snappy 3.1.1__cp39-cp39-macosx_11_0_arm64.whl → 3.2__cp39-cp39-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (464) hide show
  1. snappy/CyOpenGL.cpython-39-darwin.so +0 -0
  2. snappy/SnapPy.cpython-39-darwin.so +0 -0
  3. snappy/SnapPyHP.cpython-39-darwin.so +0 -0
  4. snappy/__init__.py +299 -402
  5. snappy/app.py +70 -20
  6. snappy/browser.py +18 -17
  7. snappy/canonical.py +249 -0
  8. snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
  9. snappy/cusps/cusp_area_matrix.py +101 -0
  10. snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
  11. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  12. snappy/cusps/test.py +21 -0
  13. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  14. snappy/database.py +10 -9
  15. snappy/decorated_isosig.py +337 -114
  16. snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
  17. snappy/dev/extended_ptolemy/extended.py +3 -3
  18. snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
  19. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
  20. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  21. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  22. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  23. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  24. snappy/doc/_sources/development.rst.txt +66 -46
  25. snappy/doc/_sources/index.rst.txt +72 -5
  26. snappy/doc/_sources/installing.rst.txt +145 -162
  27. snappy/doc/_sources/news.rst.txt +73 -1
  28. snappy/doc/_sources/ptolemy_examples1.rst.txt +8 -7
  29. snappy/doc/_sources/ptolemy_examples3.rst.txt +2 -2
  30. snappy/doc/_sources/triangulation.rst.txt +2 -2
  31. snappy/doc/_sources/verify.rst.txt +89 -29
  32. snappy/doc/_sources/verify_internals.rst.txt +5 -16
  33. snappy/doc/_static/basic.css +23 -1
  34. snappy/doc/_static/css/badge_only.css +1 -1
  35. snappy/doc/_static/css/theme.css +1 -1
  36. snappy/doc/_static/doctools.js +1 -1
  37. snappy/doc/_static/documentation_options.js +2 -3
  38. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  39. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  40. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  41. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  42. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  43. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  44. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  45. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  46. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  47. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  48. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  49. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  50. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  51. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  52. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  53. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  54. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  55. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  56. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  57. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  58. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  59. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  60. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  61. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  62. snappy/doc/_static/js/versions.js +228 -0
  63. snappy/doc/_static/language_data.js +2 -2
  64. snappy/doc/_static/pygments.css +1 -0
  65. snappy/doc/_static/searchtools.js +125 -71
  66. snappy/doc/_static/sphinx_highlight.js +13 -3
  67. snappy/doc/additional_classes.html +291 -122
  68. snappy/doc/bugs.html +17 -20
  69. snappy/doc/censuses.html +34 -53
  70. snappy/doc/credits.html +18 -21
  71. snappy/doc/development.html +88 -68
  72. snappy/doc/genindex.html +66 -145
  73. snappy/doc/index.html +86 -31
  74. snappy/doc/installing.html +164 -182
  75. snappy/doc/manifold.html +1168 -556
  76. snappy/doc/manifoldhp.html +18 -21
  77. snappy/doc/news.html +91 -33
  78. snappy/doc/objects.inv +0 -0
  79. snappy/doc/other.html +20 -22
  80. snappy/doc/platonic_census.html +31 -34
  81. snappy/doc/plink.html +19 -22
  82. snappy/doc/ptolemy.html +20 -22
  83. snappy/doc/ptolemy_classes.html +102 -105
  84. snappy/doc/ptolemy_examples1.html +34 -36
  85. snappy/doc/ptolemy_examples2.html +28 -31
  86. snappy/doc/ptolemy_examples3.html +26 -29
  87. snappy/doc/ptolemy_examples4.html +20 -23
  88. snappy/doc/ptolemy_prelim.html +25 -28
  89. snappy/doc/py-modindex.html +16 -19
  90. snappy/doc/screenshots.html +22 -24
  91. snappy/doc/search.html +15 -18
  92. snappy/doc/searchindex.js +1 -1
  93. snappy/doc/snap.html +18 -21
  94. snappy/doc/snappy.html +18 -20
  95. snappy/doc/spherogram.html +84 -87
  96. snappy/doc/todo.html +17 -20
  97. snappy/doc/triangulation.html +324 -215
  98. snappy/doc/tutorial.html +17 -20
  99. snappy/doc/verify.html +100 -46
  100. snappy/doc/verify_internals.html +106 -563
  101. snappy/drilling/__init__.py +153 -235
  102. snappy/drilling/barycentric.py +103 -0
  103. snappy/drilling/constants.py +0 -2
  104. snappy/drilling/crush.py +56 -130
  105. snappy/drilling/cusps.py +12 -6
  106. snappy/drilling/debug.py +2 -1
  107. snappy/drilling/exceptions.py +7 -40
  108. snappy/drilling/moves.py +302 -243
  109. snappy/drilling/perturb.py +63 -37
  110. snappy/drilling/shorten.py +36 -0
  111. snappy/drilling/subdivide.py +0 -5
  112. snappy/drilling/test.py +23 -0
  113. snappy/drilling/test_cases.py +126 -0
  114. snappy/drilling/tracing.py +9 -37
  115. snappy/exceptions.py +18 -5
  116. snappy/exterior_to_link/barycentric_geometry.py +2 -4
  117. snappy/exterior_to_link/main.py +8 -7
  118. snappy/exterior_to_link/mcomplex_with_link.py +2 -2
  119. snappy/exterior_to_link/rational_linear_algebra.py +1 -1
  120. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
  121. snappy/exterior_to_link/test.py +21 -33
  122. snappy/geometric_structure/__init__.py +212 -0
  123. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  124. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  125. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  126. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  127. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  128. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  129. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  130. snappy/geometric_structure/geodesic/__init__.py +0 -0
  131. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  132. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  133. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  134. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  135. snappy/geometric_structure/geodesic/constants.py +6 -0
  136. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  137. snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
  138. snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
  139. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  140. snappy/geometric_structure/geodesic/line.py +30 -0
  141. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  142. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  143. snappy/geometric_structure/test.py +22 -0
  144. snappy/gui.py +23 -13
  145. snappy/horoviewer.py +7 -7
  146. snappy/hyperboloid/__init__.py +96 -31
  147. snappy/hyperboloid/distances.py +245 -0
  148. snappy/hyperboloid/horoball.py +19 -0
  149. snappy/hyperboloid/line.py +35 -0
  150. snappy/hyperboloid/point.py +9 -0
  151. snappy/hyperboloid/triangle.py +29 -0
  152. snappy/isometry_signature.py +382 -0
  153. snappy/len_spec/__init__.py +596 -0
  154. snappy/len_spec/geodesic_info.py +110 -0
  155. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  156. snappy/len_spec/geodesic_piece.py +143 -0
  157. snappy/len_spec/geometric_structure.py +182 -0
  158. snappy/len_spec/geometry.py +80 -0
  159. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  160. snappy/len_spec/spine.py +206 -0
  161. snappy/len_spec/test.py +24 -0
  162. snappy/len_spec/test_cases.py +69 -0
  163. snappy/len_spec/tile.py +275 -0
  164. snappy/len_spec/word.py +86 -0
  165. snappy/math_basics.py +39 -13
  166. snappy/matrix.py +52 -9
  167. snappy/number.py +12 -6
  168. snappy/numeric_output_checker.py +2 -3
  169. snappy/pari.py +8 -4
  170. snappy/phone_home.py +2 -1
  171. snappy/polyviewer.py +8 -8
  172. snappy/ptolemy/__init__.py +1 -1
  173. snappy/ptolemy/component.py +2 -2
  174. snappy/ptolemy/coordinates.py +25 -25
  175. snappy/ptolemy/findLoops.py +9 -9
  176. snappy/ptolemy/manifoldMethods.py +27 -29
  177. snappy/ptolemy/polynomial.py +50 -57
  178. snappy/ptolemy/processFileBase.py +60 -0
  179. snappy/ptolemy/ptolemyVariety.py +109 -41
  180. snappy/ptolemy/reginaWrapper.py +4 -4
  181. snappy/ptolemy/rur.py +1 -1
  182. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
  183. snappy/ptolemy/test.py +99 -54
  184. snappy/ptolemy/utilities.py +1 -1
  185. snappy/raytracing/__init__.py +64 -0
  186. snappy/raytracing/additional_horospheres.py +64 -0
  187. snappy/raytracing/additional_len_spec_choices.py +63 -0
  188. snappy/raytracing/cohomology_fractal.py +0 -3
  189. snappy/raytracing/eyeball.py +123 -0
  190. snappy/raytracing/finite_raytracing_data.py +17 -17
  191. snappy/raytracing/finite_viewer.py +15 -15
  192. snappy/raytracing/geodesic_tube_info.py +93 -63
  193. snappy/raytracing/geodesics.py +94 -64
  194. snappy/raytracing/geodesics_window.py +56 -34
  195. snappy/raytracing/gui_utilities.py +21 -6
  196. snappy/raytracing/hyperboloid_navigation.py +29 -4
  197. snappy/raytracing/hyperboloid_utilities.py +73 -73
  198. snappy/raytracing/ideal_raytracing_data.py +121 -91
  199. snappy/raytracing/inside_viewer.py +199 -66
  200. snappy/raytracing/pack.py +22 -0
  201. snappy/raytracing/raytracing_data.py +37 -25
  202. snappy/raytracing/raytracing_view.py +70 -65
  203. snappy/raytracing/shaders/Eye.png +0 -0
  204. snappy/raytracing/shaders/NonGeometric.png +0 -0
  205. snappy/raytracing/shaders/__init__.py +39 -3
  206. snappy/raytracing/shaders/fragment.glsl +451 -133
  207. snappy/raytracing/test.py +29 -0
  208. snappy/raytracing/tooltip.py +146 -0
  209. snappy/raytracing/upper_halfspace_utilities.py +42 -9
  210. snappy/sage_helper.py +67 -134
  211. snappy/settings.py +90 -77
  212. snappy/shell.py +2 -0
  213. snappy/snap/character_varieties.py +2 -2
  214. snappy/snap/find_field.py +4 -3
  215. snappy/snap/fundamental_polyhedron.py +2 -2
  216. snappy/snap/kernel_structures.py +5 -1
  217. snappy/snap/nsagetools.py +9 -8
  218. snappy/snap/peripheral/dual_cellulation.py +4 -3
  219. snappy/snap/peripheral/peripheral.py +2 -2
  220. snappy/snap/peripheral/surface.py +5 -5
  221. snappy/snap/peripheral/test.py +1 -1
  222. snappy/snap/polished_reps.py +8 -8
  223. snappy/snap/slice_obs_HKL.py +16 -14
  224. snappy/snap/t3mlite/arrow.py +3 -3
  225. snappy/snap/t3mlite/edge.py +3 -3
  226. snappy/snap/t3mlite/homology.py +2 -2
  227. snappy/snap/t3mlite/mcomplex.py +3 -3
  228. snappy/snap/t3mlite/simplex.py +12 -0
  229. snappy/snap/t3mlite/spun.py +18 -17
  230. snappy/snap/t3mlite/test_vs_regina.py +4 -4
  231. snappy/snap/test.py +37 -53
  232. snappy/snap/utilities.py +4 -5
  233. snappy/test.py +121 -138
  234. snappy/test_cases.py +263 -0
  235. snappy/testing.py +131 -0
  236. snappy/tiling/__init__.py +2 -0
  237. snappy/tiling/canonical_key_dict.py +59 -0
  238. snappy/tiling/dict_based_set.py +79 -0
  239. snappy/tiling/floor.py +49 -0
  240. snappy/tiling/hyperboloid_dict.py +54 -0
  241. snappy/tiling/iter_utils.py +78 -0
  242. snappy/tiling/lifted_tetrahedron.py +22 -0
  243. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  244. snappy/tiling/real_hash_dict.py +164 -0
  245. snappy/tiling/test.py +23 -0
  246. snappy/tiling/tile.py +215 -0
  247. snappy/tiling/triangle.py +33 -0
  248. snappy/tkterminal.py +113 -84
  249. snappy/twister/main.py +1 -7
  250. snappy/twister/twister_core.cpython-39-darwin.so +0 -0
  251. snappy/upper_halfspace/__init__.py +78 -17
  252. snappy/verify/__init__.py +3 -7
  253. snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
  254. snappy/verify/complex_volume/adjust_torsion.py +1 -2
  255. snappy/verify/complex_volume/closed.py +13 -13
  256. snappy/verify/complex_volume/cusped.py +6 -6
  257. snappy/verify/complex_volume/extended_bloch.py +5 -8
  258. snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
  259. snappy/verify/edge_equations.py +80 -0
  260. snappy/verify/exceptions.py +0 -55
  261. snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
  262. snappy/verify/interval_newton_shapes_engine.py +7 -5
  263. snappy/verify/interval_tree.py +5 -5
  264. snappy/verify/krawczyk_shapes_engine.py +17 -18
  265. snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
  266. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
  267. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
  268. snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
  269. snappy/verify/shapes.py +5 -3
  270. snappy/verify/short_slopes.py +39 -41
  271. snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
  272. snappy/verify/test.py +57 -60
  273. snappy/verify/upper_halfspace/extended_matrix.py +1 -1
  274. snappy/verify/upper_halfspace/finite_point.py +3 -4
  275. snappy/verify/upper_halfspace/ideal_point.py +9 -9
  276. snappy/verify/volume.py +2 -2
  277. snappy/version.py +2 -2
  278. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
  279. snappy-3.2.dist-info/RECORD +503 -0
  280. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
  281. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
  282. snappy/__pycache__/__init__.cpython-39.pyc +0 -0
  283. snappy/__pycache__/browser.cpython-39.pyc +0 -0
  284. snappy/__pycache__/cache.cpython-39.pyc +0 -0
  285. snappy/__pycache__/database.cpython-39.pyc +0 -0
  286. snappy/__pycache__/db_utilities.cpython-39.pyc +0 -0
  287. snappy/__pycache__/decorated_isosig.cpython-39.pyc +0 -0
  288. snappy/__pycache__/exceptions.cpython-39.pyc +0 -0
  289. snappy/__pycache__/export_stl.cpython-39.pyc +0 -0
  290. snappy/__pycache__/filedialog.cpython-39.pyc +0 -0
  291. snappy/__pycache__/gui.cpython-39.pyc +0 -0
  292. snappy/__pycache__/horoviewer.cpython-39.pyc +0 -0
  293. snappy/__pycache__/infowindow.cpython-39.pyc +0 -0
  294. snappy/__pycache__/math_basics.cpython-39.pyc +0 -0
  295. snappy/__pycache__/matrix.cpython-39.pyc +0 -0
  296. snappy/__pycache__/number.cpython-39.pyc +0 -0
  297. snappy/__pycache__/numeric_output_checker.cpython-39.pyc +0 -0
  298. snappy/__pycache__/pari.cpython-39.pyc +0 -0
  299. snappy/__pycache__/polyviewer.cpython-39.pyc +0 -0
  300. snappy/__pycache__/sage_helper.cpython-39.pyc +0 -0
  301. snappy/__pycache__/version.cpython-39.pyc +0 -0
  302. snappy/doc/_sources/verify_canon.rst.txt +0 -90
  303. snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
  304. snappy/doc/_static/js/html5shiv.min.js +0 -4
  305. snappy/doc/verify_canon.html +0 -304
  306. snappy/drilling/__pycache__/__init__.cpython-39.pyc +0 -0
  307. snappy/drilling/__pycache__/constants.cpython-39.pyc +0 -0
  308. snappy/drilling/__pycache__/crush.cpython-39.pyc +0 -0
  309. snappy/drilling/__pycache__/cusps.cpython-39.pyc +0 -0
  310. snappy/drilling/__pycache__/debug.cpython-39.pyc +0 -0
  311. snappy/drilling/__pycache__/epsilons.cpython-39.pyc +0 -0
  312. snappy/drilling/__pycache__/exceptions.cpython-39.pyc +0 -0
  313. snappy/drilling/__pycache__/fixed_points.cpython-39.pyc +0 -0
  314. snappy/drilling/__pycache__/geodesic_info.cpython-39.pyc +0 -0
  315. snappy/drilling/__pycache__/geodesic_tube.cpython-39.pyc +0 -0
  316. snappy/drilling/__pycache__/geometric_structure.cpython-39.pyc +0 -0
  317. snappy/drilling/__pycache__/line.cpython-39.pyc +0 -0
  318. snappy/drilling/__pycache__/moves.cpython-39.pyc +0 -0
  319. snappy/drilling/__pycache__/peripheral_curves.cpython-39.pyc +0 -0
  320. snappy/drilling/__pycache__/perturb.cpython-39.pyc +0 -0
  321. snappy/drilling/__pycache__/quotient_space.cpython-39.pyc +0 -0
  322. snappy/drilling/__pycache__/spatial_dict.cpython-39.pyc +0 -0
  323. snappy/drilling/__pycache__/subdivide.cpython-39.pyc +0 -0
  324. snappy/drilling/__pycache__/tracing.cpython-39.pyc +0 -0
  325. snappy/drilling/geodesic_tube.py +0 -441
  326. snappy/drilling/geometric_structure.py +0 -366
  327. snappy/drilling/line.py +0 -122
  328. snappy/drilling/quotient_space.py +0 -94
  329. snappy/drilling/spatial_dict.py +0 -128
  330. snappy/exterior_to_link/__pycache__/__init__.cpython-39.pyc +0 -0
  331. snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-39.pyc +0 -0
  332. snappy/exterior_to_link/__pycache__/exceptions.cpython-39.pyc +0 -0
  333. snappy/exterior_to_link/__pycache__/hyp_utils.cpython-39.pyc +0 -0
  334. snappy/exterior_to_link/__pycache__/link_projection.cpython-39.pyc +0 -0
  335. snappy/exterior_to_link/__pycache__/main.cpython-39.pyc +0 -0
  336. snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-39.pyc +0 -0
  337. snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-39.pyc +0 -0
  338. snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-39.pyc +0 -0
  339. snappy/exterior_to_link/__pycache__/pl_utils.cpython-39.pyc +0 -0
  340. snappy/exterior_to_link/__pycache__/put_in_S3.cpython-39.pyc +0 -0
  341. snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-39.pyc +0 -0
  342. snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-39.pyc +0 -0
  343. snappy/exterior_to_link/__pycache__/stored_moves.cpython-39.pyc +0 -0
  344. snappy/hyperboloid/__pycache__/__init__.cpython-39.pyc +0 -0
  345. snappy/manifolds/__pycache__/__init__.cpython-39.pyc +0 -0
  346. snappy/ptolemy/__pycache__/__init__.cpython-39.pyc +0 -0
  347. snappy/ptolemy/__pycache__/component.cpython-39.pyc +0 -0
  348. snappy/ptolemy/__pycache__/coordinates.cpython-39.pyc +0 -0
  349. snappy/ptolemy/__pycache__/fieldExtensions.cpython-39.pyc +0 -0
  350. snappy/ptolemy/__pycache__/findLoops.cpython-39.pyc +0 -0
  351. snappy/ptolemy/__pycache__/homology.cpython-39.pyc +0 -0
  352. snappy/ptolemy/__pycache__/manifoldMethods.cpython-39.pyc +0 -0
  353. snappy/ptolemy/__pycache__/matrix.cpython-39.pyc +0 -0
  354. snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-39.pyc +0 -0
  355. snappy/ptolemy/__pycache__/polynomial.cpython-39.pyc +0 -0
  356. snappy/ptolemy/__pycache__/processComponents.cpython-39.pyc +0 -0
  357. snappy/ptolemy/__pycache__/processFileBase.cpython-39.pyc +0 -0
  358. snappy/ptolemy/__pycache__/processFileDispatch.cpython-39.pyc +0 -0
  359. snappy/ptolemy/__pycache__/processMagmaFile.cpython-39.pyc +0 -0
  360. snappy/ptolemy/__pycache__/processRurFile.cpython-39.pyc +0 -0
  361. snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-39.pyc +0 -0
  362. snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-39.pyc +0 -0
  363. snappy/ptolemy/__pycache__/ptolemyVariety.cpython-39.pyc +0 -0
  364. snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
  365. snappy/ptolemy/__pycache__/rur.cpython-39.pyc +0 -0
  366. snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
  367. snappy/ptolemy/__pycache__/utilities.cpython-39.pyc +0 -0
  368. snappy/raytracing/__pycache__/__init__.cpython-39.pyc +0 -0
  369. snappy/raytracing/__pycache__/finite_raytracing_data.cpython-39.pyc +0 -0
  370. snappy/raytracing/__pycache__/gui_utilities.cpython-39.pyc +0 -0
  371. snappy/raytracing/__pycache__/hyperboloid_navigation.cpython-39.pyc +0 -0
  372. snappy/raytracing/__pycache__/hyperboloid_utilities.cpython-39.pyc +0 -0
  373. snappy/raytracing/__pycache__/ideal_raytracing_data.cpython-39.pyc +0 -0
  374. snappy/raytracing/__pycache__/inside_viewer.cpython-39.pyc +0 -0
  375. snappy/raytracing/__pycache__/raytracing_data.cpython-39.pyc +0 -0
  376. snappy/raytracing/__pycache__/raytracing_view.cpython-39.pyc +0 -0
  377. snappy/raytracing/__pycache__/upper_halfspace_utilities.cpython-39.pyc +0 -0
  378. snappy/raytracing/__pycache__/view_scale_controller.cpython-39.pyc +0 -0
  379. snappy/raytracing/zoom_slider/__pycache__/__init__.cpython-39.pyc +0 -0
  380. snappy/snap/__pycache__/__init__.cpython-39.pyc +0 -0
  381. snappy/snap/__pycache__/character_varieties.cpython-39.pyc +0 -0
  382. snappy/snap/__pycache__/fundamental_polyhedron.cpython-39.pyc +0 -0
  383. snappy/snap/__pycache__/interval_reps.cpython-39.pyc +0 -0
  384. snappy/snap/__pycache__/kernel_structures.cpython-39.pyc +0 -0
  385. snappy/snap/__pycache__/mcomplex_base.cpython-39.pyc +0 -0
  386. snappy/snap/__pycache__/nsagetools.cpython-39.pyc +0 -0
  387. snappy/snap/__pycache__/polished_reps.cpython-39.pyc +0 -0
  388. snappy/snap/__pycache__/shapes.cpython-39.pyc +0 -0
  389. snappy/snap/__pycache__/slice_obs_HKL.cpython-39.pyc +0 -0
  390. snappy/snap/__pycache__/utilities.cpython-39.pyc +0 -0
  391. snappy/snap/peripheral/__pycache__/__init__.cpython-39.pyc +0 -0
  392. snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-39.pyc +0 -0
  393. snappy/snap/peripheral/__pycache__/link.cpython-39.pyc +0 -0
  394. snappy/snap/peripheral/__pycache__/peripheral.cpython-39.pyc +0 -0
  395. snappy/snap/peripheral/__pycache__/surface.cpython-39.pyc +0 -0
  396. snappy/snap/t3mlite/__pycache__/__init__.cpython-39.pyc +0 -0
  397. snappy/snap/t3mlite/__pycache__/arrow.cpython-39.pyc +0 -0
  398. snappy/snap/t3mlite/__pycache__/corner.cpython-39.pyc +0 -0
  399. snappy/snap/t3mlite/__pycache__/edge.cpython-39.pyc +0 -0
  400. snappy/snap/t3mlite/__pycache__/face.cpython-39.pyc +0 -0
  401. snappy/snap/t3mlite/__pycache__/files.cpython-39.pyc +0 -0
  402. snappy/snap/t3mlite/__pycache__/homology.cpython-39.pyc +0 -0
  403. snappy/snap/t3mlite/__pycache__/linalg.cpython-39.pyc +0 -0
  404. snappy/snap/t3mlite/__pycache__/mcomplex.cpython-39.pyc +0 -0
  405. snappy/snap/t3mlite/__pycache__/perm4.cpython-39.pyc +0 -0
  406. snappy/snap/t3mlite/__pycache__/simplex.cpython-39.pyc +0 -0
  407. snappy/snap/t3mlite/__pycache__/spun.cpython-39.pyc +0 -0
  408. snappy/snap/t3mlite/__pycache__/surface.cpython-39.pyc +0 -0
  409. snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-39.pyc +0 -0
  410. snappy/snap/t3mlite/__pycache__/vertex.cpython-39.pyc +0 -0
  411. snappy/togl/__init__.py +0 -3
  412. snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
  413. snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
  414. snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  415. snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
  416. snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
  417. snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
  418. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  419. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
  420. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  421. snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
  422. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
  423. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
  424. snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  425. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  426. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
  427. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
  428. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  429. snappy/twister/__pycache__/__init__.cpython-39.pyc +0 -0
  430. snappy/twister/__pycache__/main.cpython-39.pyc +0 -0
  431. snappy/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
  432. snappy/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
  433. snappy/verify/__pycache__/__init__.cpython-39.pyc +0 -0
  434. snappy/verify/__pycache__/cuspCrossSection.cpython-39.pyc +0 -0
  435. snappy/verify/__pycache__/cuspTranslations.cpython-39.pyc +0 -0
  436. snappy/verify/__pycache__/cusp_areas.cpython-39.pyc +0 -0
  437. snappy/verify/__pycache__/cusp_shapes.cpython-39.pyc +0 -0
  438. snappy/verify/__pycache__/exceptions.cpython-39.pyc +0 -0
  439. snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-39.pyc +0 -0
  440. snappy/verify/__pycache__/interval_tree.cpython-39.pyc +0 -0
  441. snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-39.pyc +0 -0
  442. snappy/verify/__pycache__/realAlgebra.cpython-39.pyc +0 -0
  443. snappy/verify/__pycache__/shapes.cpython-39.pyc +0 -0
  444. snappy/verify/__pycache__/short_slopes.cpython-39.pyc +0 -0
  445. snappy/verify/__pycache__/squareExtensions.cpython-39.pyc +0 -0
  446. snappy/verify/__pycache__/verifyCanonical.cpython-39.pyc +0 -0
  447. snappy/verify/__pycache__/verifyHyperbolicity.cpython-39.pyc +0 -0
  448. snappy/verify/__pycache__/volume.cpython-39.pyc +0 -0
  449. snappy/verify/complex_volume/__pycache__/__init__.cpython-39.pyc +0 -0
  450. snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-39.pyc +0 -0
  451. snappy/verify/complex_volume/__pycache__/closed.cpython-39.pyc +0 -0
  452. snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-39.pyc +0 -0
  453. snappy/verify/complex_volume/__pycache__/cusped.cpython-39.pyc +0 -0
  454. snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-39.pyc +0 -0
  455. snappy/verify/cuspCrossSection.py +0 -1422
  456. snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-39.pyc +0 -0
  457. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-39.pyc +0 -0
  458. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-39.pyc +0 -0
  459. snappy/verify/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
  460. snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-39.pyc +0 -0
  461. snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-39.pyc +0 -0
  462. snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
  463. snappy-3.1.1.dist-info/RECORD +0 -585
  464. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,90 +0,0 @@
1
- Canonical retriangulation and isometry signature
2
- --------------------------------------------------------
3
-
4
- The canonical retriangulation is a close relative to the canonical cell
5
- decomposition defined by `Epstein and Penner
6
- <https://projecteuclid.org/euclid.jdg/1214441650>`_.
7
- Like the canonical cell decomposition, it is intrinsic to
8
- a hyperbolic manifold M and is (up to combinatorial isomorphism
9
- relabeling the tetrahedra and vertices) completely determined by the
10
- isometry type of a hyperbolic manifold. Unlike the canonical cell decomposition,
11
- the canonical retriangulation always consists entirely of tetrahedra which makes
12
- it more amenable for many computations by SnapPy.
13
-
14
- If the canonical cell decomposition of manifold M has only tetrahedral cells,
15
- we define the canonical retriangulation to be the canonical cell decomposition.
16
- In this case, the canonical retriangulation consists of ideal hyperbolic
17
- tetrahedra and the ``canonical_retriangulation`` method returns a
18
- SnapPy manifold. Example::
19
-
20
- sage: M = Manifold("m015")
21
- sage: K = M.canonical_retriangulation(verified = True)
22
- sage: K.has_finite_vertices() # False iff all canonical cells tetrahedral
23
- False
24
-
25
- If the canonical cell decomposition has non-tetrahedral cells, we turn it into
26
- a topological triangulation as follows: pick a point (called center) in each
27
- 3-cell. "Suspend" each 2-cell (which is an ideal n-gon) between
28
- the centers of the two neighboring 3-cells. These suspensions form a
29
- decomposition of M into topological "diamonds". Each diamond can be split along
30
- its central axis into n tetrahedra. This introduces finite vertices, thus
31
- the ``verified_canonical_retriangulation`` method returns only a SnapPy
32
- triangulation. Example (canonical cell is a cube)::
33
-
34
- sage: M = Manifold("m412")
35
- sage: K = M.canonical_retriangulation(verified = True)
36
- sage: K.has_finite_vertices()
37
- True
38
-
39
- The canonical retriangulation can be used to certifiably find all isometries
40
- of a manifold::
41
-
42
- sage: K.isomorphisms_to(K)
43
- [0 -> 1 1 -> 0
44
- [1 0] [1 0]
45
- [0 1] [0 1]
46
- Extends to link,
47
- ...
48
- Extends to link]
49
- sage: len(K.isomorphisms_to(K))
50
- 8
51
-
52
- Recall that the *isomorphism
53
- signature* is a complete invariant of the combinatorial
54
- isomorphism type of a triangulation that was defined by `Burton
55
- <http://arxiv.org/abs/1110.6080>`_. We can compute the isomorphism signature
56
- of the canonical retriangulation::
57
-
58
- sage: Manifold("m003").canonical_retriangulation(verified = True).triangulation_isosig()
59
- 'cPcbbbdxm'
60
-
61
- The resulting invariant was called *isometry signature* by
62
- `Goerner <http://arxiv.org/abs/1502.00383>`_ and, for convenience, can be
63
- accessed by::
64
-
65
- sage: Manifold("m003").isometry_signature(verified = True)
66
- 'cPcbbbdxm'
67
-
68
- It is a complete invariant of the isometry type of a hyperbolic manifold.
69
- Thus it can be used to easily identify isometric manifolds
70
- (here, the last two manifolds have the same isometry signature and thus
71
- have to be isomorphic)::
72
-
73
- sage: Manifold("m003").isometry_signature(verified = True)
74
- 'cPcbbbdxm'
75
- sage: Manifold("m004").isometry_signature(verified = True)
76
- 'cPcbbbiht'
77
- sage: Manifold("4_1").isometry_signature(verified = True)
78
- 'cPcbbbiht'
79
- sage: Manifold("m004").isometry_signature(verified = True) == Manifold("4_1").isometry_signature(verified = True)
80
- True
81
-
82
-
83
- Other applications of the canonical retriangulation include the detection of
84
- 2-bridge knots.
85
-
86
- =======================================
87
- Verifying the canonical retriangulation
88
- =======================================
89
-
90
- .. autofunction:: snappy.verify.verified_canonical_retriangulation
@@ -1,4 +0,0 @@
1
- /**
2
- * @preserve HTML5 Shiv 3.7.3-pre | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
3
- */
4
- !function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document);
@@ -1,4 +0,0 @@
1
- /**
2
- * @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
3
- */
4
- !function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document);
@@ -1,304 +0,0 @@
1
- <!DOCTYPE html>
2
- <html class="writer-html5" lang="en" >
3
- <head>
4
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
5
-
6
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
7
- <title>Canonical retriangulation and isometry signature &mdash; SnapPy 3.1.1 documentation</title>
8
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
9
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
10
- <link rel="stylesheet" href="_static/snappy_sphinx_rtd_theme.css" type="text/css" />
11
- <link rel="shortcut icon" href="_static/SnapPy.ico"/>
12
- <!--[if lt IE 9]>
13
- <script src="_static/js/html5shiv.min.js"></script>
14
- <![endif]-->
15
-
16
- <script src="_static/jquery.js"></script>
17
- <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
18
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
19
- <script src="_static/doctools.js"></script>
20
- <script src="_static/sphinx_highlight.js"></script>
21
- <script src="_static/js/theme.js"></script>
22
- <link rel="index" title="Index" href="genindex.html" />
23
- <link rel="search" title="Search" href="search.html" />
24
- <link rel="next" title="Internals of verified computations" href="verify_internals.html" />
25
- <link rel="prev" title="Verified computations" href="verify.html" />
26
- </head>
27
-
28
- <body class="wy-body-for-nav">
29
- <div class="wy-grid-for-nav">
30
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
- <div class="wy-side-scroll">
32
- <div class="wy-side-nav-search" >
33
-
34
-
35
-
36
- <a href="index.html" class="icon icon-home">
37
- SnapPy
38
- <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
- </a>
40
- <div class="version">
41
- 3.1.1
42
- </div>
43
- <div role="search">
44
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
45
- <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
46
- <input type="hidden" name="check_keywords" value="yes" />
47
- <input type="hidden" name="area" value="default" />
48
- </form>
49
- </div>
50
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
51
- <ul class="current">
52
- <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
53
- <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
54
- <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
55
- <li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
56
- <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
57
- <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
58
- <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
59
- <li class="toctree-l1 current"><a class="reference internal" href="verify.html">Verified computations</a><ul class="current">
60
- <li class="toctree-l2"><a class="reference internal" href="verify.html#overview">Overview</a></li>
61
- <li class="toctree-l2 current"><a class="reference internal" href="verify.html#verified-computation-topics">Verified computation topics</a><ul class="current">
62
- <li class="toctree-l3 current"><a class="current reference internal" href="#">Canonical retriangulation and isometry signature</a><ul>
63
- <li class="toctree-l4"><a class="reference internal" href="#verifying-the-canonical-retriangulation">Verifying the canonical retriangulation</a><ul>
64
- <li class="toctree-l5"><a class="reference internal" href="#snappy.verify.verified_canonical_retriangulation"><code class="docutils literal notranslate"><span class="pre">verified_canonical_retriangulation()</span></code></a></li>
65
- </ul>
66
- </li>
67
- </ul>
68
- </li>
69
- <li class="toctree-l3"><a class="reference internal" href="verify_internals.html">Internals of verified computations</a></li>
70
- </ul>
71
- </li>
72
- </ul>
73
- </li>
74
- <li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
75
- <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
76
- <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
77
- <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
78
- <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
79
- <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
80
- </ul>
81
-
82
- </div>
83
- </div>
84
- </nav>
85
-
86
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
87
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
88
- <a href="index.html">SnapPy</a>
89
- </nav>
90
-
91
- <div class="wy-nav-content">
92
- <div class="rst-content">
93
- <div role="navigation" aria-label="Page navigation">
94
- <ul class="wy-breadcrumbs">
95
- <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
96
- <li class="breadcrumb-item"><a href="verify.html">Verified computations</a></li>
97
- <li class="breadcrumb-item active">Canonical retriangulation and isometry signature</li>
98
- <li class="wy-breadcrumbs-aside">
99
- </li>
100
- </ul>
101
- <hr/>
102
- </div>
103
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
104
- <div itemprop="articleBody">
105
-
106
- <section id="canonical-retriangulation-and-isometry-signature">
107
- <h1>Canonical retriangulation and isometry signature<a class="headerlink" href="#canonical-retriangulation-and-isometry-signature" title="Permalink to this heading"></a></h1>
108
- <p>The canonical retriangulation is a close relative to the canonical cell
109
- decomposition defined by <a class="reference external" href="https://projecteuclid.org/euclid.jdg/1214441650">Epstein and Penner</a>.
110
- Like the canonical cell decomposition, it is intrinsic to
111
- a hyperbolic manifold M and is (up to combinatorial isomorphism
112
- relabeling the tetrahedra and vertices) completely determined by the
113
- isometry type of a hyperbolic manifold. Unlike the canonical cell decomposition,
114
- the canonical retriangulation always consists entirely of tetrahedra which makes
115
- it more amenable for many computations by SnapPy.</p>
116
- <p>If the canonical cell decomposition of manifold M has only tetrahedral cells,
117
- we define the canonical retriangulation to be the canonical cell decomposition.
118
- In this case, the canonical retriangulation consists of ideal hyperbolic
119
- tetrahedra and the <code class="docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code> method returns a
120
- SnapPy manifold. Example:</p>
121
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m015&quot;</span><span class="p">)</span>
122
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
123
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span> <span class="c1"># False iff all canonical cells tetrahedral</span>
124
- <span class="kc">False</span>
125
- </pre></div>
126
- </div>
127
- <p>If the canonical cell decomposition has non-tetrahedral cells, we turn it into
128
- a topological triangulation as follows: pick a point (called center) in each
129
- 3-cell. “Suspend” each 2-cell (which is an ideal n-gon) between
130
- the centers of the two neighboring 3-cells. These suspensions form a
131
- decomposition of M into topological “diamonds”. Each diamond can be split along
132
- its central axis into n tetrahedra. This introduces finite vertices, thus
133
- the <code class="docutils literal notranslate"><span class="pre">verified_canonical_retriangulation</span></code> method returns only a SnapPy
134
- triangulation. Example (canonical cell is a cube):</p>
135
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m412&quot;</span><span class="p">)</span>
136
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
137
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
138
- <span class="kc">True</span>
139
- </pre></div>
140
- </div>
141
- <p>The canonical retriangulation can be used to certifiably find all isometries
142
- of a manifold:</p>
143
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
144
- <span class="p">[</span><span class="mi">0</span> <span class="o">-&gt;</span> <span class="mi">1</span> <span class="mi">1</span> <span class="o">-&gt;</span> <span class="mi">0</span>
145
- <span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span> <span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span>
146
- <span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span> <span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span>
147
- <span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">,</span>
148
- <span class="o">...</span>
149
- <span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">]</span>
150
- <span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
151
- <span class="mi">8</span>
152
- </pre></div>
153
- </div>
154
- <p>Recall that the <em>isomorphism
155
- signature</em> is a complete invariant of the combinatorial
156
- isomorphism type of a triangulation that was defined by <a class="reference external" href="http://arxiv.org/abs/1110.6080">Burton</a>. We can compute the isomorphism signature
157
- of the canonical retriangulation:</p>
158
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
159
- <span class="s1">&#39;cPcbbbdxm&#39;</span>
160
- </pre></div>
161
- </div>
162
- <p>The resulting invariant was called <em>isometry signature</em> by
163
- <a class="reference external" href="http://arxiv.org/abs/1502.00383">Goerner</a> and, for convenience, can be
164
- accessed by:</p>
165
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
166
- <span class="s1">&#39;cPcbbbdxm&#39;</span>
167
- </pre></div>
168
- </div>
169
- <p>It is a complete invariant of the isometry type of a hyperbolic manifold.
170
- Thus it can be used to easily identify isometric manifolds
171
- (here, the last two manifolds have the same isometry signature and thus
172
- have to be isomorphic):</p>
173
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
174
- <span class="s1">&#39;cPcbbbdxm&#39;</span>
175
- <span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
176
- <span class="s1">&#39;cPcbbbiht&#39;</span>
177
- <span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
178
- <span class="s1">&#39;cPcbbbiht&#39;</span>
179
- <span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">==</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
180
- <span class="kc">True</span>
181
- </pre></div>
182
- </div>
183
- <p>Other applications of the canonical retriangulation include the detection of
184
- 2-bridge knots.</p>
185
- <section id="verifying-the-canonical-retriangulation">
186
- <h2>Verifying the canonical retriangulation<a class="headerlink" href="#verifying-the-canonical-retriangulation" title="Permalink to this heading"></a></h2>
187
- <dl class="py function">
188
- <dt class="sig sig-object py" id="snappy.verify.verified_canonical_retriangulation">
189
- <span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">verified_canonical_retriangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">interval_bits_precs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[53,</span> <span class="pre">212]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exact_bits_prec_and_degrees</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[(212,</span> <span class="pre">10),</span> <span class="pre">(1000,</span> <span class="pre">20),</span> <span class="pre">(2000,</span> <span class="pre">20)]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.verified_canonical_retriangulation" title="Permalink to this definition"></a></dt>
190
- <dd><p>Given some triangulation of a cusped (possibly non-orientable) manifold <code class="docutils literal notranslate"><span class="pre">M</span></code>,
191
- return its canonical retriangulation. Return <code class="docutils literal notranslate"><span class="pre">None</span></code> if it could not certify
192
- the result.</p>
193
- <p>To compute the canonical retriangulation, it first prepares the manifold
194
- (filling all Dehn-filled cusps and trying to find a proto-canonical
195
- triangulation).
196
- It then tries to certify the canonical triangulation using interval
197
- arithmetics. If this fails, it uses snap (using <a class="reference external" href="http://en.wikipedia.org/wiki/Lenstra%E2%80%93Lenstra%E2%80%93Lov%C3%A1sz_lattice_basis_reduction_algorithm">LLL-algorithm</a>)
198
- to guess
199
- exact representations of the shapes in the shape field and then certifies
200
- that it found the proto-canonical triangulation and determines the
201
- transparent faces to construct the canonical retriangulation.</p>
202
- <p>The optional arguments are:</p>
203
- <ul class="simple">
204
- <li><p><code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>:
205
- a list of precisions used to try to
206
- certify the canonical triangulation using intervals. By default, it
207
- first tries to certify using 53 bits precision. If it failed, it tries
208
- 212 bits precision next. If it failed again, it moves on to trying exact
209
- arithmetics.</p></li>
210
- <li><p><code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span></code>:
211
- a list of pairs (precision, maximal degree) used when the LLL-algorithm
212
- is trying to find the defining polynomial of the shape field.
213
- Similar to <code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>, each pair is tried until we succeed.</p></li>
214
- <li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>:
215
- If <code class="docutils literal notranslate"><span class="pre">True</span></code>, print out additional information.</p></li>
216
- </ul>
217
- <p>The exact arithmetics can take a long time. To circumvent it, use
218
- <code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span> <span class="pre">=</span> <span class="pre">None</span></code>.</p>
219
- <p>More information on the canonical retriangulation can be found in the
220
- SnapPea kernel <code class="docutils literal notranslate"><span class="pre">canonize_part_2.c</span></code> and in Section 3.1 of
221
- <a class="reference external" href="http://arxiv.org/abs/1502.00383">Fominykh, Garoufalidis, Goerner, Tarkaev, Vesnin</a>.</p>
222
- <p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m004</span></code> has 2 tetrahedral cells:</p>
223
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
224
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
225
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
226
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
227
- <span class="kc">False</span>
228
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
229
- <span class="mi">2</span>
230
- </pre></div>
231
- </div>
232
- <p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m137</span></code> is not tetrahedral:</p>
233
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m137&quot;</span><span class="p">)</span>
234
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
235
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
236
- <span class="kc">True</span>
237
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
238
- <span class="mi">18</span>
239
- </pre></div>
240
- </div>
241
- <p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m412</span></code> is a cube and has exactly 8
242
- symmetries:</p>
243
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m412&quot;</span><span class="p">)</span>
244
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
245
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
246
- <span class="kc">True</span>
247
- <span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
248
- <span class="mi">12</span>
249
- <span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
250
- <span class="mi">8</span>
251
- </pre></div>
252
- </div>
253
- <p><a class="reference external" href="http://arxiv.org/abs/1311.7615">Burton’s example</a> of <code class="docutils literal notranslate"><span class="pre">x101</span></code> and <code class="docutils literal notranslate"><span class="pre">x103</span></code> which are actually isometric but
254
- SnapPea fails to show so. We certify the canonical retriangulation and
255
- find them isomorphic:</p>
256
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;x101&#39;</span><span class="p">);</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
257
- <span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;x103&#39;</span><span class="p">);</span> <span class="n">L</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
258
- <span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">L</span><span class="p">))</span> <span class="o">&gt;</span> <span class="mi">0</span>
259
- <span class="kc">True</span>
260
- </pre></div>
261
- </div>
262
- <p>Avoid potentially expensive exact arithmetics (return <code class="docutils literal notranslate"><span class="pre">None</span></code> because it has
263
- non-tetrahedral cells so interval arithmetics can’t certify it):</p>
264
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m412&quot;</span><span class="p">)</span>
265
- <span class="n">sage</span><span class="p">:</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">exact_bits_prec_and_degrees</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span>
266
- </pre></div>
267
- </div>
268
- </dd></dl>
269
-
270
- </section>
271
- </section>
272
-
273
-
274
- </div>
275
- </div>
276
- <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
277
- <a href="verify.html" class="btn btn-neutral float-left" title="Verified computations" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
278
- <a href="verify_internals.html" class="btn btn-neutral float-right" title="Internals of verified computations" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
279
- </div>
280
-
281
- <hr/>
282
-
283
- <div role="contentinfo">
284
- <p>&#169; Copyright 2009-2023, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
285
- </div>
286
-
287
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
288
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
289
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
290
-
291
-
292
- </footer>
293
- </div>
294
- </div>
295
- </section>
296
- </div>
297
- <script>
298
- jQuery(function () {
299
- SphinxRtdTheme.Navigation.enable(true);
300
- });
301
- </script>
302
-
303
- </body>
304
- </html>