",false]],"censusknots (in module snappy)":[[2,"snappy.CensusKnots",false]],"center() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.center",false]],"certified_newton_iteration() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.certified_newton_iteration",false]],"certifiedshapesengine (in module snappy.verify)":[[28,"snappy.verify.CertifiedShapesEngine",false]],"character_variety_vars_and_polys() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.character_variety_vars_and_polys",false]],"check_against_manifold() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.check_against_manifold",false]],"check_against_manifold() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.check_against_manifold",false]],"check_against_manifold() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.check_against_manifold",false]],"check_index() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.check_index",false]],"check_logarithmic_gluing_equations_and_positively_oriented_tets() (in module snappy.verify.hyperbolicity)":[[28,"snappy.verify.hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets",false]],"chern_simons() (snappy.manifold method)":[[7,"snappy.Manifold.chern_simons",false]],"closedbraid (class in spherogram)":[[23,"spherogram.ClosedBraid",false]],"commutator_subgroup() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.commutator_subgroup",false]],"complex_length() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.complex_length",false]],"complex_volume() (snappy.manifold method)":[[7,"snappy.Manifold.complex_volume",false]],"complex_volume() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.complex_volume",false]],"complex_volume_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.complex_volume_numerical",false]],"complexsqrtlincombination (class in snappy.verify.square_extensions)":[[28,"snappy.verify.square_extensions.ComplexSqrtLinCombination",false]],"compute_decomposition() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_decomposition",false]],"compute_solutions() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_solutions",false]],"connected_sum() (spherogram.link method)":[[23,"spherogram.Link.connected_sum",false]],"copy() (snappy.manifold method)":[[7,"snappy.Manifold.copy",false]],"copy() (snappy.triangulation method)":[[25,"snappy.Triangulation.copy",false]],"copy() (spherogram.link method)":[[23,"spherogram.Link.copy",false]],"cover() (snappy.manifold method)":[[7,"snappy.Manifold.cover",false]],"cover() (snappy.triangulation method)":[[25,"snappy.Triangulation.cover",false]],"cover_info() (snappy.manifold method)":[[7,"snappy.Manifold.cover_info",false]],"cover_info() (snappy.triangulation method)":[[25,"snappy.Triangulation.cover_info",false]],"covers() (snappy.manifold method)":[[7,"snappy.Manifold.covers",false]],"covers() (snappy.triangulation method)":[[25,"snappy.Triangulation.covers",false]],"cross_ratios() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios",false]],"cross_ratios_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios_numerical",false]],"crossing_entries() (spherogram.link method)":[[23,"spherogram.Link.crossing_entries",false]],"crossing_strands() (spherogram.link method)":[[23,"spherogram.Link.crossing_strands",false]],"crossratios (class in snappy.ptolemy.coordinates)":[[14,"snappy.ptolemy.coordinates.CrossRatios",false]],"cubicalnonorientableclosedcensus (in module snappy)":[[11,"snappy.CubicalNonorientableClosedCensus",false]],"cubicalnonorientablecuspedcensus (in module snappy)":[[11,"snappy.CubicalNonorientableCuspedCensus",false]],"cubicalorientableclosedcensus (in module snappy)":[[11,"snappy.CubicalOrientableClosedCensus",false]],"cubicalorientablecuspedcensus (in module snappy)":[[11,"snappy.CubicalOrientableCuspedCensus",false]],"cusp_area_matrix() (snappy.manifold method)":[[7,"snappy.Manifold.cusp_area_matrix",false]],"cusp_areas() (snappy.manifold method)":[[7,"snappy.Manifold.cusp_areas",false]],"cusp_info() (snappy.manifold method)":[[7,"snappy.Manifold.cusp_info",false]],"cusp_info() (snappy.triangulation method)":[[25,"snappy.Triangulation.cusp_info",false]],"cusp_neighborhood() (snappy.manifold method)":[[7,"snappy.Manifold.cusp_neighborhood",false]],"cusp_translations() (snappy.manifold method)":[[7,"snappy.Manifold.cusp_translations",false]],"cuspconsistencytype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.CuspConsistencyType",false]],"cuspequationexactverifyerror":[[28,"snappy.verify.exceptions.CuspEquationExactVerifyError",false]],"cuspequationlogliftnumericalverifyerror":[[28,"snappy.verify.exceptions.CuspEquationLogLiftNumericalVerifyError",false]],"cuspequationtype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.CuspEquationType",false]],"cuspneighborhood (class in snappy)":[[0,"snappy.CuspNeighborhood",false]],"deconnect_sum() (spherogram.link method)":[[23,"spherogram.Link.deconnect_sum",false]],"degree_to_shapes() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.degree_to_shapes",false]],"dehn_fill() (snappy.manifold method)":[[7,"snappy.Manifold.dehn_fill",false]],"dehn_fill() (snappy.triangulation method)":[[25,"snappy.Triangulation.dehn_fill",false]],"determinant() (spherogram.link method)":[[23,"spherogram.Link.determinant",false]],"diamond_coordinate() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.diamond_coordinate",false]],"digraph() (spherogram.link method)":[[23,"spherogram.Link.digraph",false]],"direct_product_description() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.direct_product_description",false]],"dirichlet_domain() (snappy.manifold method)":[[7,"snappy.Manifold.dirichlet_domain",false]],"dirichletdomain (class in snappy)":[[0,"snappy.DirichletDomain",false]],"dodecahedralnonorientableclosedcensus (in module snappy)":[[11,"snappy.DodecahedralNonorientableClosedCensus",false]],"dodecahedralnonorientablecuspedcensus (in module snappy)":[[11,"snappy.DodecahedralNonorientableCuspedCensus",false]],"dodecahedralorientableclosedcensus (in module snappy)":[[11,"snappy.DodecahedralOrientableClosedCensus",false]],"dodecahedralorientablecuspedcensus (in module snappy)":[[11,"snappy.DodecahedralOrientableCuspedCensus",false]],"drill() (snappy.manifold method)":[[7,"snappy.Manifold.drill",false]],"drill_word() (snappy.manifold method)":[[7,"snappy.Manifold.drill_word",false]],"drill_words() (snappy.manifold method)":[[7,"snappy.Manifold.drill_words",false]],"dt_code() (snappy.manifold method)":[[7,"snappy.Manifold.DT_code",false]],"dt_code() (snappy.triangulation method)":[[25,"snappy.Triangulation.DT_code",false]],"dt_code() (spherogram.link method)":[[23,"spherogram.Link.DT_code",false]],"dual_curves() (snappy.manifold method)":[[7,"snappy.Manifold.dual_curves",false]],"dual_graph() (spherogram.link method)":[[23,"spherogram.Link.dual_graph",false]],"dump() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.dump",false]],"dumps() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.dumps",false]],"edge_list() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.edge_list",false]],"edge_valences() (snappy.manifold method)":[[7,"snappy.Manifold.edge_valences",false]],"edge_valences() (snappy.triangulation method)":[[25,"snappy.Triangulation.edge_valences",false]],"edgeequationexactverifyerror":[[28,"snappy.verify.exceptions.EdgeEquationExactVerifyError",false]],"edgeequationlogliftnumericalverifyerror":[[28,"snappy.verify.exceptions.EdgeEquationLogLiftNumericalVerifyError",false]],"edgeequationtype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.EdgeEquationType",false]],"elementary_divisors() (snappy.abeliangroup method)":[[0,"snappy.AbelianGroup.elementary_divisors",false]],"equationtype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.EquationType",false]],"evaluate_word() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.evaluate_word",false]],"evaluate_word() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.evaluate_word",false]],"exactly_checked_canonical_retriangulation() (in module snappy.verify.canonical)":[[28,"snappy.verify.canonical.exactly_checked_canonical_retriangulation",false]],"exactverifyerror":[[28,"snappy.verify.exceptions.ExactVerifyError",false]],"expand_until_certified() (snappy.verify.intervalnewtonshapesengine method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.expand_until_certified",false]],"expand_until_certified() (snappy.verify.krawczykshapesengine method)":[[28,"snappy.verify.KrawczykShapesEngine.expand_until_certified",false]],"export_stl() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.export_stl",false]],"exterior() (spherogram.link method)":[[23,"spherogram.Link.exterior",false]],"exterior_to_link() (snappy.manifold method)":[[7,"snappy.Manifold.exterior_to_link",false]],"exterior_to_link() (snappy.triangulation method)":[[25,"snappy.Triangulation.exterior_to_link",false]],"face_list() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.face_list",false]],"faces() (spherogram.link method)":[[23,"spherogram.Link.faces",false]],"filename_base() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.filename_base",false]],"filled_triangulation() (snappy.manifold method)":[[7,"snappy.Manifold.filled_triangulation",false]],"filled_triangulation() (snappy.triangulation method)":[[25,"snappy.Triangulation.filled_triangulation",false]],"find() (snappy.database.manifoldtable method)":[[2,"snappy.database.ManifoldTable.find",false]],"find_shapes_as_complex_sqrt_lin_combinations() (in module snappy.verify.square_extensions)":[[28,"snappy.verify.square_extensions.find_shapes_as_complex_sqrt_lin_combinations",false]],"flattenings (class in snappy.ptolemy.coordinates)":[[14,"snappy.ptolemy.coordinates.Flattenings",false]],"flattenings_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.flattenings_numerical",false]],"ford_domain() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.Ford_domain",false]],"fox_milnor_test() (snappy.manifold method)":[[7,"snappy.Manifold.fox_milnor_test",false]],"fox_milnor_test() (snappy.triangulation method)":[[25,"snappy.Triangulation.fox_milnor_test",false]],"from_snappy_manifold() (snappy.ptolemy.coordinates.crossratios static method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.from_snappy_manifold",false]],"from_tetrahedra_shapes_of_manifold() (snappy.ptolemy.coordinates.flattenings class method)":[[14,"snappy.ptolemy.coordinates.Flattenings.from_tetrahedra_shapes_of_manifold",false]],"fundamental_group() (snappy.manifold method)":[[7,"snappy.Manifold.fundamental_group",false]],"fundamental_group() (snappy.triangulation method)":[[25,"snappy.Triangulation.fundamental_group",false]],"gap_string() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.gap_string",false]],"generators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.generators",false]],"generators_in_originals() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.generators_in_originals",false]],"get_custom_name() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.get_custom_name",false]],"get_displacement() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.get_displacement",false]],"get_manifold() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.get_manifold",false]],"get_manifold() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.get_manifold",false]],"get_manifold() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.get_manifold",false]],"get_order() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.get_order",false]],"get_tie() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.get_tie",false]],"get_zpq_triple() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.get_zpq_triple",false]],"gluing_equations() (snappy.manifold method)":[[7,"snappy.Manifold.gluing_equations",false]],"gluing_equations() (snappy.triangulation method)":[[25,"snappy.Triangulation.gluing_equations",false]],"gluing_equations_pgl() (snappy.manifold method)":[[7,"snappy.Manifold.gluing_equations_pgl",false]],"gluing_equations_pgl() (snappy.triangulation method)":[[25,"snappy.Triangulation.gluing_equations_pgl",false]],"goeritz_matrix() (spherogram.link method)":[[23,"spherogram.Link.goeritz_matrix",false]],"has_finite_vertices() (snappy.manifold method)":[[7,"snappy.Manifold.has_finite_vertices",false]],"has_finite_vertices() (snappy.triangulation method)":[[25,"snappy.Triangulation.has_finite_vertices",false]],"has_obstruction() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.has_obstruction",false]],"high_precision() (snappy.manifold method)":[[7,"snappy.Manifold.high_precision",false]],"holonomy_matrix_entries() (snappy.manifold method)":[[7,"snappy.Manifold.holonomy_matrix_entries",false]],"holonomygroup (class in snappy)":[[0,"snappy.HolonomyGroup",false]],"homological_longitude() (snappy.manifold method)":[[7,"snappy.Manifold.homological_longitude",false]],"homological_longitude() (snappy.triangulation method)":[[25,"snappy.Triangulation.homological_longitude",false]],"homology() (snappy.manifold method)":[[7,"snappy.Manifold.homology",false]],"homology() (snappy.triangulation method)":[[25,"snappy.Triangulation.homology",false]],"horoballs() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.horoballs",false]],"htlinkexteriors (in module snappy)":[[2,"snappy.HTLinkExteriors",false]],"hyperbolic_adjoint_torsion() (snappy.manifold method)":[[7,"snappy.Manifold.hyperbolic_adjoint_torsion",false]],"hyperbolic_sln_torsion() (snappy.manifold method)":[[7,"snappy.Manifold.hyperbolic_SLN_torsion",false]],"hyperbolic_torsion() (snappy.manifold method)":[[7,"snappy.Manifold.hyperbolic_torsion",false]],"icosahedralnonorientableclosedcensus (in module snappy)":[[11,"snappy.IcosahedralNonorientableClosedCensus",false]],"icosahedralorientableclosedcensus (in module snappy)":[[11,"snappy.IcosahedralOrientableClosedCensus",false]],"identify() (snappy.database.manifoldtable method)":[[2,"snappy.database.ManifoldTable.identify",false]],"identify() (snappy.manifold method)":[[7,"snappy.Manifold.identify",false]],"imag() (snappy.verify.square_extensions.complexsqrtlincombination method)":[[28,"snappy.verify.square_extensions.ComplexSqrtLinCombination.imag",false]],"in_radius() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.in_radius",false]],"induced_representation() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.induced_representation",false]],"inequalitynumericalverifyerror":[[28,"snappy.verify.exceptions.InequalityNumericalVerifyError",false]],"inside_view() (snappy.manifold method)":[[7,"snappy.Manifold.inside_view",false]],"interval_checked_canonical_triangulation() (in module snappy.verify.canonical)":[[28,"snappy.verify.canonical.interval_checked_canonical_triangulation",false]],"interval_vector_is_contained_in() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.interval_vector_is_contained_in",false]],"interval_vector_is_contained_in() (snappy.verify.krawczykshapesengine static method)":[[28,"snappy.verify.KrawczykShapesEngine.interval_vector_is_contained_in",false]],"interval_vector_mid_points() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.interval_vector_mid_points",false]],"interval_vector_mid_points() (snappy.verify.krawczykshapesengine static method)":[[28,"snappy.verify.KrawczykShapesEngine.interval_vector_mid_points",false]],"interval_vector_union() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.interval_vector_union",false]],"interval_vector_union() (snappy.verify.krawczykshapesengine static method)":[[28,"snappy.verify.KrawczykShapesEngine.interval_vector_union",false]],"intervalnewtonshapesengine (class in snappy.verify)":[[28,"snappy.verify.IntervalNewtonShapesEngine",false]],"invariant_trace_field_gens() (snappy.manifold method)":[[7,"snappy.Manifold.invariant_trace_field_gens",false]],"is_abelian() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_abelian",false]],"is_alternating() (spherogram.link method)":[[23,"spherogram.Link.is_alternating",false]],"is_amphicheiral() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_amphicheiral",false]],"is_dihedral() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_dihedral",false]],"is_direct_product() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_direct_product",false]],"is_full_group() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_full_group",false]],"is_geometric() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.is_geometric",false]],"is_geometric() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.is_geometric",false]],"is_induced_from_psl2() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.is_induced_from_psl2",false]],"is_invertible_knot() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_invertible_knot",false]],"is_isometric_to() (snappy.manifold method)":[[7,"snappy.Manifold.is_isometric_to",false]],"is_orientable() (snappy.manifold method)":[[7,"snappy.Manifold.is_orientable",false]],"is_orientable() (snappy.triangulation method)":[[25,"snappy.Triangulation.is_orientable",false]],"is_planar() (spherogram.link method)":[[23,"spherogram.Link.is_planar",false]],"is_polyhedral() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_polyhedral",false]],"is_pu_2_1_representation() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.is_pu_2_1_representation",false]],"is_real() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.is_real",false]],"is_s5() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.is_S5",false]],"is_two_bridge() (snappy.manifold method)":[[7,"snappy.Manifold.is_two_bridge",false]],"isometries() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.isometries",false]],"isometry_signature() (snappy.manifold method)":[[7,"snappy.Manifold.isometry_signature",false]],"isomorphisms_to() (snappy.manifold method)":[[7,"snappy.Manifold.isomorphisms_to",false]],"isomorphisms_to() (snappy.triangulation method)":[[25,"snappy.Triangulation.isomorphisms_to",false]],"iszeroexactverifyerror":[[28,"snappy.verify.exceptions.IsZeroExactVerifyError",false]],"jones_polynomial() (spherogram.link method)":[[23,"spherogram.Link.jones_polynomial",false]],"keys() (snappy.database.manifoldtable method)":[[2,"snappy.database.ManifoldTable.keys",false]],"klpprojection() (spherogram.link method)":[[23,"spherogram.Link.KLPProjection",false]],"knot_floer_homology() (spherogram.link method)":[[23,"spherogram.Link.knot_floer_homology",false]],"knot_group() (spherogram.link method)":[[23,"spherogram.Link.knot_group",false]],"krawczyk_interval() (snappy.verify.krawczykshapesengine method)":[[28,"snappy.verify.KrawczykShapesEngine.krawczyk_interval",false]],"krawczykshapesengine (class in snappy.verify)":[[28,"snappy.verify.KrawczykShapesEngine",false]],"length_spectrum() (snappy.manifold method)":[[7,"snappy.Manifold.length_spectrum",false]],"length_spectrum_alt() (snappy.manifold method)":[[7,"snappy.Manifold.length_spectrum_alt",false]],"length_spectrum_alt_gen() (snappy.manifold method)":[[7,"snappy.Manifold.length_spectrum_alt_gen",false]],"length_spectrum_dicts() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.length_spectrum_dicts",false]],"link (class in spherogram)":[[23,"spherogram.Link",false]],"link() (snappy.manifold method)":[[7,"snappy.Manifold.link",false]],"link() (snappy.triangulation method)":[[25,"snappy.Triangulation.link",false]],"linkexteriors (in module snappy)":[[2,"snappy.LinkExteriors",false]],"linking_matrix() (spherogram.link method)":[[23,"spherogram.Link.linking_matrix",false]],"linking_number() (spherogram.link method)":[[23,"spherogram.Link.linking_number",false]],"log_gluing_lhs_derivatives() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHS_derivatives",false]],"log_gluing_lhs_derivatives() (snappy.verify.krawczykshapesengine method)":[[28,"snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives",false]],"log_gluing_lhs_derivatives_sparse() (snappy.verify.krawczykshapesengine method)":[[28,"snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives_sparse",false]],"log_gluing_lhss() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHSs",false]],"log_gluing_lhss() (snappy.verify.krawczykshapesengine method)":[[28,"snappy.verify.KrawczykShapesEngine.log_gluing_LHSs",false]],"logliftnumericalverifyerror":[[28,"snappy.verify.exceptions.LogLiftNumericalVerifyError",false]],"long_edge() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.long_edge",false]],"long_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.long_edge",false]],"longitude() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.longitude",false]],"magma_string() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.magma_string",false]],"manifold (class in snappy)":[[7,"snappy.Manifold",false]],"manifold() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.manifold",false]],"manifold() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.manifold",false]],"manifoldtable (class in snappy.database)":[[2,"snappy.database.ManifoldTable",false]],"many_diagrams() (spherogram.link method)":[[23,"spherogram.Link.many_diagrams",false]],"margulis() (snappy.manifold method)":[[7,"snappy.Manifold.margulis",false]],"matrix_times_sparse() (snappy.verify.krawczykshapesengine static method)":[[28,"snappy.verify.KrawczykShapesEngine.matrix_times_sparse",false]],"max_reach() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.max_reach",false]],"meridian() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.meridian",false]],"middle_edge() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.middle_edge",false]],"middle_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.middle_edge",false]],"mirror() (spherogram.link method)":[[23,"spherogram.Link.mirror",false]],"module":[[0,"module-snappy",false],[13,"module-snappy.ptolemy",false],[21,"module-snappy.snap",false],[23,"module-spherogram",false],[28,"module-snappy.verify",false],[28,"module-snappy.verify.exceptions",false],[28,"module-snappy.verify.square_extensions",false]],"morse_diagram() (spherogram.link method)":[[23,"spherogram.Link.morse_diagram",false]],"morse_number() (spherogram.link method)":[[23,"spherogram.Link.morse_number",false]],"multiply_and_simplify_terms_in_rur() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.multiply_and_simplify_terms_in_RUR",false]],"multiply_and_simplify_terms_in_rur() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_and_simplify_terms_in_RUR",false]],"multiply_elements() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.multiply_elements",false]],"multiply_terms_in_rur() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.multiply_terms_in_RUR",false]],"multiply_terms_in_rur() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_terms_in_RUR",false]],"n() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.N",false]],"n() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.N",false]],"n() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.N",false]],"name() (snappy.manifold method)":[[7,"snappy.Manifold.name",false]],"name() (snappy.triangulation method)":[[25,"snappy.Triangulation.name",false]],"newton_iteration() (snappy.verify.intervalnewtonshapesengine static method)":[[28,"snappy.verify.IntervalNewtonShapesEngine.newton_iteration",false]],"nonalternatingknotexteriors (class in snappy)":[[2,"snappy.NonalternatingKnotExteriors",false]],"nonorientableclosedcensus (in module snappy)":[[2,"snappy.NonorientableClosedCensus",false]],"nonorientablecuspedcensus (in module snappy)":[[2,"snappy.NonorientableCuspedCensus",false]],"nonzerodimensionalcomponent (class in snappy.ptolemy.component)":[[14,"snappy.ptolemy.component.NonZeroDimensionalComponent",false]],"normal_boundary_slopes() (snappy.manifold method)":[[7,"snappy.Manifold.normal_boundary_slopes",false]],"normal_boundary_slopes() (snappy.triangulation method)":[[25,"snappy.Triangulation.normal_boundary_slopes",false]],"normal_surfaces() (snappy.manifold method)":[[7,"snappy.Manifold.normal_surfaces",false]],"normal_surfaces() (snappy.triangulation method)":[[25,"snappy.Triangulation.normal_surfaces",false]],"num_cusps() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.num_cusps",false]],"num_cusps() (snappy.manifold method)":[[7,"snappy.Manifold.num_cusps",false]],"num_cusps() (snappy.triangulation method)":[[25,"snappy.Triangulation.num_cusps",false]],"num_edges() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.num_edges",false]],"num_faces() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.num_faces",false]],"num_finite_vertices() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.num_finite_vertices",false]],"num_generators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.num_generators",false]],"num_ideal_vertices() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.num_ideal_vertices",false]],"num_original_generators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.num_original_generators",false]],"num_relators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.num_relators",false]],"num_tetrahedra() (snappy.manifold method)":[[7,"snappy.Manifold.num_tetrahedra",false]],"num_tetrahedra() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.num_tetrahedra",false]],"num_tetrahedra() (snappy.ptolemy.coordinates.flattenings method)":[[14,"snappy.ptolemy.coordinates.Flattenings.num_tetrahedra",false]],"num_tetrahedra() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.num_tetrahedra",false]],"num_tetrahedra() (snappy.triangulation method)":[[25,"snappy.Triangulation.num_tetrahedra",false]],"num_vertices() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.num_vertices",false]],"number_field() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.number_field",false]],"numerical() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.numerical",false]],"numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.numerical",false]],"numericalverifyerror":[[28,"snappy.verify.exceptions.NumericalVerifyError",false]],"o31() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.O31",false]],"octahedralnonorientablecuspedcensus (in module snappy)":[[11,"snappy.OctahedralNonorientableCuspedCensus",false]],"octahedralorientablecuspedcensus (in module snappy)":[[11,"snappy.OctahedralOrientableCuspedCensus",false]],"optimize_overcrossings() (spherogram.link method)":[[23,"spherogram.Link.optimize_overcrossings",false]],"order() (snappy.abeliangroup method)":[[0,"snappy.AbelianGroup.order",false]],"order() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.order",false]],"orientableclosedcensus (in module snappy)":[[2,"snappy.OrientableClosedCensus",false]],"orientablecuspedcensus (in module snappy)":[[2,"snappy.OrientableCuspedCensus",false]],"orientation_cover() (snappy.manifold method)":[[7,"snappy.Manifold.orientation_cover",false]],"orientation_cover() (snappy.triangulation method)":[[25,"snappy.Triangulation.orientation_cover",false]],"original_generators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.original_generators",false]],"original_index() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.original_index",false]],"out_radius() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.out_radius",false]],"overstrands() (spherogram.link method)":[[23,"spherogram.Link.overstrands",false]],"pairing_matrices() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.pairing_matrices",false]],"pairing_words() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.pairing_words",false]],"parent() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.parent",false]],"pd_code() (spherogram.link method)":[[23,"spherogram.Link.PD_code",false]],"peer_code() (spherogram.link method)":[[23,"spherogram.Link.peer_code",false]],"peripheral_curves() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.peripheral_curves",false]],"plink() (snappy.manifold method)":[[7,"snappy.Manifold.plink",false]],"plink() (snappy.triangulation method)":[[25,"snappy.Triangulation.plink",false]],"polished_holonomy() (snappy.manifold method)":[[7,"snappy.Manifold.polished_holonomy",false]],"polyhedral_description() (snappy.symmetrygroup method)":[[0,"snappy.SymmetryGroup.polyhedral_description",false]],"ptolemy_generalized_obstruction_classes() (snappy.manifold method)":[[7,"snappy.Manifold.ptolemy_generalized_obstruction_classes",false]],"ptolemy_generalized_obstruction_classes() (snappy.triangulation method)":[[25,"snappy.Triangulation.ptolemy_generalized_obstruction_classes",false]],"ptolemy_obstruction_classes() (snappy.manifold method)":[[7,"snappy.Manifold.ptolemy_obstruction_classes",false]],"ptolemy_obstruction_classes() (snappy.triangulation method)":[[25,"snappy.Triangulation.ptolemy_obstruction_classes",false]],"ptolemy_variety() (snappy.manifold method)":[[7,"snappy.Manifold.ptolemy_variety",false]],"ptolemy_variety() (snappy.triangulation method)":[[25,"snappy.Triangulation.ptolemy_variety",false]],"ptolemycoordinates (class in snappy.ptolemy.coordinates)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates",false]],"ptolemyvariety (class in snappy.ptolemy.ptolemyvariety)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety",false]],"py_eval_section() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.py_eval_section",false]],"random_link() (in module spherogram)":[[23,"spherogram.random_link",false]],"randomize() (snappy.manifold method)":[[7,"snappy.Manifold.randomize",false]],"randomize() (snappy.triangulation method)":[[25,"snappy.Triangulation.randomize",false]],"rank() (snappy.abeliangroup method)":[[0,"snappy.AbelianGroup.rank",false]],"ratio_coordinate() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.ratio_coordinate",false]],"reach() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.reach",false]],"real() (snappy.verify.square_extensions.complexsqrtlincombination method)":[[28,"snappy.verify.square_extensions.ComplexSqrtLinCombination.real",false]],"relators() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.relators",false]],"rename() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.rename",false]],"reset_name() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.reset_name",false]],"reverse_orientation() (snappy.manifold method)":[[7,"snappy.Manifold.reverse_orientation",false]],"reverse_orientation() (snappy.triangulation method)":[[25,"snappy.Triangulation.reverse_orientation",false]],"ribbon_concordant_links() (spherogram.link method)":[[23,"spherogram.Link.ribbon_concordant_links",false]],"ribbonlinks (in module snappy)":[[2,"snappy.RibbonLinks",false]],"sage() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.sage",false]],"sage_link() (spherogram.link method)":[[23,"spherogram.Link.sage_link",false]],"save() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.save",false]],"save() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.save",false]],"save() (snappy.manifold method)":[[7,"snappy.Manifold.save",false]],"save() (snappy.triangulation method)":[[25,"snappy.Triangulation.save",false]],"seifert_matrix() (spherogram.link method)":[[23,"spherogram.Link.seifert_matrix",false]],"set_displacement() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.set_displacement",false]],"set_name() (snappy.manifold method)":[[7,"snappy.Manifold.set_name",false]],"set_name() (snappy.triangulation method)":[[25,"snappy.Triangulation.set_name",false]],"set_peripheral_curves() (snappy.manifold method)":[[7,"snappy.Manifold.set_peripheral_curves",false]],"set_peripheral_curves() (snappy.triangulation method)":[[25,"snappy.Triangulation.set_peripheral_curves",false]],"set_target_holonomy() (snappy.manifold method)":[[7,"snappy.Manifold.set_target_holonomy",false]],"set_tetrahedra_shapes() (snappy.manifold method)":[[7,"snappy.Manifold.set_tetrahedra_shapes",false]],"set_tie() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.set_tie",false]],"shapepositiveimaginarypartnumericalverifyerror":[[28,"snappy.verify.exceptions.ShapePositiveImaginaryPartNumericalVerifyError",false]],"shapetype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.ShapeType",false]],"short_edge() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.short_edge",false]],"short_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.short_edge",false]],"short_slopes() (snappy.manifold method)":[[7,"snappy.Manifold.short_slopes",false]],"siblings() (snappy.database.manifoldtable method)":[[2,"snappy.database.ManifoldTable.siblings",false]],"sign() (snappy.verify.square_extensions.sqrtlincombination method)":[[28,"snappy.verify.square_extensions.SqrtLinCombination.sign",false]],"sign_with_interval() (snappy.verify.square_extensions.sqrtlincombination method)":[[28,"snappy.verify.square_extensions.SqrtLinCombination.sign_with_interval",false]],"signature() (spherogram.link method)":[[23,"spherogram.Link.signature",false]],"simplify() (snappy.manifold method)":[[7,"snappy.Manifold.simplify",false]],"simplify() (snappy.triangulation method)":[[25,"snappy.Triangulation.simplify",false]],"simplify() (spherogram.link method)":[[23,"spherogram.Link.simplify",false]],"sl2c() (snappy.holonomygroup method)":[[0,"snappy.HolonomyGroup.SL2C",false]],"slice_obstruction_hkl() (snappy.manifold method)":[[7,"snappy.Manifold.slice_obstruction_HKL",false]],"slice_obstruction_hkl() (snappy.triangulation method)":[[25,"snappy.Triangulation.slice_obstruction_HKL",false]],"snappy":[[0,"module-snappy",false]],"snappy.ptolemy":[[13,"module-snappy.ptolemy",false]],"snappy.snap":[[21,"module-snappy.snap",false]],"snappy.verify":[[28,"module-snappy.verify",false]],"snappy.verify.exceptions":[[28,"module-snappy.verify.exceptions",false]],"snappy.verify.square_extensions":[[28,"module-snappy.verify.square_extensions",false]],"solution_type() (snappy.manifold method)":[[7,"snappy.Manifold.solution_type",false]],"solutions_from_magma() (in module snappy.ptolemy)":[[14,"snappy.ptolemy.solutions_from_magma",false]],"solutions_from_magma_file() (in module snappy.ptolemy)":[[14,"snappy.ptolemy.solutions_from_magma_file",false]],"spherogram":[[23,"module-spherogram",false]],"spine_radius() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.spine_radius",false]],"split() (snappy.manifold method)":[[7,"snappy.Manifold.split",false]],"split_link_diagram() (spherogram.link method)":[[23,"spherogram.Link.split_link_diagram",false]],"splitting_surfaces() (snappy.manifold method)":[[7,"snappy.Manifold.splitting_surfaces",false]],"sqrtlincombination (class in snappy.verify.square_extensions)":[[28,"snappy.verify.square_extensions.SqrtLinCombination",false]],"stopper() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.stopper",false]],"stopping_displacement() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.stopping_displacement",false]],"sublink() (spherogram.link method)":[[23,"spherogram.Link.sublink",false]],"symmetric_triangulation() (snappy.manifold method)":[[7,"snappy.Manifold.symmetric_triangulation",false]],"symmetry_group() (snappy.manifold method)":[[7,"snappy.Manifold.symmetry_group",false]],"symmetrygroup (class in snappy)":[[0,"snappy.SymmetryGroup",false]],"symplectic_basis() (snappy.manifold method)":[[7,"snappy.Manifold.symplectic_basis",false]],"symplectic_basis() (snappy.triangulation method)":[[25,"snappy.Triangulation.symplectic_basis",false]],"tetrahedra_field_gens() (snappy.manifold method)":[[7,"snappy.Manifold.tetrahedra_field_gens",false]],"tetrahedra_shapes() (snappy.manifold method)":[[7,"snappy.Manifold.tetrahedra_shapes",false]],"tetrahedralnonorientablecuspedcensus (in module snappy)":[[11,"snappy.TetrahedralNonorientableCuspedCensus",false]],"tetrahedralorientablecuspedcensus (in module snappy)":[[11,"snappy.TetrahedralOrientableCuspedCensus",false]],"tiltinequalitynumericalverifyerror":[[28,"snappy.verify.exceptions.TiltInequalityNumericalVerifyError",false]],"tiltiszeroexactverifyerror":[[28,"snappy.verify.exceptions.TiltIsZeroExactVerifyError",false]],"tiltprovenpositivenumericalverifyerror":[[28,"snappy.verify.exceptions.TiltProvenPositiveNumericalVerifyError",false]],"tilttype (class in snappy.verify.exceptions)":[[28,"snappy.verify.exceptions.TiltType",false]],"to_magma() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma",false]],"to_magma_file() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)":[[14,"snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma_file",false]],"to_pur() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.to_PUR",false]],"to_pur() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.to_PUR",false]],"topology() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.topology",false]],"trace_field_gens() (snappy.manifold method)":[[7,"snappy.Manifold.trace_field_gens",false]],"translations() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.translations",false]],"triangulation (class in snappy)":[[25,"snappy.Triangulation",false]],"triangulation() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.triangulation",false]],"triangulation() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.triangulation",false]],"triangulation_isosig() (snappy.manifold method)":[[7,"snappy.Manifold.triangulation_isosig",false]],"triangulation_isosig() (snappy.triangulation method)":[[25,"snappy.Triangulation.triangulation_isosig",false]],"use_field_conversion() (snappy.manifold class method)":[[7,"snappy.Manifold.use_field_conversion",false]],"verify_hyperbolicity() (snappy.manifold method)":[[7,"snappy.Manifold.verify_hyperbolicity",false]],"verifyerrorbase":[[28,"snappy.verify.exceptions.VerifyErrorBase",false]],"vertex_list() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.vertex_list",false]],"view() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.view",false]],"view() (spherogram.link method)":[[23,"spherogram.Link.view",false]],"volume() (snappy.cuspneighborhood method)":[[0,"snappy.CuspNeighborhood.volume",false]],"volume() (snappy.dirichletdomain method)":[[0,"snappy.DirichletDomain.volume",false]],"volume() (snappy.manifold method)":[[7,"snappy.Manifold.volume",false]],"volume_numerical() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.volume_numerical",false]],"volume_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)":[[14,"snappy.ptolemy.coordinates.PtolemyCoordinates.volume_numerical",false]],"white_graph() (spherogram.link method)":[[23,"spherogram.Link.white_graph",false]],"with_hyperbolic_structure() (snappy.manifold method)":[[7,"snappy.Manifold.with_hyperbolic_structure",false]],"with_hyperbolic_structure() (snappy.triangulation method)":[[25,"snappy.Triangulation.with_hyperbolic_structure",false]],"without_hyperbolic_structure() (snappy.manifold method)":[[7,"snappy.Manifold.without_hyperbolic_structure",false]],"writhe() (spherogram.link method)":[[23,"spherogram.Link.writhe",false]],"x_coordinate() (snappy.ptolemy.coordinates.crossratios method)":[[14,"snappy.ptolemy.coordinates.CrossRatios.x_coordinate",false]]},"objects":{"":[[0,0,0,"-","snappy"],[23,0,0,"-","spherogram"]],"snappy":[[0,1,1,"","AbelianGroup"],[2,1,1,"","AlternatingKnotExteriors"],[2,3,1,"","CensusKnots"],[11,3,1,"","CubicalNonorientableClosedCensus"],[11,3,1,"","CubicalNonorientableCuspedCensus"],[11,3,1,"","CubicalOrientableClosedCensus"],[11,3,1,"","CubicalOrientableCuspedCensus"],[0,1,1,"","CuspNeighborhood"],[0,1,1,"","DirichletDomain"],[11,3,1,"","DodecahedralNonorientableClosedCensus"],[11,3,1,"","DodecahedralNonorientableCuspedCensus"],[11,3,1,"","DodecahedralOrientableClosedCensus"],[11,3,1,"","DodecahedralOrientableCuspedCensus"],[2,3,1,"","HTLinkExteriors"],[0,1,1,"","HolonomyGroup"],[11,3,1,"","IcosahedralNonorientableClosedCensus"],[11,3,1,"","IcosahedralOrientableClosedCensus"],[2,3,1,"","LinkExteriors"],[7,1,1,"","Manifold"],[2,1,1,"","NonalternatingKnotExteriors"],[2,3,1,"","NonorientableClosedCensus"],[2,3,1,"","NonorientableCuspedCensus"],[11,3,1,"","OctahedralNonorientableCuspedCensus"],[11,3,1,"","OctahedralOrientableCuspedCensus"],[2,3,1,"","OrientableClosedCensus"],[2,3,1,"","OrientableCuspedCensus"],[2,3,1,"","RibbonLinks"],[0,1,1,"","SymmetryGroup"],[11,3,1,"","TetrahedralNonorientableCuspedCensus"],[11,3,1,"","TetrahedralOrientableCuspedCensus"],[25,1,1,"","Triangulation"],[13,0,0,"-","ptolemy"],[21,0,0,"-","snap"],[28,0,0,"-","verify"]],"snappy.AbelianGroup":[[0,2,1,"","betti_number"],[0,2,1,"","elementary_divisors"],[0,2,1,"","order"],[0,2,1,"","rank"]],"snappy.CuspNeighborhood":[[0,2,1,"","Ford_domain"],[0,2,1,"","all_translations"],[0,2,1,"","check_index"],[0,2,1,"","get_displacement"],[0,2,1,"","get_tie"],[0,2,1,"","horoballs"],[0,2,1,"","manifold"],[0,2,1,"","max_reach"],[0,2,1,"","num_cusps"],[0,2,1,"","original_index"],[0,2,1,"","reach"],[0,2,1,"","set_displacement"],[0,2,1,"","set_tie"],[0,2,1,"","stopper"],[0,2,1,"","stopping_displacement"],[0,2,1,"","topology"],[0,2,1,"","translations"],[0,2,1,"","triangulation"],[0,2,1,"","view"],[0,2,1,"","volume"]],"snappy.DirichletDomain":[[0,2,1,"","edge_list"],[0,2,1,"","export_stl"],[0,2,1,"","face_list"],[0,2,1,"","in_radius"],[0,2,1,"","length_spectrum_dicts"],[0,2,1,"","manifold"],[0,2,1,"","num_edges"],[0,2,1,"","num_faces"],[0,2,1,"","num_finite_vertices"],[0,2,1,"","num_ideal_vertices"],[0,2,1,"","num_vertices"],[0,2,1,"","out_radius"],[0,2,1,"","pairing_matrices"],[0,2,1,"","pairing_words"],[0,2,1,"","save"],[0,2,1,"","spine_radius"],[0,2,1,"","triangulation"],[0,2,1,"","vertex_list"],[0,2,1,"","volume"]],"snappy.HolonomyGroup":[[0,2,1,"","O31"],[0,2,1,"","SL2C"],[0,2,1,"","category"],[0,2,1,"","character_variety_vars_and_polys"],[0,2,1,"","complex_length"],[0,2,1,"","dump"],[0,2,1,"","dumps"],[0,2,1,"","gap_string"],[0,2,1,"","generators"],[0,2,1,"","generators_in_originals"],[0,2,1,"","get_custom_name"],[0,2,1,"","longitude"],[0,2,1,"","magma_string"],[0,2,1,"","meridian"],[0,2,1,"","num_generators"],[0,2,1,"","num_original_generators"],[0,2,1,"","num_relators"],[0,2,1,"","original_generators"],[0,2,1,"","parent"],[0,2,1,"","peripheral_curves"],[0,2,1,"","relators"],[0,2,1,"","rename"],[0,2,1,"","reset_name"],[0,2,1,"","sage"],[0,2,1,"","save"]],"snappy.Manifold":[[7,2,1,"","DT_code"],[7,2,1,"","alexander_polynomial"],[7,2,1,"","browse"],[7,2,1,"","canonical_retriangulation"],[7,2,1,"","canonize"],[7,2,1,"","chern_simons"],[7,2,1,"","complex_volume"],[7,2,1,"","copy"],[7,2,1,"","cover"],[7,2,1,"","cover_info"],[7,2,1,"","covers"],[7,2,1,"","cusp_area_matrix"],[7,2,1,"","cusp_areas"],[7,2,1,"","cusp_info"],[7,2,1,"","cusp_neighborhood"],[7,2,1,"","cusp_translations"],[7,2,1,"","dehn_fill"],[7,2,1,"","dirichlet_domain"],[7,2,1,"","drill"],[7,2,1,"","drill_word"],[7,2,1,"","drill_words"],[7,2,1,"","dual_curves"],[7,2,1,"","edge_valences"],[7,2,1,"","exterior_to_link"],[7,2,1,"","filled_triangulation"],[7,2,1,"","fox_milnor_test"],[7,2,1,"","fundamental_group"],[7,2,1,"","gluing_equations"],[7,2,1,"","gluing_equations_pgl"],[7,2,1,"","has_finite_vertices"],[7,2,1,"","high_precision"],[7,2,1,"","holonomy_matrix_entries"],[7,2,1,"","homological_longitude"],[7,2,1,"","homology"],[7,2,1,"","hyperbolic_SLN_torsion"],[7,2,1,"","hyperbolic_adjoint_torsion"],[7,2,1,"","hyperbolic_torsion"],[7,2,1,"","identify"],[7,2,1,"","inside_view"],[7,2,1,"","invariant_trace_field_gens"],[7,2,1,"","is_isometric_to"],[7,2,1,"","is_orientable"],[7,2,1,"","is_two_bridge"],[7,2,1,"","isometry_signature"],[7,2,1,"","isomorphisms_to"],[7,2,1,"","length_spectrum"],[7,2,1,"","length_spectrum_alt"],[7,2,1,"","length_spectrum_alt_gen"],[7,2,1,"","link"],[7,2,1,"","margulis"],[7,2,1,"","name"],[7,2,1,"","normal_boundary_slopes"],[7,2,1,"","normal_surfaces"],[7,2,1,"","num_cusps"],[7,2,1,"","num_tetrahedra"],[7,2,1,"","orientation_cover"],[7,2,1,"","plink"],[7,2,1,"","polished_holonomy"],[7,2,1,"","ptolemy_generalized_obstruction_classes"],[7,2,1,"","ptolemy_obstruction_classes"],[7,2,1,"","ptolemy_variety"],[7,2,1,"","randomize"],[7,2,1,"","reverse_orientation"],[7,2,1,"","save"],[7,2,1,"","set_name"],[7,2,1,"","set_peripheral_curves"],[7,2,1,"","set_target_holonomy"],[7,2,1,"","set_tetrahedra_shapes"],[7,2,1,"","short_slopes"],[7,2,1,"","simplify"],[7,2,1,"","slice_obstruction_HKL"],[7,2,1,"","solution_type"],[7,2,1,"","split"],[7,2,1,"","splitting_surfaces"],[7,2,1,"","symmetric_triangulation"],[7,2,1,"","symmetry_group"],[7,2,1,"","symplectic_basis"],[7,2,1,"","tetrahedra_field_gens"],[7,2,1,"","tetrahedra_shapes"],[7,2,1,"","trace_field_gens"],[7,2,1,"","triangulation_isosig"],[7,2,1,"","use_field_conversion"],[7,2,1,"","verify_hyperbolicity"],[7,2,1,"","volume"],[7,2,1,"","with_hyperbolic_structure"],[7,2,1,"","without_hyperbolic_structure"]],"snappy.SymmetryGroup":[[0,2,1,"","abelian_description"],[0,2,1,"","abelianization"],[0,2,1,"","center"],[0,2,1,"","commutator_subgroup"],[0,2,1,"","direct_product_description"],[0,2,1,"","is_S5"],[0,2,1,"","is_abelian"],[0,2,1,"","is_amphicheiral"],[0,2,1,"","is_dihedral"],[0,2,1,"","is_direct_product"],[0,2,1,"","is_full_group"],[0,2,1,"","is_invertible_knot"],[0,2,1,"","is_polyhedral"],[0,2,1,"","isometries"],[0,2,1,"","multiply_elements"],[0,2,1,"","order"],[0,2,1,"","polyhedral_description"]],"snappy.Triangulation":[[25,2,1,"","DT_code"],[25,2,1,"","alexander_polynomial"],[25,2,1,"","copy"],[25,2,1,"","cover"],[25,2,1,"","cover_info"],[25,2,1,"","covers"],[25,2,1,"","cusp_info"],[25,2,1,"","dehn_fill"],[25,2,1,"","edge_valences"],[25,2,1,"","exterior_to_link"],[25,2,1,"","filled_triangulation"],[25,2,1,"","fox_milnor_test"],[25,2,1,"","fundamental_group"],[25,2,1,"","gluing_equations"],[25,2,1,"","gluing_equations_pgl"],[25,2,1,"","has_finite_vertices"],[25,2,1,"","homological_longitude"],[25,2,1,"","homology"],[25,2,1,"","is_orientable"],[25,2,1,"","isomorphisms_to"],[25,2,1,"","link"],[25,2,1,"","name"],[25,2,1,"","normal_boundary_slopes"],[25,2,1,"","normal_surfaces"],[25,2,1,"","num_cusps"],[25,2,1,"","num_tetrahedra"],[25,2,1,"","orientation_cover"],[25,2,1,"","plink"],[25,2,1,"","ptolemy_generalized_obstruction_classes"],[25,2,1,"","ptolemy_obstruction_classes"],[25,2,1,"","ptolemy_variety"],[25,2,1,"","randomize"],[25,2,1,"","reverse_orientation"],[25,2,1,"","save"],[25,2,1,"","set_name"],[25,2,1,"","set_peripheral_curves"],[25,2,1,"","simplify"],[25,2,1,"","slice_obstruction_HKL"],[25,2,1,"","symplectic_basis"],[25,2,1,"","triangulation_isosig"],[25,2,1,"","with_hyperbolic_structure"]],"snappy.database":[[2,1,1,"","ManifoldTable"]],"snappy.database.ManifoldTable":[[2,2,1,"","find"],[2,2,1,"","identify"],[2,2,1,"","keys"],[2,2,1,"","siblings"]],"snappy.ptolemy":[[14,4,1,"","solutions_from_magma"],[14,4,1,"","solutions_from_magma_file"]],"snappy.ptolemy.component":[[14,1,1,"","NonZeroDimensionalComponent"]],"snappy.ptolemy.coordinates":[[14,1,1,"","CrossRatios"],[14,1,1,"","Flattenings"],[14,1,1,"","PtolemyCoordinates"]],"snappy.ptolemy.coordinates.CrossRatios":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","evaluate_word"],[14,2,1,"","from_snappy_manifold"],[14,2,1,"","get_manifold"],[14,2,1,"","induced_representation"],[14,2,1,"","is_geometric"],[14,2,1,"","is_induced_from_psl2"],[14,2,1,"","is_pu_2_1_representation"],[14,2,1,"","is_real"],[14,2,1,"","long_edge"],[14,2,1,"","middle_edge"],[14,2,1,"","multiply_and_simplify_terms_in_RUR"],[14,2,1,"","multiply_terms_in_RUR"],[14,2,1,"","num_tetrahedra"],[14,2,1,"","numerical"],[14,2,1,"","short_edge"],[14,2,1,"","to_PUR"],[14,2,1,"","volume_numerical"],[14,2,1,"","x_coordinate"]],"snappy.ptolemy.coordinates.Flattenings":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","complex_volume"],[14,2,1,"","from_tetrahedra_shapes_of_manifold"],[14,2,1,"","get_manifold"],[14,2,1,"","get_order"],[14,2,1,"","get_zpq_triple"],[14,2,1,"","num_tetrahedra"]],"snappy.ptolemy.coordinates.PtolemyCoordinates":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","complex_volume_numerical"],[14,2,1,"","cross_ratios"],[14,2,1,"","cross_ratios_numerical"],[14,2,1,"","diamond_coordinate"],[14,2,1,"","evaluate_word"],[14,2,1,"","flattenings_numerical"],[14,2,1,"","get_manifold"],[14,2,1,"","has_obstruction"],[14,2,1,"","is_geometric"],[14,2,1,"","long_edge"],[14,2,1,"","middle_edge"],[14,2,1,"","multiply_and_simplify_terms_in_RUR"],[14,2,1,"","multiply_terms_in_RUR"],[14,2,1,"","num_tetrahedra"],[14,2,1,"","number_field"],[14,2,1,"","numerical"],[14,2,1,"","ratio_coordinate"],[14,2,1,"","short_edge"],[14,2,1,"","to_PUR"],[14,2,1,"","volume_numerical"]],"snappy.ptolemy.ptolemyVariety":[[14,1,1,"","PtolemyVariety"]],"snappy.ptolemy.ptolemyVariety.PtolemyVariety":[[14,2,1,"","compute_decomposition"],[14,2,1,"","compute_solutions"],[14,2,1,"","degree_to_shapes"],[14,2,1,"","filename_base"],[14,2,1,"","py_eval_section"],[14,2,1,"","to_magma"],[14,2,1,"","to_magma_file"]],"snappy.verify":[[28,5,1,"","CertifiedShapesEngine"],[28,1,1,"","IntervalNewtonShapesEngine"],[28,1,1,"","KrawczykShapesEngine"],[28,0,0,"-","exceptions"],[28,0,0,"-","square_extensions"]],"snappy.verify.IntervalNewtonShapesEngine":[[28,2,1,"","certified_newton_iteration"],[28,2,1,"","expand_until_certified"],[28,2,1,"","interval_vector_is_contained_in"],[28,2,1,"","interval_vector_mid_points"],[28,2,1,"","interval_vector_union"],[28,2,1,"","log_gluing_LHS_derivatives"],[28,2,1,"","log_gluing_LHSs"],[28,2,1,"","newton_iteration"]],"snappy.verify.KrawczykShapesEngine":[[28,2,1,"","expand_until_certified"],[28,2,1,"","interval_vector_is_contained_in"],[28,2,1,"","interval_vector_mid_points"],[28,2,1,"","interval_vector_union"],[28,2,1,"","krawczyk_interval"],[28,2,1,"","log_gluing_LHS_derivatives"],[28,2,1,"","log_gluing_LHS_derivatives_sparse"],[28,2,1,"","log_gluing_LHSs"],[28,2,1,"","matrix_times_sparse"]],"snappy.verify.canonical":[[28,4,1,"","exactly_checked_canonical_retriangulation"],[28,4,1,"","interval_checked_canonical_triangulation"]],"snappy.verify.exceptions":[[28,1,1,"","CuspConsistencyType"],[28,6,1,"","CuspEquationExactVerifyError"],[28,6,1,"","CuspEquationLogLiftNumericalVerifyError"],[28,1,1,"","CuspEquationType"],[28,6,1,"","EdgeEquationExactVerifyError"],[28,6,1,"","EdgeEquationLogLiftNumericalVerifyError"],[28,1,1,"","EdgeEquationType"],[28,1,1,"","EquationType"],[28,6,1,"","ExactVerifyError"],[28,6,1,"","InequalityNumericalVerifyError"],[28,6,1,"","IsZeroExactVerifyError"],[28,6,1,"","LogLiftNumericalVerifyError"],[28,6,1,"","NumericalVerifyError"],[28,6,1,"","ShapePositiveImaginaryPartNumericalVerifyError"],[28,1,1,"","ShapeType"],[28,6,1,"","TiltInequalityNumericalVerifyError"],[28,6,1,"","TiltIsZeroExactVerifyError"],[28,6,1,"","TiltProvenPositiveNumericalVerifyError"],[28,1,1,"","TiltType"],[28,6,1,"","VerifyErrorBase"]],"snappy.verify.hyperbolicity":[[28,4,1,"","check_logarithmic_gluing_equations_and_positively_oriented_tets"]],"snappy.verify.square_extensions":[[28,1,1,"","ComplexSqrtLinCombination"],[28,1,1,"","SqrtLinCombination"],[28,4,1,"","find_shapes_as_complex_sqrt_lin_combinations"]],"snappy.verify.square_extensions.ComplexSqrtLinCombination":[[28,2,1,"","imag"],[28,2,1,"","real"]],"snappy.verify.square_extensions.SqrtLinCombination":[[28,2,1,"","sign"],[28,2,1,"","sign_with_interval"]],"spherogram":[[23,1,1,"","ClosedBraid"],[23,1,1,"","Link"],[23,4,1,"","random_link"]],"spherogram.Link":[[23,2,1,"","DT_code"],[23,2,1,"","KLPProjection"],[23,2,1,"","PD_code"],[23,2,1,"","add_band"],[23,2,1,"","alexander_matrix"],[23,2,1,"","alexander_poly"],[23,2,1,"","alexander_polynomial"],[23,2,1,"","all_crossings_oriented"],[23,2,1,"","alternating"],[23,2,1,"","backtrack"],[23,2,1,"","black_graph"],[23,2,1,"","braid_word"],[23,2,1,"","bridge_upper_bound"],[23,2,1,"","connected_sum"],[23,2,1,"","copy"],[23,2,1,"","crossing_entries"],[23,2,1,"","crossing_strands"],[23,2,1,"","deconnect_sum"],[23,2,1,"","determinant"],[23,2,1,"","digraph"],[23,2,1,"","dual_graph"],[23,2,1,"","exterior"],[23,2,1,"","faces"],[23,2,1,"","goeritz_matrix"],[23,2,1,"","is_alternating"],[23,2,1,"","is_planar"],[23,2,1,"","jones_polynomial"],[23,2,1,"","knot_floer_homology"],[23,2,1,"","knot_group"],[23,2,1,"","linking_matrix"],[23,2,1,"","linking_number"],[23,2,1,"","many_diagrams"],[23,2,1,"","mirror"],[23,2,1,"","morse_diagram"],[23,2,1,"","morse_number"],[23,2,1,"","optimize_overcrossings"],[23,2,1,"","overstrands"],[23,2,1,"","peer_code"],[23,2,1,"","ribbon_concordant_links"],[23,2,1,"","sage_link"],[23,2,1,"","seifert_matrix"],[23,2,1,"","signature"],[23,2,1,"","simplify"],[23,2,1,"","split_link_diagram"],[23,2,1,"","sublink"],[23,2,1,"","view"],[23,2,1,"","white_graph"],[23,2,1,"","writhe"]]},"objnames":{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","data","Python data"],"4":["py","function","Python function"],"5":["py","attribute","Python attribute"],"6":["py","exception","Python exception"]},"objtypes":{"0":"py:module","1":"py:class","2":"py:method","3":"py:data","4":"py:function","5":"py:attribute","6":"py:exception"},"terms":{"":[0,1,2,4,5,6,7,9,14,15,16,17,18,21,23,25,27,28],"0":[0,2,7,9,11,12,13,14,15,16,17,18,19,21,23,25,26,27,28],"000":[5,9,28],"0000":[7,25,28],"00000":7,"000000":[7,27],"0000000":27,"00000000":7,"000000000":27,"0000000000":27,"00000000000":[7,27],"000000000000":7,"0000000000000":7,"00000000000000":[0,7,16],"0000000000000000000000000000":21,"0000000000000000000000000003":21,"0000000000001":7,"0000000001":7,"0001":28,"001":23,"00150226276052":7,"00150226276073":7,"0019533695046":28,"0025":19,"0075523593782":27,"01":[7,14],"01110":[7,25],"014388591584":7,"02":14,"0201043":23,"02412838":7,"0253221635226673172748587283":21,"02669828218116":7,"02988":17,"029883":16,"02988321":[2,7,23,25],"029883212819":23,"029883212819307250042405108549040571883378615060599584034978214":8,"029883212819307250042405109":7,"02988321281931":[15,16,17],"02988321282":8,"02_tetrahedra":15,"03":14,"0307092":14,"031":2,"034":28,"0340":28,"03_tetrahedra":17,"04":6,"04204128":7,"04_1":[7,25],"05686022":7,"05976643":2,"06":14,"06127506190504":0,"06217783":7,"06491027903143":7,"068":28,"0707136":5,"07470803":11,"07731787":7,"078":28,"08":7,"0800":28,"0870701449957390997853":7,"08707014499574":7,"08707015":7,"0903":27,"0904":19,"0906155":5,"0961611977895952":0,"09812548":7,"0d1c54_1_0":2,"1":[0,2,4,7,9,10,11,12,13,14,16,17,18,19,21,23,25,26,27,28],"10":[0,2,3,4,5,6,7,8,9,11,14,21,23,25,27,28],"100":[0,7,8,14,16,21,23,27,28],"1000":[2,7],"10000":7,"1035":28,"10360701507":7,"10517":23,"10795310":2,"10942659":2,"11":[2,6,7,9,21,23,25,26,28],"11031":2,"11044502":7,"1105476":5,"1109":27,"110m":6,"11101000":23,"1111":[7,14,19,25],"1118628555":7,"1185388389935516999882632998":21,"1185388389935516999882633007":21,"11983007979743":7,"11a17":[7,25],"12":[0,2,6,7,17,23,25,28],"120":0,"1207":[7,14,19,25],"1210608":2,"12132034355964":0,"12143":2,"12155872":7,"124559024":27,"12479830":7,"125":0,"128":28,"12n123":[7,25],"12n345":[7,25],"13":[4,5,7,9,21,23,25],"130":0,"1307":14,"1310":27,"131389112265699":0,"131436773607536668628081981267619":0,"13143677360753666862808198126761923":0,"131436773608":0,"137871639973525691285247446":18,"14":[0,2,5,7,9,15,16,23,25],"14000000000000":0,"1401":19,"14010":18,"1405":19,"14059979":7,"142120333822":7,"143084469681":7,"144f625e5d29_5_2":2,"14742465268512":7,"14820741547094":7,"148207415470948":7,"14820741547097":7,"149":0,"14941606":7,"1494160640965":2,"14941606410":23,"14n1527":23,"15":[0,2,6,7,8,9,13,15,17,23,25,28],"150":[5,7,9],"1510204":5,"152188153612":7,"152977162509284":0,"15320413":7,"153204133297152":7,"1560":18,"16":[2,7,13,15,17,21,23,25,28],"164542163":28,"1645421638874662848910671879":28,"168":7,"16n61264":23,"17":[2,11,17,23],"17563301006556":16,"176540027036":7,"1766049820997":7,"177940133813":27,"178":7,"178792491242577":7,"17nh_0630889":[7,25],"18":[2,7,14,23,25],"1811156":5,"1893":19,"19":[7,15,16,23,25],"1955023488930":27,"196124":18,"1978":23,"198620491993677":0,"1e":[7,14],"1j":28,"2":[0,2,3,5,6,7,8,9,10,11,12,13,14,18,19,21,23,25,26,27,28],"20":[0,2,7,21,23,25],"200":[7,21,28],"2000":7,"2007":23,"2009":9,"2010":9,"2011":9,"2012":9,"2013":9,"2014":9,"2015":9,"2016":9,"2017":[9,26],"2018":9,"2019":[4,9,26],"2020":[9,23],"2021":9,"2023":9,"2025":[5,9],"2026":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],"2028208192855":7,"207":28,"21":[7,11,23,25],"211824465096782":7,"211824465096784":7,"212":[7,8,9],"22":[0,2,7,11,14,21,25],"22318540718077":0,"223574975263386":7,"2236291171413":0,"223629117141336210196010062380191":0,"2236291171413362101960100623801910":0,"22671790":7,"23":[18,23,28],"2303572":5,"23703575928741":0,"238":11,"24":[2,6,7,18,25],"246":28,"2482":28,"25":[9,11,18,21,23],"250000000000000":17,"2504":23,"25194":11,"2521580040549576537090841783446072":0,"25215800405495765370908417834461":0,"252158004055":0,"253293":2,"25618853688042434043044508297577899":0,"25618853688042434043044508297578":0,"256188536881":0,"259696455247511":0,"26":[2,7,21,28],"26080402":7,"26930345526993":0,"26933288854145":7,"27":[7,27],"278936315":7,"28":[2,7],"2828":[7,14,19,25],"283185307179586":7,"284940667895":7,"29":23,"29150262212918":7,"292":28,"29405713186238":[7,25],"298":0,"2_":[7,25],"2_1":[2,7,11,25],"2_34":[7,25],"2_6":[7,25],"2_8":2,"2n":28,"2x2":7,"3":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28],"30":[0,15,23],"300":[0,28],"302":28,"30211422042248":[13,15,17],"3030710375877078211095122873223488":0,"3030710375877078211095122873224":0,"30307103759":0,"3116":2,"3125":0,"312682687518267":[7,17,25],"313":28,"315973594129649":0,"315973594129651":0,"317363079597924":7,"31991":23,"32":7,"32287565553":7,"32287565553229":7,"32287565553230":[7,17],"32287565554":7,"324717957":27,"32475953":7,"330718913883074":17,"33348957":7,"33461303362557":0,"3376410213776269870195455729":21,"3376410213776269870195455731":21,"34":[7,25],"3472":27,"35105908147863":7,"35355339059327376220042218105":7,"357403823939297224437738856":21,"357403823939297224437742077":21,"35768903":2,"36":7,"37":[7,16,17,25],"37354016":11,"375000000000000":17,"376":28,"378446302375451727042631346":21,"378446302375451727042633120":21,"38":[15,16,17],"38451103485706":7,"39812948":11,"398888830":27,"39996262244127":7,"39996262244128":7,"3_1":[7,23],"3_12":23,"3_2":23,"3_72":2,"3_73":2,"3_74":2,"3a1":23,"3d":[0,3,4,5,7,9],"3sqrt":0,"4":[0,2,7,9,10,11,12,13,14,15,16,17,19,21,23,25,26,27,28],"40":[0,15,27,28],"40431358073618481197132660504":21,"40431358073618481197132661847":21,"409614585":27,"41":[0,6],"4110489425474123899213651272":18,"4142135623730950488016887242":7,"4146":11,"41791484":2,"426088934700737884313191344":18,"42720525":2,"43":0,"430":28,"4310":23,"43153441294719":7,"4375000000000":7,"43914411734250":7,"43914411734251":7,"44":[0,7,21],"445":0,"45":[0,7,25],"454785439204566951537774898694356":0,"4547854392045669515377748986943560":0,"454785439205":0,"459731436553693":[7,17,25],"459868058287098030934":28,"4599773577869384936554":28,"460":28,"46002":28,"4600211":28,"460021167103732494700":28,"4600211755737":7,"4600211755737178641204":28,"460021175573717872891":28,"460021175573718":28,"46003":28,"46009":28,"4641016151377544":7,"47":[0,23],"47120283346":0,"47120283346076781167174343474008914":0,"4712028334607678116717434347401":0,"474":0,"47424776":2,"47470541152065":0,"477656250512815":0,"480":0,"4800996900657":28,"48157893409218":7,"48666015":2,"49024467":7,"491327":2,"49405010583448":7,"49440443":7,"4953704555604684110903962008":7,"495370455560469":7,"49537045556047":7,"4963":28,"496837853805869":[7,17,25],"49859164484929":0,"499999999999999":7,"4_1":[7,14,23,25],"4_1__sl2_c0":14,"4_1__sl2_c1":14,"4a1":23,"5":[0,2,4,5,6,7,9,11,12,14,16,17,19,21,23,25,28],"50":[0,21],"500":28,"50000000":7,"5000000000":16,"50000000000":7,"500000000000":7,"50000000000000":[0,27],"500000000000000":[0,7,16,17],"50000000000000000000000000":28,"5000000000000000000000000000":7,"50000000000000000000000000000":21,"500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000":21,"500000000000001":0,"500000000000002":0,"50479249917":7,"504866865874":7,"510804267610103":7,"5126610817613336586374292713":21,"5126610817613336586374448040":21,"513":0,"5131157955971":27,"515625":0,"51918360":2,"52310839130992":16,"52619361":7,"53":[7,8,28],"53123093":2,"537092383":7,"54":7,"5400":28,"54436599614182":0,"54436599614183":0,"548":0,"5493670288":7,"55":7,"55091438":2,"5542":19,"56":7,"561":28,"56227951":7,"56227951206":28,"562279512062":7,"5622795120623":27,"562279512062301243":28,"56227951206230124389918214477":21,"56227951206230124389918214504":21,"5622795120623012438992":28,"5622795120623013":7,"56239915":7,"56897060":2,"57":7,"5819817649675358086":15,"58439465":2,"58460368501798696932015666264":7,"584603685017987":7,"58460368501799":7,"58826933":7,"5890988184099251088892549440":21,"5890988184099251088892745185":21,"589495705074":7,"59807621":7,"59883089":7,"5_1":[16,23],"5_2":[7,14,21,23],"5e5709_1_0":2,"5j":28,"6":[0,2,6,7,9,12,14,17,21,23,25,27,28],"60":[0,7,27],"60676092":2,"61245944742151":7,"61940871855835167317":28,"625051576":7,"625222762246":27,"63":[7,8,25,28],"63251940718694538695":28,"6326":28,"63262":28,"632624":28,"6326241909236695020810":28,"6326241936052":7,"632624193605256":28,"632624193605256171637":28,"6326241936052562241142":28,"63263":28,"6327":28,"63765810995071":7,"639j":28,"64":[4,7,23,28],"64255370258293":[13,17],"64333782":2,"64493407":7,"64549527022581":[7,25],"64575131106459":7,"64575131107":7,"6515818912107":27,"65232354":7,"65902431489655":7,"66":28,"661437827766148":17,"662358978622":7,"6623589786223730":7,"66235897862237301298":28,"6623589786223730129805":28,"662358978622373012981":28,"6623589786224":27,"66235898":7,"66246879992795":7,"66246879992796":7,"66386238":[2,7],"66421454":2,"6666":28,"66674":17,"66674478":2,"66674478344907":17,"6697":14,"67":0,"67064980598091504185767190":18,"6711":[7,14,19,25],"67347167":7,"6757599281290843845710310925394911":0,"6757599281290843845710310925395":0,"67575992813":0,"680993020093457":[7,17,25],"68603427":11,"68719745":7,"69":[7,11,23],"69338342":2,"698544082784440":17,"69999999999999995559107902":28,"6_2":23,"6_4":[7,25],"7":[2,7,9,11,17,19,21,23,25,28],"700":28,"70060614107722":7,"70385772":7,"704807293":27,"707106781186545":0,"707106781186547":0,"70710678118654752440084436210":7,"707106781186548":0,"707106781186549":0,"71240613125259":0,"72":[7,11,18,25],"72276844987009":7,"725471193740844":[7,17,25],"725536253181650":0,"72911699294426":7,"72978937305180":7,"7320508075688772":7,"7320508075688772935274463415":21,"73205080756888":16,"73205081":7,"732421":17,"73712388065":7,"7392":7,"73967449622339881238507307209":28,"7453498408":7,"747697694854404":0,"75":7,"750000000":14,"75170196551790":16,"752":28,"75939451500971650241038771418":21,"75939451500971650241038772223":21,"76955170166922":7,"76955170166923":7,"76955170166924":7,"78054":28,"78055":28,"7805525":28,"780552527850":7,"78055252785072483256":28,"7805525278507248325678":28,"78055252785072483798":28,"7805525278507248379869":28,"780552527850725":28,"78055252785073":28,"78055253":28,"78055253104531610049":28,"780552531045316100497":28,"780559":28,"78056":28,"78056102517632648594":28,"7806":28,"78183391239608":[7,13,17,25],"78287093565202":7,"78674683118381457770":28,"786746831183814577703":28,"79356651781096":7,"79427928161946":0,"795":28,"797777659":27,"7_3":0,"8":[0,2,4,5,6,7,9,19,21,23,25,27,28],"80":[14,28],"81161414965958":7,"81267480427":7,"81543089":7,"82168758617998":17,"821802363180149782221451472":21,"8281220883":27,"828122088330783162764":7,"82812209":7,"82829881681":7,"8284271247461900976033774484":7,"829":28,"8290":28,"84163270359334":7,"8450034810535061601312104296":18,"84908538602825":0,"8536121048":7,"86374431":2,"86602540":7,"866025403784":21,"866025403784405":7,"8660254037844386":7,"86602540378443864676372317075":[7,21],"866025403784438646763723170752936183471402626905190314027903489725966508454400018540573093378624288":21,"866025403784439":[14,16],"86602540378444":27,"8660254038":16,"868692062725708":0,"8708286933869706927918743662":7,"875895332415105303646551573":18,"88":7,"88266550875941":15,"88267370443418":[15,16],"88944299721255":7,"895226186134782":0,"89824633":7,"8_1":2,"8_20":[2,23],"8_4":2,"8_5":23,"8j":28,"9":[0,2,4,6,7,9,14,19,21,23,25,27,28],"9002274714046":2,"9032849613891083021420278809":21,"9032849613891083021420278850":21,"9106738240":27,"910673824035377649698":7,"9144":28,"91447":28,"9144736":28,"91447366":28,"9144736621585220345231":28,"914473662967":7,"914473662967726":28,"91447366296772644033":28,"914473662967726440333":28,"91447366296772645593":28,"914473662967726455938":28,"91447366296773":[7,28],"91448":28,"9144962118446750482":28,"91449j":28,"9144j":28,"9145":28,"9208680745160821379529":28,"92308491369":7,"92397456664239":7,"93":[7,11],"93461379591349":7,"93541434669348534639593718308":7,"94135129037387168886341739832":7,"94159248086745":[7,25],"94185904702273":7,"942":28,"94215909915729":[13,17],"9427":13,"942707362776927720921299603":27,"9427073627769277209212996030922116475902":15,"942707362776931":[7,13,15,17,25],"94677098":7,"95728679":7,"96218768626877":7,"962423650119189":7,"962423650119202":7,"9624236501192068949955":7,"97804689":7,"97944707":7,"98036162786":7,"99":[7,25],"991330873713731":0,"99169047854575721271560179767750893":0,"991690478545757212715601797677509":0,"991690478546":0,"9999999999996":7,"9999999999999":7,"9_2":2,"9_42":[0,7,25],"A":[0,2,5,6,7,8,9,11,13,14,18,19,22,23,24,25,27,28],"And":[15,16,17,28],"As":[1,2,7,15,16,25,27],"At":[7,16],"But":[4,7,25,26],"By":[2,5,7,9,10,14,15,17,23,25,27],"For":[0,2,4,6,7,11,13,14,15,16,17,19,23,24,25,27,28],"If":[0,2,4,5,6,7,12,14,15,16,17,19,23,25,27,28],"In":[0,2,4,5,7,8,9,12,13,14,15,17,18,19,21,23,25,26,27,28],"It":[0,4,5,7,9,13,14,15,16,17,18,23,25,27,28],"Its":28,"No":[7,23,25],"Of":23,"On":[4,6,7,23,25],"One":[0,4,7,16,21,24],"Or":[0,7,16,25],"That":[0,7,12,25],"The":[0,2,4,5,6,7,9,10,11,12,14,17,19,25,26,27,28],"Then":7,"There":[0,2,6,7,14,16,22,24,25,28],"These":[0,2,4,6,7,9,16,18,23,25,27],"To":[0,1,2,4,5,6,7,8,11,12,14,15,17,23,25,28],"With":[4,27],"_":[7,14,25],"__contains__":2,"__init__":[4,28],"_accuracy_for_test":0,"_factorizedsqrtlincombin":28,"_magma_output_for_4_1__sl3":[7,14,25],"_num_fake_cusp":23,"_numer":16,"_sageobject__custom_nam":0,"_to_str":2,"a0":[7,25,28],"a1":[7,25,28],"a2":23,"a_":7,"a_n":[7,25],"aaaababbab":0,"aaaabbabbbabb":0,"aaababbab":[7,25],"aab":[0,7],"aaba":0,"aababbaababb":0,"aabbb":7,"aabcdabcb":7,"ab":[0,7,14,15,19,23,25,28],"abab":0,"ababaabab":7,"abababab":[0,7,25],"ababbabab":7,"abb":0,"abba":0,"abc":27,"abcba":[15,17],"abcd":23,"abelian":0,"abelian_descript":0,"abeliangroup":[7,22,25],"abelianinvari":7,"abhijit":3,"abl":[0,24],"about":[7,12,14,15,16,19,21,25,27],"abov":[0,2,6,7,13,15,16,17,19,23,25,27,28],"absolut":[14,28],"abut":23,"ac":7,"acc":0,"acceler":[5,9,23],"accept":[7,9,12,23,25],"access":[2,6,7,8,9,14,15,17,21,23],"accord":[0,14,23],"account":[4,7,25],"accumul":0,"accuraci":[0,7],"achiev":[0,23,27],"act":[0,7,25],"action":[5,7,14,19,25,28],"activ":[6,12],"actual":[6,7,16,17,19,21,23,25,28],"ad":[0,5,7,9,14,23,24,25],"add":[0,2,7,8,9,23,24,25],"add_band":[5,9,23],"addit":[2,3,4,5,7,9,15,22,23,28],"addition":27,"adjac":[0,7],"adjoint":[7,21],"adjust":6,"administr":[4,6],"admit":[11,19],"advanc":[7,14,18,25],"advantag":[16,28],"advoid":27,"affect":[5,7,9,25],"after":[6,7,23,25,28],"again":[7,12,16,17,28],"against":[7,25],"ageodes":7,"agol":27,"agre":23,"ahead":6,"aid":0,"aitchison":11,"aj":28,"aka":[7,25],"al":23,"alex":23,"alexand":[7,9,21,23,25],"alexander_matrix":23,"alexander_poli":23,"alexander_polynomi":[7,21,23,25],"algebra":[15,16,17,23],"algorithm":[5,7,9,19,21,23,25,27,28],"alia":[4,28],"all":[0,2,4,5,6,7,8,9,12,13,14,15,16,17,19,23,25,27,28],"all_crossings_ori":23,"all_lift":[7,21],"all_transl":0,"allow":[2,5,7,8,9,12,14,16,22,23,24,25,28],"almalinux":6,"alon":[4,9,19],"along":[7,9,25],"alpha":[7,14,25],"alphabet":[9,12,23],"alreadi":[7,14,17,21,23,28],"also":[0,2,4,5,6,7,9,11,12,14,15,16,17,18,19,21,22,23,24,25,27,28],"alt":0,"altern":[0,2,4,5,6,7,9,12,23],"alternatingknotexterior":[0,2,22],"although":15,"alwai":[0,1,6,7,12,14,15,19,23,25,28],"ambigu":14,"ambiti":24,"amd64":4,"among":[0,7,25],"amsref":3,"an":[0,2,3,5,6,7,9,11,12,13,14,15,16,17,19,21,22,23,25,26,27,28],"angl":11,"ani":[1,5,6,7,8,9,12,14,16,17,19,21,22,23,25,27],"anoth":[0,7,12,14,17,19,23,26,28],"answer":[0,7,17,23],"anyth":23,"apart":27,"apostroph":12,"app":[4,9],"appar":23,"appear":[4,7,17],"append":[7,16],"appimag":6,"appl":[6,9],"appli":[5,7,9,16,23,25,27,28],"applic":[5,6,9],"apply_map":28,"appropri":[4,7,19,23,25],"approxan":[7,21],"approxim":[0,7,27,28],"approximatealgebraicnumb":7,"april":9,"apt":6,"ar":[0,2,4,5,6,7,8,9,11,12,13,14,15,16,18,19,22,23,25,26,27,28],"arbitrari":[0,7,8,9,21,23,24,28],"arbitrarili":0,"arc":12,"arch":6,"area":[0,5,7,9,27,28],"aren":7,"arg":23,"arguabl":7,"argument":[0,2,7,14,15,16,17,23,25],"aris":7,"arithmet":[7,15,16,27,28],"around":[0,4,12,22,23],"arrai":7,"arriv":23,"arrow":[12,23],"articl":6,"arxiv":[7,14,19,23,25,27],"as_id":0,"as_int_list":0,"as_sage_braid":23,"ask":[0,6],"aspect":8,"assembl":23,"assert":14,"assertionerror":[7,25],"assign":[7,14,15,16,17,18,22],"associ":[0,7,14,21,23,25,26],"assum":[0,4,6,7,14,16,17,28],"attach":[6,23],"attempt":[7,12,23],"attribut":[0,7,15,16,23,25],"augktg":11,"augment":11,"august":9,"author":[3,5],"auto":13,"autocomplet":13,"automat":[7,13,14,25,28],"avail":[3,5,7,9,15,16,23,26,27],"avoid":[0,16,23,27,28],"awai":23,"axi":7,"b":[0,2,7,15,17,19,23,25,28],"b0":[7,25,28],"b1":[7,25,28],"b_0":[7,25],"b_1":[7,25],"b_n":[7,25],"ba":[0,15],"baaba":[0,7],"babcbcbcabcbcbccbcba":0,"baca":[7,25],"bachman":3,"back":8,"background":[2,12],"backtrack":23,"bad":23,"bad_shap":28,"ball":[5,7,9,25],"band":[2,5,9,23],"bar":[6,9,23],"barycentr":7,"base":[3,5,6,7,9,14,15,21,23,25,27,28],"bash":4,"bash_profil":4,"basi":[7,16,18,25],"basic":[5,7,9,23,24,25,26],"bba":0,"bbabba":0,"bc":7,"bcac":[15,17],"bcbcbcbab":0,"bcdc":7,"bd":7,"bear":[5,9],"becaus":[0,2,7,14,15,16,19,23,25,28],"becom":[7,12,16,17],"been":[0,4,5,7,9,14,16,17,19,22,23,25],"befor":[0,1,7,12,25],"begin":[7,12,23,25],"behavior":[7,16,23,25],"being":[2,7,14,16,23,25,28],"believ":17,"bell":[3,10],"belong":[0,7,14,25],"below":[2,6,7,13,23,25],"ben":[3,9],"besid":[7,25],"best":0,"beta":14,"better":[9,15,17,18,28],"betti":[2,11],"betti_numb":[0,7],"between":[0,7,8,12,14,15,23,25],"bib":3,"bibtex":3,"big":[9,28],"bin":[4,6],"binari":[0,4,6],"binput":0,"bit":[4,7,8,9,28],"bitbucket":9,"bits_prec":[0,7,14,21,27,28],"bj":28,"bkp2025":[5,9,23],"bkvv2020":[5,9,23],"black":23,"black_graph":23,"blackboard":12,"blah":9,"blair":23,"bloch":14,"block":27,"blown":7,"blowup_multipl":[7,25],"bn":[7,25],"bo":[7,25],"bohua_cod":23,"bool":[7,25,27],"boolean":[0,7,14,25,28],"borel":19,"both":[2,7,9,15,17,23,25,28],"bottl":[0,7,25],"bottom":[6,7,12,25],"bound":[0,5,7,9,23,25,28],"boundari":[0,7,13,14,15,16,22,25,27],"box":28,"braid":[7,9,23,25],"braid_closur":23,"braid_word":23,"braidgroup":23,"branch":[5,7,9,25],"brasil":[7,25],"break":[6,12,23,27],"bridg":[5,7,9,23],"bridge_closur":23,"bridge_upper_bound":[5,9,23],"bridgeman":23,"bring":[7,25],"brows":[6,7],"browser":[7,9],"bug":[4,5,9,13,17],"build":[4,10,23],"built":[0,4],"bump":0,"bundl":[4,7,10,25],"burel":[3,9],"burton":[3,7,9,25],"button":[5,9,12],"byte":14,"c":[0,3,4,7,9,10,13,14,16,18,23,25,28],"c_":14,"c_0011":14,"c_0011_0":[7,14,15,16,17,25],"c_0011_1":[15,16,17],"c_0011_2":[16,17],"c_0011_3":[16,17],"c_0012_0":[7,15,25],"c_0012_1":[7,15,25],"c_0101":14,"c_0101_0":[7,14,15,16,17,18,25],"c_0101_1":[15,16,17,18],"c_0102_0":[7,15,25],"c_0102_1":15,"c_0110":14,"c_0110_0":[14,15,18],"c_0110_1":15,"c_0110_2":[16,17],"c_0111_0":[7,15,25],"c_0201_0":[7,18,25],"c_1":28,"c_1001":14,"c_1001_0":[15,18],"c_1001_1":15,"c_1010":14,"c_1010_0":[15,18],"c_1010_1":[14,15],"c_1011_0":[7,15,25],"c_1011_1":[7,25],"c_1020_0":[7,25],"c_1100":14,"c_1100_0":15,"c_1100_1":15,"c_1101_0":[7,15,25],"c_1110_0":[14,15],"c_2":28,"c_2100_0":14,"c_i":[7,28],"c_j":7,"c_n":28,"caa":7,"cacbca":23,"cach":24,"cag":23,"calcul":[3,8,9,23],"calculu":[23,28],"call":[0,2,7,14,16,17,19,22,23,25,28],"callahan":[2,7,25],"callback":0,"callfunclist":0,"camera":[5,9],"cameron":3,"can":[0,2,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,25,26,27,28],"cancel":28,"candid":[7,28],"cannot":[0,7,15,16,17,25,28],"canon":[0,5,7,9,14,25,27],"canonical_repres":[14,15],"canonical_retriangul":[5,7,9,25,27],"canva":12,"cap":23,"captur":[7,25],"care":7,"careful_perturb":[7,25],"carefulli":0,"carri":0,"case":[2,5,7,9,12,15,17,23,25,27,28],"cast":[7,28],"catalina":9,"categori":0,"caus":[7,25],"caution":28,"cbacb":[7,25],"cd":4,"cdcddcdcddcddcdcddcdcddcddcdcddcdd":7,"cdef":0,"cell":[7,9,14,19,27],"censu":[3,5,7,9,11,13,17,22,25],"census":[2,3,9,22],"censusknot":[0,2,9,22],"center":[0,7,22,28],"cento":6,"central":7,"centroid_at_origin":[0,7],"cert":23,"certainli":28,"certif":[2,23,27,28],"certifi":[7,27],"certified_newton_iter":28,"certified_shap":28,"certifiedshapesengin":[7,28],"chain":[16,23],"champanerkar":[2,3,7],"chang":[0,5,7,9,12,15,19,23,25,28],"chapoton":3,"charact":[0,3,9],"character":27,"character_variety_vars_and_poli":0,"characterist":[7,9],"check":[5,7,9,13,14,15,17,23,25,28],"check_against_manifold":[7,14,16,25],"check_answ":[7,25],"check_in_s3":[7,25],"check_index":0,"check_input":[7,25],"check_logarithmic_gluing_equations_and_positively_oriented_tet":[7,28],"check_planar":23,"checkerboard":23,"cheeger":14,"chern":[7,9,13,14,17,27],"chern_simon":[7,25],"chernsimon":14,"chiral":[7,25],"chmod":6,"choic":[0,6,7,9,23,25],"choos":7,"chosen":[0,7,17,19,23],"christi":2,"christian":[7,19,25],"cif":28,"circl":[0,7,12,23],"circubscrib":0,"circular":12,"cite":5,"class":[2,5,8,9,10,13,15,16,17,18,24,25,28],"classmethod":[7,14],"claus":2,"clean":4,"cleanup":[3,9],"clear":12,"clearli":[7,27],"cli":4,"click":[6,12,24],"clickabl":4,"clockwis":[0,23],"clone":[4,6],"close":[0,2,4,5,7,9,11,12,14,22,23,25,27,28],"closest":0,"closur":[7,9,23,25],"cluster":6,"cmi":26,"cn":7,"co":[7,25],"coarsen":7,"cob":7,"cocalc":6,"cocycl":[7,25],"code":[0,3,4,7,9,12,14,15,23,24,25,27],"codebas":4,"coeffici":[0,5,7,9,14,23,25],"coercion":0,"cohomologi":[7,9],"cohomology_class":7,"coin":23,"coincid":7,"collaps":[14,19],"collat":0,"collect":[0,7,25],"collin":23,"collis":7,"color":[12,23],"column":[2,7,25,28],"com":[4,6,13,17],"combin":[5,7,19,23,28],"combinator":7,"combinatori":[7,9,14,25,27],"come":[2,4,7,14,22,25],"command":[0,4,5,6,7,12,16,17,22,25,26],"comment":[16,28],"common":[7,28],"commut":0,"commutator_subgroup":0,"comp":[0,7,11,23,25],"compact":[7,22,25],"compar":[5,7,9,16,17,25,28],"comparison":[13,14,28],"compat":[7,9,16,25,27],"compil":4,"compl":14,"complement":[7,11,12,16,23,25],"complementari":23,"complet":[4,5,6,7,9,12,13,23,25,26,27],"complete_length":7,"complete_shap":7,"complex":[0,7,9,13,14,19,23,25,27,28],"complex_length":[0,7],"complex_volum":[7,9,14,27],"complex_volume_numer":[7,14,17,25],"complexfield":7,"complexintervalfield":[7,27,28],"complexsqrtlincombin":28,"complic":[7,21,23,25],"compon":[2,4,5,7,9,12,13,14,19,22,23,25],"compos":14,"composit":0,"compress":0,"comput":[0,1,2,3,5,6,7,8,9,12,13,14,18,19,21,23,24,25,26],"computation":[7,25],"compute_decomposit":[14,15],"compute_solut":[7,14,15,17,25],"computop":3,"concaten":0,"conceptu":28,"concis":0,"conclus":5,"concord":[3,5,9,23],"condit":[2,14],"cone":7,"confer":26,"confid":15,"configur":[1,6,14,27],"confin":7,"confirm":[7,25],"conjug":[0,7,13,14,15,16,17,19,25,28],"conjugaci":[15,16,17],"connect":[4,7,12,13,15,23],"connected_compon":23,"connected_sum":23,"consecut":[7,23],"consequ":23,"conserv":7,"consid":[7,14,19,23,24,25,28],"consist":[0,7,12,19,23,25,27],"consistent_twist_region":23,"constant":16,"constitu":7,"constitut":7,"construct":[7,14,18,19,23,25,28],"constructor":[2,12,23],"contain":[0,2,5,6,7,9,12,13,14,15,16,17,23,25,27,28],"contains_zero":7,"content":[7,12,25],"context":24,"continu":[0,7,12,23,25,27],"contrast":[7,8,28],"contribut":[3,4,5,9,27],"control":[7,25],"conveni":[7,23],"convent":[0,7,9,14,23,25],"convers":[7,9,14],"convert":[0,7,13,14,17,23,24,28],"conwai":23,"coordin":[0,7,12,13,14,15,17,18,19,25],"copi":[1,2,3,6,7,23,25],"core":[1,4,5,7,9,25],"core_length":7,"corner":23,"corollari":[7,25],"correct":[5,7,9,25,27],"correctli":[0,17],"correspond":[0,7,8,9,11,13,14,15,16,17,19,23,25,27,28],"could":[7,16,17,28],"count":[5,7,9,16,25],"coupl":[7,27],"cours":23,"cover":[5,7,9,25,26],"cover_info":[7,25],"cover_typ":[7,25],"cpcbbbiht_bacb":[7,25],"cr":14,"creat":[0,4,6,7,12,14,17,23,25,26],"critic":0,"cross":[0,2,6,7,8,9,11,12,13,14,17,18,19,23,25],"cross_ratio":[14,16,17],"cross_ratios_numer":14,"crossing_entri":23,"crossing_strand":23,"crossingentrypoint":23,"crossingstrand":23,"crossratio":[13,16,17],"cube":[7,11,28],"cubic":[11,28],"cubicalnonorientableclosedcensu":[0,11],"cubicalnonorientablecuspedcensu":[0,11],"cubicalorientableclosedcensu":[0,11],"cubicalorientablecuspedcensu":[0,11],"culler":[3,5,15],"cup":23,"current":[0,4,6,7,9,14,15,16,17,21,23,24,25],"cursor":12,"curv":[5,7,9,12,13,19,25,27],"cusp":[0,2,3,5,7,9,11,16,17,19,25,27],"cusp_area":[5,7,9,27],"cusp_area_matrix":[5,7,9,27],"cusp_curv":17,"cusp_info":[7,9,25],"cusp_neighborhood":[0,7],"cusp_transl":[0,5,7,9],"cusp_typ":[7,25],"cuspconsistencytyp":28,"cuspcrosssect":28,"cuspequationexactverifyerror":28,"cuspequationlogliftnumericalverifyerror":28,"cuspequationtyp":28,"cuspneighborhood":[7,22],"cuspneighborhoodhp":0,"cusps_to_fil":[7,25],"custom":[0,7],"cut":[0,7,12,13,23,25],"cutoff":[0,7],"cutoff_length":0,"cutoff_radiu":0,"cutout":0,"cuttoff_radiu":0,"cvol":[7,14,25],"cyc":[7,25],"cyclic":[7,25],"cyopengl":4,"cypari":4,"cython":[0,4],"d":[0,4,7,8,14,17,19,23,25,28],"d1":0,"d3":0,"d4":0,"d6":7,"dacab":0,"dadbcda":25,"dadcdab":23,"dark":9,"dash":6,"data":[7,9,10,15,17,23,25,28],"data_spec":[7,25],"databas":[2,3,4,7,13,17,25],"dataset":2,"date":3,"david":3,"db_path":2,"dbae":0,"dbcacbabcacbdbcacbabcacbacbabcacbd":0,"dbcacbabcacbdbcacbabcacbcbdbcacbabcabcacbabcacbdacbabcacbdbcbcacbabcacbd":0,"dd":3,"deactiv":6,"deal":7,"dean":[2,7],"deb":0,"debian":[4,6],"debug":28,"dec_prec":[7,14,21,27,28],"decemb":9,"decend":14,"decid":7,"decim":[8,15,28],"declar":2,"decomposit":[7,9,14,25,27],"decompress":0,"deconnect_sum":23,"decor":[2,7,9,13,16,17,25],"decreas":[7,28],"def":23,"default":[0,2,4,5,7,9,12,14,15,23,25,28],"defin":[0,7,9,14,15,16,18,21,23,27],"definit":[7,14,15,21,25],"deform":19,"degener":[7,19,25],"degre":[7,11,19,21,25,28],"degree_to_shap":[14,15,17],"dehn":[5,7,9,19,22,25,27],"dehn_fil":[7,11,25],"dehydr":[7,25],"delet":[0,12,23],"demo":[7,9,26],"demonstr":[0,6],"denomin":[7,14,25,28],"denominator_closur":23,"denot":[0,7,23,25,28],"dens":28,"depend":[6,7,19,25,28],"deprec":7,"depth":[6,7,25],"deriv":[0,22,25,28],"descend":23,"describ":[0,2,4,5,6,7,14,16,19,21,23,25,28],"descript":[0,7,12,22,25,26],"desir":[7,16,23,28],"desktop":[4,6],"despit":[6,7],"destroy_origin":23,"det":23,"detail":[0,1,6,7,15,19,23,25,27],"detect":[15,19,23],"determin":[0,2,5,7,9,15,16,19,23,25,28],"determinist":[0,7],"dev":4,"devel":4,"develop":[1,3,5,9,13,18,19],"df":28,"dfj":[7,21],"dg":[3,5,7,9,25],"di":0,"diagon":[15,19],"diagram":[3,5,7,9,12,16,25],"diagramat":23,"diagrammat":23,"diamond":14,"diamond_coordin":14,"dickinson":[3,9],"dict":15,"dictionar":0,"dictionari":[0,7,14,18,23,25],"did":7,"diff":[14,23],"differ":[0,7,8,9,12,13,14,15,16,19,25,27,28],"differenti":[23,28],"difficulti":1,"digit":[7,8,15],"digraph":23,"dihedr":[0,11],"dimens":[0,13,14,17,23],"dimension":[6,13,14,16,19],"direct":[0,7,23,25],"direct_product_descript":0,"directli":[0,5,7,9,13,23],"directori":[4,6,7,14,25],"dirichlet":[0,4,5,7,8,9,22],"dirichlet_domain":[0,7],"dirichletdomain":[7,22],"dirichletdomainhp":0,"disappear":28,"disc":[7,25],"discard":[19,23],"disconnect":23,"discourag":6,"discov":16,"discuss":[2,4,15],"disjoint":[0,7,9,25,27],"disk":[2,4,5,6,7,9,25],"displac":[0,7],"displai":[12,15,23],"distanc":0,"distinct":[7,14,23],"distinguish":[0,16,19],"distribut":[6,9,23],"divid":[7,14],"divisor":0,"dlqacccbjkg":0,"dlqbcccdero":[7,25],"dlqbcccdxwb":25,"dlqbccceekg":[7,25],"dm":5,"dmg":6,"dnf":6,"do":[0,1,2,4,5,6,7,9,12,13,14,15,16,21,23,25,26,28],"doc":23,"docker":[6,7,26],"docstr":[15,21,25],"doctest":[0,7,14,23,28],"document":[4,9,10,23,24,28],"dodecahedr":11,"dodecahedra":11,"dodecahedralnonorientableclosedcensu":[0,11],"dodecahedralnonorientablecuspedcensu":[0,11],"dodecahedralorientableclosedcensu":[0,11],"dodecahedralorientablecuspedcensu":[0,11],"doe":[0,5,7,8,9,13,14,16,19,23,25,26,27],"doesn":[7,25],"doi":23,"domain":[0,4,5,7,8,9,22],"don":6,"done":[2,7,12,23,25,27],"dot":[13,17],"doubl":[3,6,7,8,9,12,14,28],"doubli":14,"dowker":[7,12,23,25],"down":[12,23],"download":[3,4,6,11],"drag":12,"dramat":9,"drawn":12,"drill":[7,9,24],"drill_word":[7,9,27],"drop_negative_vol":14,"dt":[7,9,11,12,23,25],"dt_alpha":[11,23],"dt_code":[2,7,11,23,25],"dtcodec":0,"dual":[0,7,23],"dual_curv":[7,24],"dual_graph":23,"duboi":[7,21],"due":7,"dummi":[7,25],"dump":0,"dunfield":[2,3,4,5,7,9,23,25,27],"dure":28,"dx":23,"dylan":[7,19,25],"dyland":[7,25],"e":[0,2,4,6,7,11,13,14,15,16,17,19,23,25,27,28],"each":[0,1,2,7,12,14,15,16,17,18,19,21,22,23,25,28],"ealier":[7,25],"earli":7,"earlier":[5,6,7,9,16,23,25,28],"eas":23,"easi":[6,8,13],"easier":[7,25,28],"easiest":[4,6,26],"easili":9,"ebbccdaeb":[7,25],"ecbc":0,"echo":17,"edfgabcgedfgadcc":7,"edg":[0,5,7,9,12,14,16,17,19,23,25,28],"edge_0_0":[7,25],"edge_0_1":[7,25],"edge_class":[0,7,25],"edge_image_indic":0,"edge_indic":0,"edge_list":0,"edge_orient":0,"edge_val":[7,25],"edgeequationexactverifyerror":28,"edgeequationlogliftnumericalverifyerror":28,"edgeequationtyp":28,"edit":[9,12],"editor":[4,5,7,9,25],"effect":23,"eight":[0,7,16,25],"either":[1,2,6,7,12,23,25,28],"element":[0,7,14,15,16,19,23,25,28],"elementari":[0,6],"elementary_divisor":0,"elimin":[7,25,28],"eliminate_fixed_ptolemi":[7,14,25],"ellipsi":[7,14,28],"elpkbcdddhggsj":7,"elpkbdcddhgggb":7,"elpkbdcddhgggb_bacbbacb":[7,27],"elpkbdcddhgggb_bbcbbacb":7,"elpkbdcddxvvcv":7,"els":23,"elsewher":23,"emac":4,"email":13,"embed":[7,9,12,15,25,27,28],"embed_cach":28,"emit":7,"empir":23,"emploi":[7,23,25],"empti":[16,23],"empty_tupl":0,"enclos":12,"encod":[7,9,12,23,25],"encount":[1,5,6,17],"end":[0,4,12],"endeavouro":6,"endpoint":[0,7,12],"engin":[7,14,17,25,28],"enischt":[13,17],"enlarg":7,"enough":[5,7,9,19,28],"ensur":[5,7,9,23,25,27],"enterpris":6,"entir":[7,23,25],"entri":[0,7,23],"enum":7,"enumer":[7,17],"environ":[4,6],"ep":9,"epimorph":[7,25],"epsilon":[14,23,28],"epsilon2":14,"epstein":7,"eqn":[7,25],"equal":[7,14,15,18,23,25,27,28],"equat":[7,13,14,15,19,25,27,28],"equation_typ":[7,25],"equations_with_non_zero_condit":15,"equationtyp":28,"equip":7,"equival":[7,19,23,25],"equivari":0,"error":[0,1,6,7,14,17,28],"especi":[6,9],"essenti":[7,16,25],"estim":[5,7,9],"et":23,"etc":[4,7,22,23],"euclidean":[0,7],"euler":[7,9],"eval":14,"eval_sect":14,"evalu":[0,14,15,17,23,28],"evaluate_word":[14,15,16,17],"even":[6,7,9,11,14,16,19,25,27],"evenn":14,"event":4,"eventu":[8,28],"everi":[0,7,8,14,19,25],"everyth":[4,9],"ex":[4,6],"exact":[7,13,14,21,25,27],"exact_bits_prec_and_degre":[7,27],"exact_sol":16,"exactli":[13,14,21],"exactly_checked_canonical_retriangul":28,"exactverifyerror":28,"examin":[7,9,25],"exampl":[0,4,5,6,7,9,10,12,13,14,19,21,23,25,27,28],"exceed":7,"except":[5,7,9,14,21,23,25,27],"execut":17,"exist":[0,6,7,25],"exit":4,"expand":[14,24,28],"expand_until_certifi":28,"expect":[5,7,9,15,17,23,25],"expected_valu":28,"expens":[7,25],"experi":28,"experiment":5,"explain":[7,15,18,25],"explain_column":[7,25],"explain_row":[7,25],"explan":[7,25],"explicitli":[7,14,25,28],"explor":[7,26],"export":[0,4,7,9,25],"export_stl":0,"express":[0,5,9,12,28],"extend":[0,5,7,9,12,14,16,19,25],"extends_to_link":[2,7],"extens":[0,9,16,28],"exterior":[0,2,3,7,8,9,23,25],"exterior_to_link":[7,9,23,25],"extern":6,"extra":[0,6,7,8,9,14,16,19,23],"extract":[4,7],"ey":[5,9],"f":[0,6,7,14,23,25,28],"f_2":23,"f_q":[7,25],"fa":7,"face":[0,7,14,23,25,27,28],"face_list":0,"fact":[7,19],"factor":[0,7,8,19,23,25,28],"factoris":14,"fafbcaefd":7,"fail":[5,7,9,14,17,21,25,28],"failur":[27,28],"fair":23,"fairli":[7,17],"faithfulli":[7,25],"falbel":14,"fals":[0,2,7,14,15,16,17,18,21,23,25,27,28],"famili":[13,16,19,23],"faq":22,"far":[7,15,17,27],"fast":[9,23],"faster":[5,7,9,15,16,23,25],"favorit":4,"featur":[4,5,6,8,9,17,21,26],"feb":9,"februari":9,"fedora":[4,6],"feel":17,"fetch":4,"few":[4,23],"fewer":[7,23],"fiber":[7,23,25],"field":[0,2,7,9,13,14,16,18,19,21,24,25,28],"fig":[0,7,25],"fig8":23,"figur":[7,14,15,16,17,23,25],"file":[0,4,7,12,14,17,18,23,25],"file_nam":[7,25],"filenam":[0,7,14,15,25],"filename_bas":[14,15],"fill":[0,5,7,9,22,25,27],"filled_length":7,"filled_shap":7,"filled_triangul":[7,25],"filling_data":[7,25],"fillings_may_affect_gener":[7,25],"filter":[2,11],"filter_arg":2,"filter_for_plausibly_slic":23,"final":[0,7,23,25,28],"find":[0,2,5,7,8,9,13,15,19,21,23,25,27,28],"find_field":[7,21],"find_shapes_as_complex_sqrt_lin_combin":28,"fine":0,"finger":12,"finish":17,"finit":[0,7,11,23,25],"finitely_pres":23,"finitelypresentedgroup":0,"finitelypresentedgroup_with_categori":23,"first":[0,2,6,7,15,16,17,21,23,25,27,28],"first_cusp":7,"five":[0,7,23],"fix":[0,5,7,9,14,19,25],"fixed_align":7,"fkr2013":14,"flag":[0,2,5,7,9,23,25,27],"flash":12,"flat":[7,16,25],"flatten":[7,13,17,25],"flattenings_numer":14,"flavor":[7,25],"flexibl":[2,13],"flip":[7,23,25],"flipper":6,"fllqcacdedenbxxrr":7,"float":[0,7,8,27],"floer":[3,9,23],"fluctat":7,"focu":5,"fold":[7,25],"folder":[4,6],"follow":[0,2,4,6,7,11,14,15,16,17,18,23,25,28],"forbid":[7,25],"forc":6,"ford":0,"ford_domain":0,"forget":7,"forgotten":3,"fork":4,"form":[0,7,12,14,15,19,23,25,28],"formal":1,"format":[0,3,15,28],"former":[6,7,23,25],"formerli":6,"forth":8,"found":[0,6,7,17,19,25,27],"foundat":5,"four":[7,8,15,23,25],"fourth":[7,15,25],"fox":[5,9,23],"fox_milnor_test":[5,7,9,25],"fractal":[7,9],"fraction":[0,7,14,18],"frame":12,"framework":[0,4],"free":[0,4,17],"free_vari":[14,16,17],"freegroup":0,"friend":26,"from":[0,2,4,5,6,7,8,9,10,12,13,14,17,19,22,23,25,26,27,28],"from_snappy_manifold":14,"from_tetrahedra_shapes_of_manifold":14,"fromat":0,"fromisosig":[7,25],"fr\u00e9d\u00e9ric":3,"fulfil":[7,28],"full":[0,7,12,14,19,23,25],"full_list":0,"full_rigor":[0,7],"full_solut":14,"fulli":9,"func":7,"function":[0,2,7,9,13,15,16,21,23,24,25,28],"fundament":[0,7,13,14,15,22,25],"fundamental_group":[0,7,11,14,15,17,25],"fundamental_group_arg":7,"fundamentalgroup":[22,25],"further":[5,7,9,15],"furthermor":[7,27],"fusion":23,"futur":[13,15,17,18],"fxrai":[4,7,25],"g":[0,4,6,7,14,17,21,23,25,27,28],"gain":6,"galoi":[7,13,14,15,16,17,19,25],"gamma":14,"gap":[0,5,7,9,25],"gap_str":0,"garoufalidi":[7,14,19,25],"gaussian":28,"gave":7,"gcc":4,"gen":[0,7,23,28],"gener":[0,4,5,7,8,9,11,13,14,15,16,17,18,23,25],"generalis":19,"generator_fil":0,"generators_in_origin":0,"genu":[9,14,23],"genuin":[7,25],"geodes":[0,5,7,9,27],"geometr":[0,7,13,14,15,19,22,25,27],"geometri":[3,5,7,22],"geometric_solut":7,"get":[0,4,6,7,9,13,14,15,16,17,18,23,24,25,28],"get_custom_nam":0,"get_displac":0,"get_manifold":14,"get_ord":14,"get_ti":0,"get_zpq_tripl":14,"gf":23,"ggz2012":[17,19],"ggz2014":[15,16,19],"giesek":0,"git":[4,6],"github":[4,6,9,24],"give":[0,2,6,7,9,13,14,15,16,17,18,19,23,25,27,28],"given":[0,2,5,7,9,13,14,15,16,19,23,25,26,28],"gl":4,"gllmqcbeefefpjaqupw":[7,25],"gllmqcbeefefujumapn":[7,25],"global":[0,5,7,9,23,25],"glpk":23,"glu":[4,7,14,19,23,25,27,28],"gluing_equ":[7,25,28],"gluing_equations_pgl":[7,25],"gmail":[13,17],"gnome":6,"gnu":5,"go":[4,7,8,9,12,16,17,23,25],"goe":[2,7,23,25],"goeritz":23,"goeritz_matrix":23,"goerner":[3,5,7,9,10,14,19,25,27],"gon":7,"gong":[2,3,7,23,25],"good":[0,6],"good_shap":28,"gordon":23,"gquotient":7,"gracefulli":28,"grade":23,"grant":5,"graph":[11,23],"graphic":[4,5,6,7,23],"greater":14,"greedi":7,"grevlex":[7,14,25],"grid":23,"gridlink":6,"groebner":[7,16,18,25],"group":[0,7,9,10,13,14,15,16,19,22,23,24,25,27],"grow":[7,23],"gt":14,"gtz2011":[15,19],"guarante":[0,7,19,25,27],"guess":[7,21],"gui":[4,6,9,24],"gz":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],"h":[0,4,7,8,14,19,23,25],"ha":[0,2,4,5,6,7,8,9,13,14,15,16,17,19,21,22,23,25,27,28],"had":15,"hahcheagbdf":23,"half":0,"hall":[3,10],"hand":14,"handed":[7,12,25],"handi":4,"handl":[7,9,14,17,25],"hang":6,"happen":[7,17,19,23,25],"hard":[0,5,7,9,25],"hardest":4,"has_finite_vertic":[7,25,28],"has_obstruct":14,"hasattr":7,"hash":2,"hashabl":23,"hat":[6,19],"have":[0,2,4,5,6,7,8,9,13,14,15,16,17,18,19,21,23,24,25,27,28],"hcdbbfhegbdac":11,"head":23,"header":4,"heart":12,"heavi":[7,25],"heegaard":[6,10],"heegaardsplit":24,"height":[0,23],"help":[1,7,8,14,15,16,25],"henc":[7,14,25,28],"henri":[3,19],"herald":[7,9,25],"here":[0,4,5,6,7,9,11,13,15,16,17,18,19,21,23,25,28],"hfhat":23,"hfk":23,"hh":0,"hierarchi":28,"high":[6,7,9,14,21,22,28],"high_precis":[0,7,8],"higher":[7,8,15,21,27],"highest":0,"hikmot":[7,9,27,28],"hildebrand":[7,25],"histori":5,"hit":[5,9,12,15,16,26],"hkl":[7,25],"hodgson":[2,7],"hoffman":27,"hold":[2,12,14],"holonomi":[0,7,13,17,21,27],"holonomy_accuraci":7,"holonomy_matrix_entri":[7,21],"holonomygroup":[0,7],"holonomygrouphp":0,"home":[0,4,6],"homeomorph":[7,25],"homework":26,"homolog":[7,25],"homologi":[0,2,3,5,7,9,11,23,25],"homological_longitud":[7,25],"homomorph":[7,14],"homotop":7,"homotopi":[7,25],"hood":[7,9,28],"hope":[0,7,8,23,25],"hopf":[0,23],"horizont":23,"horobal":[0,4,7,9,24],"horospher":0,"horoview":4,"host":[2,3,4,7,9,23,25],"hot":12,"hour":[7,26],"hover":12,"how":[0,4,5,6,7,8,14,15,18,21,23,25,28],"howev":[6,7,8,15,17,25,28],"howpublish":3,"htlinkexterior":[0,2,6,9,22],"http":[3,4,6,7,14,15,17,19,23,25],"hue":0,"hyperbol":[0,2,5,7,8,9,11,13,19,22,23,25,26,27],"hyperbolic_adjoint_tors":7,"hyperbolic_sln_tors":[7,21],"hyperbolic_tors":[7,21],"hyperbolicli":21,"hyperlink":24,"i":[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,21,22,23,24,25,26,27,28],"icebbgiafhcedb":11,"icerm":26,"icon":6,"icosahedr":11,"icosahedra":11,"icosahedralnonorientableclosedcensu":[0,11],"icosahedralorientableclosedcensu":[0,11],"id":[2,23,28],"idea":17,"ideal":[0,2,5,7,9,11,14,15,18,19,22,25],"ident":[14,15,17],"identif":[2,9,23],"identifi":[0,2,7,11,14,21,23,25],"identitybraid":[0,23],"ignor":[7,25],"ignore_curv":[5,7,9,25],"ignore_curve_orient":[5,7,9,25],"ignore_cusp_ord":[7,25],"ignore_exception_detail":[7,28],"ignore_filling_orient":[5,7,9,25],"ignore_orient":[5,7,9,25],"ignore_solution_typ":7,"ii":[23,26],"iii":23,"ij":[7,14],"ijl":14,"illustr":[7,23,27],"ilya":3,"im":[7,28],"imag":[0,4,6,7,9,13,14,15,19,23,25,28],"imaginari":[14,28],"immut":[7,25],"implement":[5,7,9,17,19,23,27,28],"impli":16,"implicit":[7,25],"implicitli":16,"import":[0,7,14,15,19,21,23,25,27,28],"improv":[3,4,7,9,27],"in_radiu":0,"includ":[1,2,4,5,6,7,9,11,12,13,15,17,23,25,26,27,28],"include_intermedi":[5,7,9],"include_thin_part":7,"include_word":[0,7,9],"incom":12,"incomplet":7,"incompress":7,"incorpor":[6,9,10],"incorrect":[7,27],"incorrectli":[5,9],"increas":[7,13,23,25,27,28],"inde":[7,17,28],"independ":[19,28],"index":[0,2,7,12,14,16,23,25,28],"indexerror":0,"indic":[0,2,7,12,14,16,25,27,28],"individu":2,"induc":[0,14],"induced_represent":14,"inequ":[14,28],"inequalitynumericalverifyerror":28,"inevit":8,"infimum":0,"infin":[0,23],"infinit":0,"infinitytangl":0,"info":[0,7,12,24,25],"inform":[7,12,14,19,25,28],"infrastructur":9,"infti":[7,19],"initi":[2,3,7,9,23,25,28],"initial_map_gives_link":23,"initial_shap":28,"inject":[0,7],"inner":16,"inno":4,"input":[0,2,7,12,14,23,25,28],"inscrib":0,"insert":16,"insid":[0,3,7,9,17,21,23,27],"inside_view":[5,7,9],"insist":2,"inspir":[19,28],"instal":[1,2,4,5,7,9,17,25],"installsnappi":6,"instanc":[2,4,7,23],"instanti":0,"instead":[0,5,7,9,14,16,17,23,25,27,28],"institut":5,"instruct":[0,4,6,9,26],"insuffici":7,"insufficientprecisionerror":[0,7,27],"int":[7,25],"integ":[0,7,14,23,25,28],"integr":[7,14,25],"intend":[7,25],"interact":[4,6,7,22,25],"interest":[0,28],"interfac":[4,5,6,7,22],"interior":[0,7,9,22,25],"intermedi":[7,23,25,28],"intern":[7,25,27],"internet":[13,15],"interoper":28,"intersect":[7,17,25,27],"interv":[0,5,7,9,14,15,16,27],"interval_bits_prec":7,"interval_checked_canonical_triangul":28,"interval_value_at_point":28,"interval_vector_is_contained_in":28,"interval_vector_mid_point":28,"interval_vector_union":28,"intervalnewtonshapesengin":28,"intrins":[5,7,9,19,25,27],"intro":26,"introduc":[7,25],"introduct":14,"introspect":[21,26],"invalid":0,"invari":[5,7,9,16,19,24,25,27],"invariant_trace_field_gen":[7,21],"invention":23,"invers":[0,23,28],"invok":[7,12,23,28],"involv":[7,23,25,28],"ipython":[4,9,15],"irreduc":[7,15,25],"irregular":25,"is_abelian":0,"is_altern":23,"is_amphicheir":0,"is_bridg":23,"is_certifi":28,"is_complet":[7,25],"is_dihedr":0,"is_direct_product":0,"is_full_group":0,"is_geometr":14,"is_induced_from_psl2":14,"is_invertible_knot":0,"is_isometric_to":[0,7,23,25],"is_numer":[14,15,16,17,18],"is_orient":[7,25],"is_planar":23,"is_polyhedr":0,"is_pu_2_1_represent":14,"is_real":14,"is_s5":0,"is_two_bridg":7,"isaugktg":11,"isinst":[7,23],"isn":[7,23],"isol":[7,25],"isom":[0,7,25],"isometr":[2,5,7,9,25,27],"isometri":[0,2,5,7,9,25,27],"isometry_signatur":[5,7,9,25,27],"isomorph":[7,9,23,25],"isomorphisms_to":[7,25,27],"isosig":[3,7,25],"isotop":23,"isotopi":[7,23,25],"issu":[1,7,23,24],"iszeroexactverifyerror":28,"item":[0,12,14],"iter":[2,7,11,15,16,17,25,28],"itervalu":16,"ith":23,"its":[0,4,5,6,7,15,17,23,24,25,27,28],"itself":[0,4,7,16,17,23],"j":[0,3,7,23,28],"jacobian":28,"januari":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],"jean":[3,9],"jeff":[0,3,5],"jeffrei":3,"jennet":[3,9],"jettison":18,"ji":14,"jim":[2,3],"joe":2,"join":[12,23],"jold":23,"jone":23,"jones_polynomi":[9,23],"jose":[3,9],"jth":23,"juli":9,"june":9,"just":[4,6,7,8,9,13,14,16,17,19,23,25,28],"jvlalqqdeefgihihiokcmmwwswg":7,"k":[2,7,19,21,23,25,27,28],"k1":23,"k10n1":23,"k10n11":23,"k11n11":23,"k11n34":23,"k11n42":[7,21],"k12a123":23,"k12a456":25,"k12n123":[7,25],"k12n813":[7,25],"k13n123":23,"k13n4587":7,"k14n16945":[7,25],"k14n2345":23,"k14n26039":7,"k2":23,"k3_1":[7,25],"k3a1":23,"k4_3":2,"k5_1":2,"k5_19":23,"k5_2":2,"k5_3":2,"k5a1":23,"k6_21":7,"k6a2":23,"k6a3":23,"k7_1":0,"k8n1":[2,23],"k9a1":23,"k_1":28,"k_2":28,"k_i":28,"k_n":28,"kabaya":[7,25],"kawauchi":[7,25],"kde":6,"keep":1,"kei":[0,2,7,12,14,15,16,23,25,26],"kernel":[0,4,5,7,8,24],"kernel_cod":[7,25],"key_z":14,"keyword":[2,7,25],"kill":[7,25],"kind":[7,16,25,28],"kirk":[7,9,25],"kjuchukova":23,"klein":[0,7,25],"klpproject":23,"knot":[2,3,6,7,8,9,11,16,23,25],"knot_floer_homologi":[9,23],"knot_group":23,"knots_vs_link":2,"knotscap":[7,25],"knottheori":23,"know":[3,6,7,28],"known":[7,16,23,25,28],"kofman":[2,3,7],"koseleff":14,"krawczyk":[9,28],"krawczyk_interv":28,"krawczykshapesengin":28,"kwarg":[7,23,25],"l":[2,7,8,23,25,27],"l0":23,"l1":23,"l104001":[7,25],"l10n107":[7,25],"l10n111":7,"l11a127":23,"l11n138":2,"l11n247":[7,25],"l12n1097":2,"l12n1181":[7,25],"l12n123":23,"l13n11308":23,"l13n579":25,"l13n5885":7,"l14a5150":23,"l14a7689":23,"l14n1000":23,"l14n12345":23,"l14n13364":2,"l14n13513":2,"l14n15042":2,"l14n24425":2,"l14n24777":2,"l14n26042":2,"l14n467":23,"l14n64110":23,"l2":23,"l20935":[7,25],"l5a1":[7,25,27],"l6a5":7,"l7a2":[7,25],"l7n1":23,"l7n2":7,"l8n2":23,"l9a21":[7,25],"l_0":23,"l_1":23,"l_copi":23,"l_i":23,"l_space_knot":23,"la":7,"label":[12,14,23,27],"lack":[13,22],"lackenbi":27,"lambda":[14,28],"languag":5,"larg":[0,2,5,7,9,14,22,23,25,27],"larger":[2,6,7,11,14,16],"largest":[0,23],"last":[0,4,5,6,7,9,12,15,23,25,28],"later":[0,5,6,7,15,16,25],"latest":4,"latin":9,"latter":[6,7,12,15,16,23,25],"lbar":23,"lcgbcikhlbjecgafd":11,"lead":14,"leaf":16,"leap":6,"learn":[5,26],"least":[0,4,7,8,17,23,25],"left":[0,7,12,14,25,28],"legaci":14,"legal":28,"lemma":[7,14,25],"len":[0,2,7,11,15,17,23,25,27],"length":[0,5,7,8,9,23,27,28],"length_spectrum":[7,9],"length_spectrum_alt":[5,7,9],"length_spectrum_alt_gen":[5,7,9,27],"length_spectrum_dict":0,"lengthi":7,"lengthspectrumgeodesicinfo":7,"leq":7,"less":[7,14,21,23,27,28],"let":[3,6,7,15,17,25,28],"letter":[0,23],"level":[16,23],"lexicograph":[7,16,18,25],"lh":[14,28],"lhss":28,"li":[2,3,5,9],"libglu":4,"libglu1":4,"librari":[2,3,4,22],"licata":27,"licens":5,"lickorish":[7,25],"lift":[0,7,15,16,18,19,25],"lift_to_sl":7,"lift_to_sl2":7,"like":[4,6,7,8,9,22],"limit":[2,7,17,18],"line":[0,4,5,12,13,16,17],"linear":[7,12,28],"linearli":23,"link":[0,2,3,4,5,7,9,11,25,27],"link_compon":23,"linkexterior":[0,2,22],"linking_matrix":23,"linking_numb":23,"lint":3,"linux":[5,9],"lipschitz":[3,9],"list":[0,2,5,7,9,11,13,14,15,17,19,23,25,26,28],"listofapproximatealgebraicnumb":7,"listofshapeinterv":7,"listofshapesinterv":7,"litherland":23,"live":14,"livingston":[7,9,25],"ll":4,"lll":[7,21,27,28],"llr":[0,7,25],"lm":26,"ln":6,"load":[0,7,25],"local":[0,6,7,9,25],"locat":[12,14],"log":[0,7,14,25,28],"log_gluing_lhs_deriv":28,"log_gluing_lhs_derivatives_spars":28,"log_gluing_lhss":28,"logarithm":[7,14,28],"logliftnumericalverifyerror":28,"long":[0,6,7,14,23,25,26],"long_edg":[14,16],"longer":[7,19,25,27],"longest":23,"longitud":[0,7,12,17,19,25],"longitude_0_0":[7,25],"longitude_1_0":[7,25],"look":[0,2,5,7,9,17,19,25],"lookup":[0,2],"loop":[7,16,17],"loos":16,"lose":14,"lost":16,"lot":0,"low":[6,7,14],"low_index":[4,7,9,25],"low_precis":8,"lower":7,"lowindexsubgroupsfpgroup":7,"lrlr":[7,25],"m":[0,2,3,4,5,6,7,9,11,12,14,15,16,17,19,21,23,25,26,27,28],"m000":0,"m003":[0,7,13,15,17,18,25,27],"m003__sl2_c0":15,"m003__sl2_c1":15,"m004":[0,7,8,11,13,15,21,25,26,27],"m004_drill":[7,27],"m006":7,"m007":[2,7,25],"m009":[2,14,15,17],"m010":[2,14],"m011":[7,13,14,15,17,25],"m011__sl2_c0":17,"m011__sl2_c1":17,"m015":[0,7,25,27,28],"m016":[7,23,25],"m018":2,"m019":[7,28],"m069":18,"m1":[7,9,25],"m113":[7,25],"m123":[7,25],"m124":2,"m125":[0,2,7,25],"m128":2,"m129":[2,7],"m131":2,"m137":28,"m153":2,"m159":17,"m177":2,"m2":[7,9],"m202":[2,7],"m203":27,"m217":2,"m218":2,"m289":23,"m292":7,"m371":[16,17],"m410":17,"m412":[7,27,28],"mac":[4,5,9],"mac_osx_app":4,"maco":9,"made":[0,7,23],"magma":[0,7,9,13,14,18,25],"magma_out":[15,17],"magma_str":0,"magma_templ":14,"mai":[1,6,7,9,12,23,25],"main":[6,22,25],"maintain":23,"mainten":3,"major":[4,9],"make":[0,4,6,7,9,12,13,23,24,25,27],"malik":[3,9],"mamba":6,"manag":6,"manfiold":3,"mani":[1,5,6,7,8,9,15,16,23,25,27],"manifold":[0,3,4,5,6,8,9,10,12,13,14,15,16,17,18,19,22,23,25,26,27,28],"manifold_thunk":14,"manifoldap":8,"manifoldhp":[0,7,9,22],"manifoldt":[2,22],"manjaro":6,"manner":6,"mantissa":8,"manual":[4,23],"many_diagram":23,"map":[2,7,10,14,19,25],"marc":[3,5,10,15],"march":9,"marguli":[5,7,9],"mark":[0,3,7,25],"mash":23,"maslov":23,"massiv":[27,28],"mat_entri":7,"mat_solv":28,"match":[2,7,25],"match_kernel":7,"materi":26,"math":[14,23,28],"mathbb":[0,7],"mathemat":[5,6,10,13],"mathew":[7,25],"matric":[0,7,13,14,19,25,28],"matrix":[0,5,7,9,14,15,17,19,23,25,27,28],"matrix_times_spars":28,"matrix_trac":15,"matter":[14,23],"matthia":[3,5,7,9,10,19,25,27],"max":7,"max_band":23,"max_band_len":23,"max_len":[5,7,9],"max_reach":0,"max_seg":7,"max_tri":23,"max_twist":23,"maxim":[0,5,7,9,14,27,28],"maxima":23,"maxima_method":0,"maxima_wrapp":0,"maximawrapp":0,"maximize_injectivity_radiu":[0,7],"maximum":[0,7,23],"mayb":7,"mca":23,"mdbcecejamhblckgdfi":11,"me":12,"mean":[7,14,16,17,18,19,23,25,28],"meaningless":[7,23],"meant":7,"measur":[0,7,27],"mechan":15,"meet":[7,23,25],"meld":12,"member":0,"memori":[0,14,26],"memory_limit":14,"mention":[7,19,25],"menu":[6,12],"merdian":[7,25],"mere":9,"merg":[7,24],"meridian":[0,2,7,12,17,23,25],"meridian_0_0":[7,25],"meridian_1_0":[7,25],"mesa":4,"messag":[1,6,15,17],"method":[0,2,5,7,9,14,15,16,17,18,21,23,24,25,26,27,28],"methodmappinglist":16,"meyerhoff":7,"mfld":[2,7,25],"mfld_hash":2,"mhat":14,"microsoft":4,"middl":[12,14],"middle_edg":14,"midpoint":[7,28],"might":[0,7,14,15,16,17,18,19,25,27],"milnor":[5,9,23],"min":23,"min_strand_index":23,"mingw":4,"mingw64":4,"miniforge3":6,"minim":[7,23,25],"minimize_number_of_gener":[7,17,25],"minimum":[7,23],"minkowski":0,"minor":24,"mint":6,"minu":23,"minut":[7,26],"mirror":[0,23],"misc":[0,3],"miss":19,"mistak":7,"mkdir":6,"mklink":4,"mkstemp":14,"mm":3,"mod":[5,7,9,14,15,16,17,18,23,25],"mode":[7,9,23,25],"model":[0,23],"modern":9,"modifi":[0,6,7,14,19,23],"modul":[0,2,4,5,7,9,14,15,16,17,18,19,23,25,28],"modulo":[7,27],"modulu":[7,23],"mojav":9,"monterei":9,"more":[0,2,5,6,7,8,9,12,14,15,16,21,23,24,25,27,28],"moreov":23,"mors":23,"morse_diagram":23,"morse_numb":23,"morselink":23,"morselinkdiagram":23,"morwen":[2,3],"most":[0,1,2,4,6,7,9,16,19,25,27,28],"mostli":9,"mous":12,"move":[5,7,9,12,23,25],"msvc":4,"msys2":4,"msys64":4,"mu":7,"much":[0,1,4,7,9,16,23,24,25],"mult":7,"multi":23,"multifacet":6,"multigraph":23,"multipl":[0,7,8,9,14,17,19,23,25,28],"multipli":[8,14,28],"multiply_and_simplify_term":14,"multiply_and_simplify_terms_in_rur":14,"multiply_el":0,"multiply_term":14,"multiply_terms_in_rur":14,"multivar":23,"multivari":[0,7,14,25],"must":[0,4,7,9,14,23,25,27],"mv":[6,23],"mvvlalqqqhfghjjlilkjklaaaaaffffffff":27,"mx":6,"mydict":14,"myideal":[7,14,25],"mylist":2,"mys2":4,"mysolut":14,"n":[0,2,3,5,7,9,10,13,14,16,17,21,23,25,27,28],"n0":[7,25],"n1":7,"n2":[7,23],"n3":7,"n4":7,"naiv":23,"name":[0,2,4,6,7,14,15,16,23,25],"namedtemporaryfil":0,"nano":4,"natan":[9,23],"nathan":[3,4,5],"nation":5,"nativ":[9,18,28],"natur":[7,14,23],"ncube05_30945":11,"ncube05_30946":11,"ncube05_30947":11,"nearest":0,"necessari":[7,13,15,27],"necessarili":[5,7,27],"need":[0,1,4,6,7,14,17,21,23,25,28],"neg":[7,8,9,14,23,25,28],"neighbor":7,"neighborhood":[0,5,7,9,27],"nest":[7,13,25],"neumann":[7,14,25],"neumannzagiertypeequ":[7,25],"never":27,"nevertheless":0,"new":[6,7,12,17,23,24,25,26],"new_convent":23,"new_curv":7,"new_displac":0,"new_nam":[7,25],"new_ti":0,"newer":[4,6,9],"newobj":0,"newton":28,"newton_iter":28,"next":[5,6,7,9,23,25,27],"nf":28,"nice":28,"nicocld02_00000":11,"noct03_00007":11,"noct03_00029":11,"noct03_00047":11,"noct03_00048":11,"nois":14,"non":[0,2,7,9,11,12,13,14,15,19,23,25,27,28],"non_peripher":[7,25],"non_trivial_generalized_obstruction_class":14,"nonabelian":0,"nonaltern":2,"nonalternatingknotexterior":[0,2,22],"none":[0,2,5,7,9,14,21,23,25,28],"nonempti":[7,25],"nongeometr":7,"nonneg":7,"nonorient":[2,7,25],"nonorientableclosedcensu":[0,2,22],"nonorientablecuspedcensu":[0,2,22],"nonplanar":23,"nontrivi":[0,7,25],"nonzero":[7,23,25],"nonzerodimensionalcompon":[13,16,17],"nor":7,"norm":[7,23,25],"normal":[7,9,14,24,25,28],"normal_boundary_slop":[7,25],"normal_surfac":[7,25],"normalize_whitespac":[7,14,28],"notar":9,"notat":[2,14],"note":[0,3,5,6,7,9,14,16,19,23,25,26,27,28],"noth":16,"notic":9,"notimplementederror":0,"notion":19,"nov":9,"novemb":9,"now":[2,4,5,6,7,9,14,15,16,17,19,23,25,26],"ntet01_00000":11,"nu":23,"nulliti":[7,25],"num_compon":23,"num_cusp":[0,2,7,23,25],"num_edg":0,"num_fac":0,"num_finite_vertic":0,"num_gener":0,"num_ideal_vertic":0,"num_original_gener":0,"num_rel":0,"num_subdivis":0,"num_tet":2,"num_tetrahedra":[2,7,14,25,28],"num_vertic":0,"number":[0,2,5,7,8,9,14,15,16,17,18,23,24,25,28],"number_field":[14,15,28],"numberfield":[15,18,28],"numberfieldel":18,"numer":[2,7,12,13,14,15,17,23,27,28],"numerator_closur":23,"numeric12":[7,28],"numeric15":[7,28],"numeric21":7,"numeric24":7,"numeric3":[7,28],"numeric30":0,"numeric6":[7,28],"numeric9":[0,7],"numerical_sol":16,"numerical_solut":14,"numericalverifyerror":28,"nval":7,"o":[0,4,5,9,14],"o10_150721":2,"o10_150722":2,"o10_150723":2,"o31":0,"o31_gener":0,"o31matric":0,"o9_00639":7,"obei":23,"obeidin":[3,7,9,25],"obj":14,"object":[0,2,7,14,15,16,17,18,25,26,28],"object2r":0,"obscur":0,"obsolet":14,"obstruct":[5,7,9,13,14,15,16,17,18,25],"obstruction_class":[7,14,15,16,25],"obstrut":3,"obtain":[0,7,14,15,17,19,23,25,28],"obviou":23,"occur":7,"octahedr":11,"octahedra":11,"octahedralnonorientablecuspedcensu":[0,11],"octahedralorientablecuspedcensu":[0,11],"ocube01_00002":11,"odd":[7,14,25],"odode02_00913":11,"of_link":[7,27],"off":[7,28],"offer":[6,19],"offici":6,"offset":2,"often":[0,6,7,25,27],"oicocld01_00000":11,"old":[6,7,9,12,23,24],"old_precis":14,"older":[6,7],"ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo":[7,25],"ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_ab":[7,25],"ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_ba":[7,25],"ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_bababbbbbc":[7,25],"ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_bbbcbabb":[7,25],"ollzlpwzqqccdeghjiiklmnmnnuvuvvavovvffffo":[7,25],"omega":23,"omit":6,"onc":[7,12,17,25],"one":[0,2,4,6,7,8,9,11,12,13,14,15,16,17,19,21,23,25,27,28],"one_dim_sol":17,"ones":[0,7,14,15,17,19,23,25],"onli":[0,1,2,5,7,8,9,11,12,14,15,16,17,19,23,25,27,28],"onto":[5,9],"ooct01_00000":7,"ooct01_00001":[7,11],"ooct02_00001":11,"ooct02_00002":11,"ooct02_00003":11,"ooct02_00005":11,"ooct04_00027":11,"ooct04_00034":11,"opcod":0,"open":[1,7,12,23,25],"opengl":4,"openssh":4,"opensus":6,"oper":[0,12,18,28],"opinion":5,"oppos":23,"opposit":[0,7,23],"optim":[7,21],"optimize_overcross":23,"option":[0,2,5,7,9,12,14,17,23,25,28],"orbifold":[0,7,22,25],"order":[0,2,4,7,12,23,25],"order_bi":2,"ordinari":[7,8],"org":[3,4,6,7,13,14,15,17,19,23,25],"orient":[0,2,5,7,9,11,12,13,16,23,25,27,28],"orientableclosedcensu":[0,2,22],"orientablecuspedcensu":[0,2,5,9,15,17,22,27],"orientation_cov":[7,25],"origin":[0,2,7,23,25],"original_gener":0,"original_index":0,"orthogon":0,"oscil":[7,25],"otet02_00001":11,"otet05_00000":11,"otet05_00001":11,"otet20_00022":7,"other":[0,2,3,5,6,7,12,13,16,17,19,21,23,25,28],"other_knot":23,"otherwis":[0,7,14,16,23,25,28],"our":[6,15,23,24],"ourselv":17,"out":[0,7,14,15,17,19,21,28],"out_radiu":0,"output":[7,14,15,17,21,25,27,28],"outsid":[0,18],"over":[0,7,8,9,12,14,15,16,23,25],"overcross":23,"overflatten":16,"overstrand":23,"overview":[16,18],"overwrit":28,"own":[4,6,7,14],"p":[0,3,6,7,14,15,16,17,19,23,25],"p_comp":0,"p_max":[7,25],"p_min":[7,25],"p_uncomp":0,"pace":0,"pacher":[7,25],"pachner":[7,25],"pachner_search_tri":[7,25],"pack":0,"packag":[4,6,7,14,23,25],"pacman":[4,6],"page":[2,6,26],"pair":[0,7,14,23,25,28],"pairing_matric":0,"pairing_word":[0,7],"pairwis":0,"papbdgahimceopnfklj":23,"paper":[5,7,9,14,23,25,28],"parabol":[7,25],"parallel":[7,14],"paramet":[2,7,13,14,16,23,25,27,28],"parametr":[7,19,25],"parent":[0,7,23],"pari":[0,3,7,14,15,16,18],"pariti":[0,7],"pars":[7,14,15,17,25],"parse_solut":14,"parse_solutions_from_fil":14,"part":[4,7,8,10,13,14,25,26,27,28],"partial":[5,7,19],"particular":[5,7,9,13,16,18,23,25,27,28],"particularli":6,"pass":[0,2,7,12,23,25,28],"passes_at_four":[7,25],"past":12,"path":[4,6,7,17,23,25],"path_to_fil":15,"patterson":[2,7],"pd":23,"pd_code":23,"pdf":[9,23],"pdf_doc":23,"peer_cod":23,"pencil":12,"penner":7,"pentagon":[7,25],"penultimateshap":28,"peopl":13,"per":[7,19,25],"perform":[6,7,9,23,25,28],"period":[7,25],"peripher":[7,9,13,14,19,25,27],"peripheral_curv":[0,7,17,25],"peripheral_data":[7,25],"perl":4,"perman":[7,25],"permut":[7,24,25],"permutation_rep":[7,25],"permutationgroupel":[7,25],"persist":0,"perspect":23,"pertain":7,"pfaff":23,"pgl":[7,9,14,19,25],"pgl2":[15,17],"phi":[7,21],"philipp":[3,9],"pi":[0,7,14,25,27,28],"pick":[7,14,15,16,17,19,23,25,28],"pickl":0,"pickletool":0,"pickup":23,"pictur":[0,4,7],"piec":[7,23],"piecewis":12,"pin":[4,6],"pioneer":[21,27],"pip":[4,6],"pip_instal":4,"pitfal":7,"pl":[7,12,25],"place":[8,12,23],"plain":[14,23],"plan":[6,15],"planar":[5,7,9,12,25],"planarmap":23,"plane":[0,5,7,9,12,23],"platform":[1,6,9],"platon":[2,9,22],"pleas":[3,5,6,13,15,23],"plink":[4,7,11,12,23,25],"plu":23,"pm":19,"poincar":0,"point":[0,7,8,12,13,14,16,19,23,25,27,28],"point_in_interv":28,"poldmod":18,"poli":[0,28],"polici":[7,27],"polish":7,"polished_holonomi":[7,21],"polmod":[15,18],"polyhedr":0,"polyhedral_descript":0,"polyhedron":0,"polynomi":[0,7,9,14,15,16,18,19,21,23,25,28],"polynomialr":[0,7,14,25],"polyview":4,"pop":[4,16],"popular":6,"posit":[0,5,7,9,13,14,16,19,23,24,25,28],"possibl":[0,7,23],"possibli":[0,7,16,23,25,28],"postfix":16,"potenti":[0,7,16,27],"power":[5,7,13,23,25],"pquotient":7,"practic":26,"prec":[21,28],"precis":[0,7,9,13,14,16,21,22,24,25,27,28],"precomput":[7,25],"precomputed_solut":[7,25],"prefer":[7,14,15,18,25],"preinstal":6,"preliminari":[9,10,13],"prepackag":6,"present":[0,7,13,14,15,23,24,25],"preserv":[0,5,7,9,23,25],"presum":[7,25],"pretti":4,"pretzel":23,"previou":[16,23,27],"previous":6,"primari":[3,7,25],"prime":[7,18,23,25],"prime_decomposit":23,"primes_spec":[7,25],"print":[0,2,3,7,9,11,12,14,15,17,25,28],"print_progress":23,"prior":[7,25],"privat":6,"privileg":6,"prob_type_1":23,"prob_type_2":23,"probabl":[6,7,27],"problem":[5,6,19,26,27],"procedur":28,"process":[4,7,14,17,18,23,25],"processfiledispatch":14,"processmagmafil":[7,14,25],"processor":9,"produc":[0,7,9,14,19,23,25,28],"product":[0,14,27],"program":[3,4,5,6,8,9,23],"programmat":23,"progress":[7,25],"project":[0,7,12,19,23,24,25],"prompt":[4,6],"proof":[7,16],"proper":[0,7],"properti":[7,23,28],"proposit":[14,19],"proto":[0,28],"protocol":0,"provabl":[7,27,28],"prove":[7,16,28],"proven":[7,16,28],"provid":[0,2,6,7,9,12,13,14,16,23,25,28],"pseudo":[7,25],"psl":[7,9,10,13,14,16,25],"pt":14,"ptolemi":[7,9,14,18,25],"ptolemtycoordin":14,"ptolemy_generalized_obstruction_class":[7,25],"ptolemy_obstruction_class":[7,25],"ptolemy_varieti":[7,13,14,15,16,17,18,25],"ptolemycoordin":[13,15,16,17,18],"ptolemygeneralizedobstructionclass":[7,25],"ptolemyobstructionclass":[7,25],"ptolemyvarieti":[13,15,16],"ptolmei":19,"pu":14,"public":[0,5],"publish":[14,19],"pull":[4,12],"punctur":[7,23,25],"purcel":[7,25],"pure":[7,27],"purpos":4,"push":12,"put":[0,5,9,23],"pxi":4,"py":4,"py2app":4,"py_eval_sect":[14,15],"py_eval_variable_dict":[14,15],"pyinstal":4,"pypi":9,"python":[0,2,4,5,7,9,14,15,16,18,22],"python3":[4,6],"python312":6,"python313":4,"pyx":[0,4],"q":[0,7,14,23,25],"q_max":[7,25],"q_min":[7,25],"qaqcjpehnodkbmqigf":[7,25],"qd":3,"qq":0,"quad":[3,7,8,9,25],"quadrupl":14,"quadruples_with_fixed_sum_iter":14,"quantiti":[15,28],"quarter":7,"querri":17,"question":17,"quick":[7,25],"quickstart":26,"quit":[7,25],"quotient":19,"r":[3,7,14,23,25],"r_":28,"r_1":28,"r_2":28,"r_i":28,"r_n":28,"radic":14,"radicaldecomposit":[14,18],"radii":0,"radiu":[0,5,7,9,24],"rai":[7,25],"rais":[0,7,23,25,27,28],"random":[7,9,17,25],"random_link":[0,23],"randomzi":23,"rang":[0,6,7,14,25,28],"rank":[0,23],"rare":19,"rather":[0,5,6,7,9,23,28],"ratio":[7,13,14,17,18,19,25],"ratio_coordin":14,"ration":[0,7,13,14,23,25,28],"rationalfield":[7,14,25],"rationaltangl":[0,23],"raw_form":0,"raytrac":[3,7,9],"re":[6,7,22,25,27,28],"reach":0,"read":[0,4,7,12,14,25],"readabl":15,"reader":[7,19],"real":[0,4,7,14,15,27,28],"real_mpfi":28,"real_mpfr":[0,28],"realfield":[7,28],"realintervalfield":[0,7,27,28],"realiz":[0,7,23],"realli":[4,7,8,14,23,24],"realliter":[0,28],"reason":[0,7,17,19,28],"recal":[7,15,16],"recent":[0,4,6,7,25,27,28],"recip":6,"recogn":0,"recognit":9,"recommend":[5,6,9,15,28],"recomput":7,"reconnect":12,"reconstitut":0,"reconstruct":23,"record":[23,26],"recov":[7,14,19,23,25],"recreat":[7,25],"rect":[7,16,21,25,27,28],"rectangular":[7,27,28],"recurs":[13,23,28],"recycl":12,"red":[6,12],"redesign":9,"redo":24,"reduc":[7,13,14,15,23,25,28],"refer":[7,13,25,26],"refin":[7,28],"reflect":[5,12],"regard":[0,7,23,25],"regina":[6,7,25],"region":23,"regist":6,"regula":11,"regular":[11,15],"reidemeist":23,"reimplement":27,"reindex":7,"reinstal":7,"reject":[7,25],"rel":27,"relabel":7,"relat":[0,3,5,7,9,11,14,15,17,18,19,23,24,25,28],"relationship":14,"releas":[1,4,5,6,9,12],"relev":[7,25],"remain":[7,12],"remark":[0,7,13,14,15,16,17,18,27],"rememb":[12,26],"remov":[0,7,12,14,16,23,25],"remove_finite_vertic":23,"renam":0,"reorgan":9,"repeat":23,"replac":[3,6,7,25],"report":[5,7,13,14,16,17],"repositori":[4,6,9],"repres":[0,7,14,18,19,23,25,28],"represent":[0,7,9,10,13,14,16,21,23,25,27,28],"request":[4,7,23],"requir":[0,2,6,7,8,9,12,15,23,25,27],"resampl":23,"rescal":0,"research":[5,26],"reset":14,"reset_nam":0,"resiz":12,"resolv":23,"respect":[0,7,15,16,19,25,28],"restart":12,"restor":[7,25],"restrict":[2,7],"result":[0,2,5,7,9,14,15,16,17,19,23,24,25,27,28],"retriangl":28,"retriangul":[7,27,28],"retriev":[7,13,16,25],"retrieve_decomposit":15,"retrieve_solut":[7,13,15,16,17,18,25],"return":[0,2,5,6,7,9,14,15,16,17,23,25,26,27,28],"return_all_piec":23,"return_graph":23,"return_isometri":7,"return_matric":[7,25],"return_meridian":23,"revers":[0,7,16,25],"reverse_orient":[7,25],"revisit":[15,17],"rewritten":9,"rh":14,"rho":[7,23],"rho0":7,"ribbon":[2,3,5,7,9,23,25],"ribbon_2_10_7ecd0dc0":23,"ribbon_2_16_3079d007":2,"ribbon_2_23_f9c7aff2":2,"ribbon_cert":2,"ribbon_concordant_link":[5,9,23],"ribbon_mod":[7,25],"ribbonlink":[0,2,5,9,22,23],"riemann":14,"rif":[27,28],"right":[0,4,7,14,28],"right_kernel":23,"rightarrow":19,"rigor":[7,9,25],"ring":[0,7,14,23,25,28],"rise":[7,25],"robert":[3,9],"robust":[5,9],"rocki":6,"rolfsen":[2,7,23,25],"room":12,"root":[15,18,19,28],"roughli":[7,8,25],"rouillier":14,"round":[7,14,25],"roundoff":0,"row":[7,25,28],"rrl":[7,25],"rubinstein":11,"rudd":[3,7,9,25],"run":[1,4,5,6,7,9,17,25,28],"runtimeerror":[7,28],"rur":14,"s0":[14,23],"s000":[0,7],"s1":[14,23],"s123":[7,25],"s2":14,"s2009":19,"s3":14,"s345":0,"s3knot":24,"s3link":24,"s479":7,"s776":7,"s862":2,"s959":0,"s960":0,"s_":[7,25],"s_0_0":[7,15,25],"s_0_1":[7,15,25],"s_1_0":[7,15,25],"s_1_1":[7,15,25],"s_2_0":[7,15,25],"s_2_1":[7,15,25],"s_3_0":[7,15,25],"s_3_1":[7,15,16,25],"s_3_2":17,"s_3_4":[16,17],"safe":[5,9],"safer":7,"sage":[0,6,7,9,13,14,15,18,21,23,24,25,27,28],"sage_link":23,"sage_object":0,"sagemath":[0,5,7,9,23,26,27],"sagemathcloud":6,"sageobject":0,"sai":[0,7,15,18,19,25],"same":[0,2,5,7,9,12,13,14,16,19,21,23,25,27,28],"sampl":[14,16,23],"sanchez":[3,9],"satellit":7,"satisfi":[2,23],"saul":[3,10],"save":[0,7,12,25],"saw":17,"scari":6,"schaeffer":23,"schema":2,"scheme":12,"schleimer":[3,10],"school":26,"scienc":5,"screen":12,"screencast":[24,26],"screenshot":5,"script":[4,6],"sdk":4,"search":[5,6,7,9,25],"second":[0,7,9,12,16,23,25,27,28],"section":[2,6,7,14,19,23,25],"see":[0,2,4,5,6,7,9,11,13,14,15,16,17,19,23,24,25,27,28],"seed":[7,25],"seem":6,"seen":15,"segerman":[3,19],"segment":[0,12],"seifert":[9,11,23],"seifert_genu":23,"seifert_matrix":23,"select":[4,7,12],"self":[0,5,6,7,9,15,23,28],"semant":28,"semifib":[7,25],"send":[2,4,12],"sens":[7,25,28],"sent":[7,25],"separ":0,"septemb":9,"sequenc":[0,2,7,23,25],"session":[7,25],"set":[0,2,4,7,15,16,17,19,23,25,27,28],"set_displac":0,"set_nam":[7,25],"set_peripheral_curv":[7,25],"set_real_precis":[14,15],"set_target_holonomi":7,"set_tetrahedra_shap":7,"set_ti":0,"setofaan":7,"setup":[4,6,14],"setuptool":4,"sever":[2,7,9,19,25,27,28],"shana":3,"shape":[0,7,9,13,14,16,17,21,24,27],"shape1":28,"shape2":28,"shape_accuraci":7,"shape_interv":28,"shapepositiveimaginarypartnumericalverifyerror":28,"shapetyp":28,"share":[0,6],"sheet":26,"shell":[4,7,22,25,26],"sherri":3,"short":[0,7,13,14,17,23,25,27],"short_edg":14,"short_slop":[5,7,9,27],"shortcut":[0,4,7,25],"shorter":[5,7,9,15,16],"shortest":[5,7,9,23],"shortest_longitud":7,"shortest_meridian":7,"should":[3,4,6,7,12,15,23,24,28],"show":[2,5,7,9,14,25],"show_crossing_label":23,"shown":[0,7,23],"shrink_factor":0,"sibl":2,"side":[4,7,12,14],"sierra":9,"sigma":[7,25],"sigma_1":23,"sigma_2_invers":23,"sign":[7,9,14,23,28],"sign_with_interv":28,"signatur":[5,7,9,23,25,27],"signific":[1,8],"significand":8,"significantli":[5,7,9,23,25],"silent":[5,9,23],"silicon":9,"silli":23,"sim":[7,25],"similar":[7,14,15,17,23,27,28],"similarli":[7,15,19,25],"simon":[7,9,13,14,17,27],"simpl":[7,9,23,25,28],"simplequoti":7,"simpler":[5,9,22],"simplex":[7,14,17,25],"simplfic":[7,25],"simpli":[6,7,17,28],"simplic":[7,14,19,27],"simplif":[0,7,9,23,25],"simplifi":[0,7,9,14,23,25,28],"simplified_solut":14,"simplify_link":[7,25],"simplify_present":[7,15,17,25],"simultan":7,"sinc":[0,7,15,16,17,25,28],"singl":[0,5,7,9,23,25],"singular":[7,25],"site":[5,6],"situat":23,"six":7,"size":[2,7,12,19,25,27,28],"skein":23,"skeleton":[7,23],"skip":[2,6,7,14,23],"skipvertic":14,"sl":[0,3,7,9,10,13,14,16,17,25],"sl2c":[0,7,21,27],"slice":[0,2,3,5,7,9,25],"slice_obstruction_hkl":[5,7,9,25],"slide":[12,15],"slightli":7,"slope":[7,25,27],"slow":[7,25,27],"slower":[0,7,8,28],"small":0,"smaller":[0,2,7,16,23,25],"smallest":[0,16,28],"smooth":9,"smoothli":1,"snap":[3,6,7,8,21,24,28],"snappea":[0,2,4,5,7,8,12,22,25],"snappea_manifold_directori":[7,25],"snappeafatalerror":0,"snappeapython":24,"snappi":[0,1,2,4,7,8,9,10,11,13,14,15,16,17,18,19,21,23,24,25,26,27,28],"snappy_15_knot":[2,6],"snappy_env":6,"snappy_venv":6,"snappycor":4,"snappynumb":7,"so":[0,1,2,4,5,6,7,8,9,14,15,16,17,21,23,25,26,27,28],"sobj":0,"softwar":6,"sol":[7,15,16,17,18,25],"solid":11,"solut":[7,13,14,19,25,27,28],"solution_typ":[7,25],"solutions_from_magma":[7,14,25],"solutions_from_magma_fil":14,"solv":[7,17,25,28],"solver":23,"some":[0,4,5,6,7,8,9,14,16,17,18,19,22,23,25,27,28],"someth":[4,7,25,28],"sometim":[0,6,7],"somewhat":[0,28],"soon":23,"sort":[0,7,16,23,25],"sourc":[0,4,7,9,25],"space":[0,6,7,11,14,22,25,27],"span":14,"spars":[0,23,28],"sparse_m":28,"spec":[7,25,27],"special":[6,16,28],"specif":[0,4,7,9,16,25],"specifi":[0,2,7,8,14,17,22,23,25,27,28],"spectrum":[5,8,9],"speed":[27,28],"sphere":[0,7,23,25],"spherogram":[3,4,7,23,25],"sphinx":4,"spin":[7,25],"spine":[0,5,9],"spine_radiu":0,"split":[7,9,10,14,23,25,28],"split_link_diagram":23,"splitting_surfac":7,"spun":[5,7,9,25],"sqlite3":[2,4],"sqrt":[0,27,28],"sqrtlincombin":28,"squar":[16,28],"square_extens":28,"sr":0,"src":0,"stabil":15,"stabl":28,"stai":16,"stand":[4,9],"standard":[7,23,25],"start":[0,4,6,7,12,14,17,23,28],"startswith":7,"state":12,"statement":14,"static":[14,28],"statist":7,"stavro":[7,19,25],"step":[6,7,10,13,23,25],"still":[7,13,14,16,17,18,25],"stl":[0,9],"stop":[0,5,7,9,12,23],"stopper":[0,7],"stopping_displac":0,"store":[0,2,7,25,28],"str":[0,7,25],"straight":4,"strand":[0,23],"strategi":23,"stream":7,"strengthen":27,"strict":[7,25],"strictli":7,"string":[0,7,12,14,23,25],"strip":[7,14,25],"strongli":[6,7,25],"structur":[0,5,7,8,9,13,14,22,23,25,27],"studi":[3,5,9,10],"studio":4,"stupid":4,"style":[9,15,25],"su":4,"sub":24,"subclass":[2,15,16,18,23,25,27,28],"subcompon":4,"subdirectori":6,"subdivid":[0,7],"subdivis":7,"subgraph":23,"subgroup":[0,7,19,25],"sublink":23,"subpackag":4,"subrang":2,"subsequ":[6,23,27],"subset":[7,25,28],"subsidiari":8,"subsimplex":[7,25],"subsimplic":15,"subsum":[7,25],"subtl":[5,9],"succe":7,"succeed":[7,23,28],"success":[7,25,27],"successfulli":[23,28],"sudo":6,"suffer":[19,28],"suffici":[7,28],"suffix":0,"suggest":[6,13,15],"suit":18,"suitabl":[0,7,25],"sum":[7,23,28],"summand":[23,28],"summar":23,"summari":7,"super":[9,23],"superset":7,"superus":6,"suppli":[11,14,17,27],"support":[0,1,2,4,5,6,7,9,12,14,16,17,18,19,21,25,28],"suppos":28,"suppress":[7,15,25],"sur":9,"sure":[4,6],"surfac":[7,9,10,14,24,25],"surgeri":[7,25,27],"suspens":[7,25],"svg":9,"switch":[6,7,9,23],"sy":[4,6],"sym":14,"symbol":[0,4,7,25],"symmetr":0,"symmetri":[0,7],"symmetric_triangul":7,"symmetry_group":[0,7],"symmetrygroup":[7,22,24],"symplect":[7,25],"symplectic_basi":[7,25],"syntax":2,"system":[6,9,17,19,23],"systol":7,"syu":4,"szab\u00f3":[3,9,23],"t":[0,2,6,7,8,21,23,25],"t02333":7,"t02774":28,"t1":23,"t12047":7,"t12047_drill":7,"t2":23,"t3m":[4,24],"t_complex":7,"t_frac":7,"t_int":7,"t_real":7,"ta":0,"tab":[0,9,13,15,26],"tabl":[2,7,13,17,23,25],"tabul":[2,11,25],"tail_vertex_index":0,"take":[0,7,14,15,19,23,25,27,28],"taken":[2,9,19],"tamassia":23,"tangl":[0,9,23],"tar":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],"target":[7,23],"task":6,"taskbar":4,"tau":[7,21,23],"tb":0,"techniqu":27,"tell":[16,27],"tempfil":[0,14],"templat":14,"template_path":14,"temporari":[14,17],"ten":7,"tend":[0,23],"term":[0,5,7,14,25,28],"termin":[6,28],"tessel":11,"test":[0,1,4,6,7,9,14,25,28],"tet":[7,14],"tetrahedr":[7,9,11,27,28],"tetrahedra":[0,2,3,5,7,9,11,14,15,17,21,25,28],"tetrahedra_field_gen":[7,21],"tetrahedra_shap":[7,14,16,21,27,28],"tetrahedralnonorientablecuspedcensu":[0,11],"tetrahedralorientablecuspedcensu":[0,11],"tetrahedron":[7,14,15,22,24,25,27],"tetrahehdra_shap":14,"text":[0,2,4,7,25],"th":[7,15,19,23],"than":[0,2,5,7,9,14,15,16,21,23,27,28],"thank":9,"thei":[0,2,5,7,9,12,15,16,17,23,25,27,28],"them":[0,4,5,6,7,14,17,23,27,28],"theorem":[7,16,25,27,28],"theori":[5,9,16],"thereof":[7,25],"thi":[0,2,4,5,6,7,8,9,12,13,14,15,16,17,18,19,21,22,23,24,25,27,28],"thin":[0,7,12],"thing":[0,1,4,8,12,19,22,26],"think":[7,14],"third":7,"thistlethwait":[2,3,7,12,23,25],"those":[4,5,7,9,15,18,19,23,25,28],"though":[0,4,7,14,25,27],"thought":[7,19,25],"three":[0,1,7,14,23,25],"through":[2,7,14,16,17,25,27],"throughout":8,"throw":27,"thrown":23,"thu":[0,5,7,9,14,15,16,17,19,25,27,28],"thurston":[7,14,19,25,26],"ti":[0,7],"ticket":1,"tighter":[5,9],"tikz":9,"tilt":[7,28],"tiltinequalitynumericalverifyerror":[7,28],"tiltiszeroexactverifyerror":28,"tiltprovenpositivenumericalverifyerror":28,"tilttyp":28,"time":[0,4,5,6,7,8,9,13,14,23,25,28],"tip":4,"tip_vertex_index":0,"titl":3,"tk":[4,6],"tkinter":[4,6],"tmp":17,"tmppnsc8":17,"to_magma":[7,14,15,25],"to_magma_fil":[14,15],"to_pur":14,"todo":13,"togeth":[7,12,14,16,22,23,25],"too":[6,7,12,16,23,25,27],"took":17,"tool":[4,6,12,13],"toolchain":4,"top":12,"topic":18,"topolog":[0,7,9,25],"topologi":[0,3,5,6,7,25],"tori":7,"torsion":[7,14,21],"toru":[7,22,23,25],"total":[7,25],"total_rank":23,"touch":7,"tower":28,"trace":[0,7,13,16,19,24,27],"trace_field_gen":[7,21],"traceback":[0,7,25,28],"traci":[3,10],"tradit":23,"transcendent":16,"transform":[7,25],"transit":[7,25],"translat":[0,7,9],"transpos":23,"trefoil":7,"tri":[7,13,16,17,23,25],"triangl":7,"triangul":[0,2,5,7,9,15,16,17,19,22,23,28],"triangular":19,"triangulation3":[7,25],"triangulation_isosig":[2,5,7,9,25],"triangulationhp":[7,25],"trigdepend":7,"trigdependenttrycanon":7,"trigdependenytrycanon":7,"tripl":[7,14],"trival":11,"trivial":[7,15,16,17,18,19,23,25,28],"true":[0,2,5,7,9,11,14,16,17,21,23,25,27,28],"truli":[14,28],"truncat":[14,17],"try":[6,7,15,17,21,23,25,28],"try_hard_to_shorten_rel":[7,25],"tube":7,"tumblewe":6,"tupl":[7,25],"turn":[7,14,16,23,25],"tutori":[5,6,24],"tw":0,"twice":[0,4,12,15,17],"twist":[21,23],"twisted_chain":23,"twister":[0,3,7,9,25],"two":[0,2,7,8,12,15,16,17,18,19,23,25,27,28],"type":[0,4,6,7,8,9,13,15,18,21,23,25,27,28],"type_iii_limit":23,"typic":[0,7,8,9,23,25,27,28],"u":[0,4,6,7,8,15,16,17,19,23,25],"u1":14,"u2":14,"u4":23,"u5":23,"ubuntu":[4,6],"ucrt":4,"ui_callback":0,"ulimit":17,"unbias":[5,7,9,27],"unbound":23,"unchang":7,"unclear":14,"undecor":[7,25],"under":[0,4,5,7,9,13,15,17,18,19,25,28],"undercross":23,"underli":[7,23,25,28],"understand":[17,28],"undo":23,"undril":7,"unfil":[7,25],"unfortun":[16,28],"unhyperbol":[7,13,15,17,25],"unicod":4,"uniform":23,"union":[7,23,28],"unipot":[7,13,14,15,16,25],"uniqu":[7,15,19,23],"unit":[7,19,23,25],"uniti":[15,19],"univari":[0,7,13,14],"univers":6,"unix":4,"unknot":23,"unknown":14,"unless":7,"unlik":[4,7],"unlink":[0,23],"unnorm":7,"unori":[5,7,9,25],"unpublish":19,"unrecogn":7,"unsimplifi":[0,7,14,15],"until":[7,23,28],"unzip":4,"up":[0,2,4,6,7,9,11,14,15,17,23,25,27,28],"upcom":7,"updat":[4,7,9,12,17,25],"upgrad":[2,4,6],"upper":[0,5,9,19,23],"url":3,"us":[0,1,2,4,5,6,7,8,9,13,14,17,18,19,21,23,24,25,26,27,28],"usabl":9,"usag":[7,14,25],"use_field_convers":7,"user":[0,4,5,6,7,8,9,14,23,28],"user_radiu":0,"usual":[0,4,16,25,27,28],"util":14,"uv":23,"v":[4,7,13,23,25],"v0":14,"v0000":0,"v0v1v2":14,"v1":14,"v123":[7,25],"v142":4,"v1539":[2,7,25],"v2":14,"v2000":7,"v28":23,"v2986":7,"v3000":7,"v3227":[0,7,25],"v3227_fill":[7,25],"v3379":0,"v_i":[7,25],"valenc":[7,25],"valent":23,"valid":[7,14,23],"valu":[0,2,5,7,9,14,15,16,17,18,21,23,25,27,28],"valueerror":[7,23,25],"vanish":23,"var":[0,28],"vari":[0,7],"variabl":[0,7,14,15,17,23,25],"variable_dict":14,"variables_with_non_zero_condit":15,"variant":[9,22],"varieti":[0,3,6,7,9,13,14,16,18,25],"variou":[4,7,12,21,23,25],"ve":[3,12],"vec":28,"veca":28,"vecb":28,"vector":[7,14,28],"velazquez":23,"venv":6,"verbatim":1,"verbos":[7,14,15,16,17,25,28],"verbose_form":0,"veri":[1,4,5,7,9,14,23,25,27,28],"verif":[7,9,27],"verifi":[0,5,7,9,25],"verificatin":28,"verified_modulo_2_tors":[7,27],"verify_hyperbol":[7,27],"verify_hyperbolicti":27,"verify_ribbon_to_unknot":23,"verifyerrorbas":28,"version":[2,4,5,6,7,9,15,25,28],"versu":8,"vert":23,"vertex":[0,7,12,14,23,25],"vertex_class":0,"vertex_data_list":0,"vertex_epsilon":[0,7],"vertex_image_indic":0,"vertex_index":0,"vertex_indic":0,"vertex_list":0,"vertic":[0,7,12,14,23,25],"via":[0,4,6,7,9,21,23,28],"video":[7,9,26],"view":[0,3,5,7,9,11,23,25],"viewer":[9,23],"villanueva":23,"violat":14,"virtual":6,"virtualenv":4,"visual":4,"vogel":23,"vol":7,"volum":[0,2,7,8,9,11,13,14,16,19,23,25,27],"volume_numer":[13,14,15,16,17],"w":[0,7,14,25],"w0":14,"w1":14,"w2":14,"w64":4,"wa":[0,5,6,7,9,12,13,14,16,19,25,27],"wada_convent":[7,21],"wai":[4,5,6,7,9,14,16,19,23,25,26,27,28],"walsh":[7,25],"walter":14,"want":[4,6,7,12,16,17,19,23,25,28],"warn":[7,16,23,25,27],"warwick":26,"wast":0,"watch":[5,6,26],"we":[0,1,2,3,5,6,7,8,9,13,14,15,16,17,18,19,21,23,25,26,27,28],"weak":14,"weaker":23,"weber":11,"webpag":[2,4],"week":[0,2,3,5,7,13,25],"weight":7,"welcom":1,"well":[1,4,7,12,15,16,19,25],"were":[0,2,5,7,9,11],"wget":4,"what":[7,8,10,14,17,22,26,28],"whatev":8,"wheel":4,"when":[0,3,5,6,7,9,12,14,15,16,17,18,19,23,25,26,27,28],"whenev":23,"where":[0,2,3,5,7,8,9,12,14,17,18,19,22,23,25,28],"wherea":[4,6],"whether":[0,2,5,7,9,14,16,17,23,25,28],"which":[0,2,4,5,6,7,8,9,12,14,15,16,17,18,19,22,23,25,27,28],"which_curv":7,"which_cusp":[0,7,25],"which_surfac":7,"while":[0,1,7,12,21,23,25],"white":23,"white_graph":23,"whitehead":[7,25],"who":[13,28],"whole":23,"whose":[7,14,16,19,23,25,27],"why":[15,21],"window":[5,7,9,12,17,22,23,25,26],"windows_ex":4,"winpti":4,"wirefram":0,"wirt":23,"wirting":23,"wish":6,"wit":[13,14,16],"with_hyperbolic_structur":[0,7,23,25],"with_modulo":14,"within":[0,6,7,23,25],"without":[2,5,7,9,11,13,23,25,28],"without_hyperbolic_structur":7,"word":[0,7,9,13,14,15,17,19,23],"work":[0,4,5,6,7,9,13,14,15,17,23,25],"would":[0,4,16,18,19],"wrap":[0,24],"wrapper":7,"write":[1,6,14,15,16,17,28],"writh":23,"written":[5,7],"wrong":[5,7,9,14],"x":[0,4,5,6,7,9,14,15,16,17,18,21,23,25,28],"x101":7,"x103":7,"x11":6,"x123":[7,25],"x124":[7,25],"x80":0,"x81":0,"x86":4,"x86_64":[4,6],"x_coordin":14,"xxxx":[7,25],"xy":[0,12],"y":[3,7,23,25],"yamagachi":21,"yamaguichi":7,"yang":12,"ye":8,"year":6,"yet":[14,16,17,19],"yield":[7,15,17,19,25],"yin":12,"yosemit":9,"you":[0,1,2,3,4,5,6,7,8,12,17,21,22,23,24,25,26],"your":[1,3,4,5,6,7,12,13,15,17,25],"yourself":17,"youtub":26,"yyyi":3,"z":[0,2,7,11,14,16,19,21,25,28],"z0":[7,25,28],"z1":[7,25,28],"z2014":19,"z_":[7,25],"z_0000_0":[7,16,17,25],"z_0000_1":[7,16,17,25],"z_0000_2":17,"z_0001_0":14,"z_0010_0":14,"z_center":28,"z_xxxx_y":[7,14,25],"zagier":[7,25],"zdpecbbujvtiwzslqpxyreadhokcmfgn":11,"zero":[7,13,14,15,19,25,28],"zerotangl":0,"zgliczynski":[27,28],"zickert":[7,14,19,25],"zj":28,"zolt\u00e1n":[3,9,23],"zp":[7,14,25],"zp_0000_0":[7,16,17,25],"zp_0000_1":[7,16,25],"zp_0010_0":14,"zp_xxxx_y":14,"zpp":[7,14,25],"zpp_0000_0":[7,16,25],"zpp_0000_1":[7,16,25],"zpp_0010_0":14,"zpp_xxxx_y":14,"zypper":6},"titles":["Additional Classes","Reporting bugs and other problems","Census manifolds","Credits","Development Basics","SnapPy","Installing SnapPy","Manifold: the main class","ManifoldHP: High-precision variant","News","Other components","Censuses of Platonic manifolds","Using SnapPy\u2019s link editor","The ptolemy module","Classes","Step-by-step examples: Part 1","Step-by-step examples: Part 2","Step-by-step examples: Part 3","Step-by-step examples: Part 4","Mathematical preliminaries","Screenshots: SnapPy in action","Number theory of hyperbolic 3-manifolds","The snappy module and its classes","Links: planar diagrams and invariants","To Do List","Triangulation","Tutorial","Verified computations","Internals of verified computations"],"titleterms":{"":12,"1":15,"10":20,"13":20,"2":[15,16,17],"3":[17,21],"4":18,"7":20,"A":[15,16],"The":[13,15,16,18,22,23],"To":24,"abeliangroup":0,"action":20,"addit":0,"an":18,"app":6,"ar":17,"auto":15,"autocomplet":16,"basic":[4,12],"boundari":[17,19],"bug":1,"c":[15,17,19],"canon":28,"cell":28,"censu":2,"census":11,"certifi":28,"cite":3,"class":[0,7,14,19,22,23],"closedbraid":23,"code":6,"comparison":16,"complet":15,"complex":17,"compon":[10,16,17],"comput":[15,16,17,27,28],"conda":6,"convert":16,"coordin":16,"credit":[3,5],"cross":[16,28],"crossratio":14,"curv":17,"cusp":28,"cuspneighborhood":0,"cut":15,"databas":15,"decomposit":28,"decor":19,"develop":4,"diagram":23,"differ":17,"dimens":16,"dimension":17,"directli":16,"dirichletdomain":0,"do":24,"document":[5,13],"draw":12,"editor":12,"exact":[15,16,18,28],"exampl":[15,16,17,18],"except":28,"famili":17,"faq":8,"featur":12,"field":15,"find":17,"flatten":[14,16],"from":[15,16],"function":14,"fundamentalgroup":0,"futur":19,"gener":[19,28],"high":8,"hyperbol":[16,21,28],"i":[5,13],"imag":17,"increas":15,"instal":6,"intern":28,"interv":28,"introduct":27,"invari":23,"its":22,"kitchen":6,"lack":16,"link":[12,23],"linux":[4,6,20],"list":[16,24],"m003":16,"m004":16,"mac":20,"maco":[4,6],"magma":17,"main":7,"manifold":[2,7,11,21],"manifoldhp":8,"mathemat":19,"matric":[15,17],"miscellan":12,"modul":[6,10,13,22],"n":[15,19],"name":28,"nest":16,"new":[5,9],"non":[16,17],"nonzerodimensionalcompon":14,"number":21,"numer":16,"o":20,"obstruct":19,"other":[1,10,14],"overview":27,"part":[15,16,17,18],"patch":4,"peripher":17,"planar":23,"platon":11,"point":17,"posit":17,"precis":[8,15],"preliminari":19,"present":17,"problem":1,"psl":[15,17,19],"ptolemi":[10,13,15,16,17,19],"ptolemycoordin":14,"ptolemyvarieti":14,"python":6,"random":23,"ratio":16,"ration":18,"recurs":16,"reduc":19,"refer":19,"report":1,"represent":[15,17,18,19],"retriev":[15,17],"sage":17,"sagemath":6,"same":17,"screenshot":20,"section":28,"shape":28,"short":15,"sink":6,"sl":[15,19],"snappi":[3,5,6,12,20,22],"solut":[15,16,17,18],"sourc":6,"step":[15,16,17,18],"structur":[16,18],"submit":4,"symmetrygroup":0,"tab":16,"theori":21,"todo":18,"topic":27,"trace":15,"triangul":25,"tutori":[23,26],"twister":10,"type":16,"ubuntu":20,"unipot":[17,19],"univari":18,"us":[12,15,16],"v":[16,17,19],"variant":8,"varieti":[15,17,19],"verif":28,"verifi":[27,28],"volum":[15,17],"what":[5,13],"window":[4,6,20],"wit":17,"work":[16,19],"x":20,"zero":17}})
|