snappy 3.1.1__cp39-cp39-macosx_11_0_arm64.whl → 3.2__cp39-cp39-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-39-darwin.so +0 -0
- snappy/SnapPy.cpython-39-darwin.so +0 -0
- snappy/SnapPyHP.cpython-39-darwin.so +0 -0
- snappy/__init__.py +299 -402
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/development.rst.txt +66 -46
- snappy/doc/_sources/index.rst.txt +72 -5
- snappy/doc/_sources/installing.rst.txt +145 -162
- snappy/doc/_sources/news.rst.txt +73 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +8 -7
- snappy/doc/_sources/ptolemy_examples3.rst.txt +2 -2
- snappy/doc/_sources/triangulation.rst.txt +2 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/basic.css +23 -1
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +2 -3
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +2 -2
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +125 -71
- snappy/doc/_static/sphinx_highlight.js +13 -3
- snappy/doc/additional_classes.html +291 -122
- snappy/doc/bugs.html +17 -20
- snappy/doc/censuses.html +34 -53
- snappy/doc/credits.html +18 -21
- snappy/doc/development.html +88 -68
- snappy/doc/genindex.html +66 -145
- snappy/doc/index.html +86 -31
- snappy/doc/installing.html +164 -182
- snappy/doc/manifold.html +1168 -556
- snappy/doc/manifoldhp.html +18 -21
- snappy/doc/news.html +91 -33
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +20 -22
- snappy/doc/platonic_census.html +31 -34
- snappy/doc/plink.html +19 -22
- snappy/doc/ptolemy.html +20 -22
- snappy/doc/ptolemy_classes.html +102 -105
- snappy/doc/ptolemy_examples1.html +34 -36
- snappy/doc/ptolemy_examples2.html +28 -31
- snappy/doc/ptolemy_examples3.html +26 -29
- snappy/doc/ptolemy_examples4.html +20 -23
- snappy/doc/ptolemy_prelim.html +25 -28
- snappy/doc/py-modindex.html +16 -19
- snappy/doc/screenshots.html +22 -24
- snappy/doc/search.html +15 -18
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +18 -21
- snappy/doc/snappy.html +18 -20
- snappy/doc/spherogram.html +84 -87
- snappy/doc/todo.html +17 -20
- snappy/doc/triangulation.html +324 -215
- snappy/doc/tutorial.html +17 -20
- snappy/doc/verify.html +100 -46
- snappy/doc/verify_internals.html +106 -563
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +8 -4
- snappy/phone_home.py +2 -1
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +113 -84
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cpython-39-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/__pycache__/browser.cpython-39.pyc +0 -0
- snappy/__pycache__/cache.cpython-39.pyc +0 -0
- snappy/__pycache__/database.cpython-39.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-39.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-39.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-39.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-39.pyc +0 -0
- snappy/__pycache__/gui.cpython-39.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/infowindow.cpython-39.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-39.pyc +0 -0
- snappy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/__pycache__/number.cpython-39.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-39.pyc +0 -0
- snappy/__pycache__/pari.cpython-39.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-39.pyc +0 -0
- snappy/__pycache__/version.cpython-39.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-39.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-39.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/finite_raytracing_data.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/gui_utilities.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/hyperboloid_navigation.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/hyperboloid_utilities.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/ideal_raytracing_data.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/inside_viewer.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/raytracing_data.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/raytracing_view.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/upper_halfspace_utilities.cpython-39.pyc +0 -0
- snappy/raytracing/__pycache__/view_scale_controller.cpython-39.pyc +0 -0
- snappy/raytracing/zoom_slider/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-39.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-39.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy-3.1.1.dist-info/RECORD +0 -585
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
from ..geometric_structure.geodesic.fixed_points import r13_fixed_line_of_psl2c_matrix
|
2
|
+
from ..geometric_structure.geodesic.geodesic_start_point_info import sample_line, GeodesicStartPointInfo
|
3
|
+
from ..geometric_structure.geodesic.line import R13LineWithMatrix
|
4
|
+
from ..hyperboloid.line import R13Line
|
5
|
+
from ..hyperboloid import so13_to_psl2c
|
6
|
+
from ..upper_halfspace import complex_length_of_psl2c_matrix
|
7
|
+
from ..math_basics import lower # type: ignore
|
8
|
+
from ..snap.t3mlite import Mcomplex
|
9
|
+
|
10
|
+
from typing import List, Optional
|
11
|
+
|
12
|
+
class GeodesicInfoBase:
|
13
|
+
"""
|
14
|
+
Basic information about a geodesic, consisting of word and matrix.
|
15
|
+
|
16
|
+
Used intermediately during the computation of the length spectrum.
|
17
|
+
Ordered by (lower bound of) real length.
|
18
|
+
|
19
|
+
After de-duplication, it is converted to the user-facing
|
20
|
+
LengthSpectrumGeodesicInfo.
|
21
|
+
"""
|
22
|
+
def __init__(self,
|
23
|
+
word : List[int],
|
24
|
+
o13_matrix):
|
25
|
+
self.word = word
|
26
|
+
self.o13_matrix = o13_matrix
|
27
|
+
|
28
|
+
self.psl2c_matrix = so13_to_psl2c(self.o13_matrix)
|
29
|
+
self.length = complex_length_of_psl2c_matrix(self.psl2c_matrix)
|
30
|
+
self._key = lower(self.length.real())
|
31
|
+
|
32
|
+
def __lt__(self, other):
|
33
|
+
"""
|
34
|
+
Ordering <.
|
35
|
+
"""
|
36
|
+
return self._key < other._key
|
37
|
+
|
38
|
+
class CoreCurveGeodesicInfo(GeodesicInfoBase):
|
39
|
+
"""
|
40
|
+
Information for a known core curve. That is, we go through each
|
41
|
+
filled cusp and compute this information before starting to compute
|
42
|
+
the length spectrum.
|
43
|
+
|
44
|
+
It contains the index of the corresponding (filled) cusp.
|
45
|
+
"""
|
46
|
+
def __init__(self,
|
47
|
+
word : List[int],
|
48
|
+
o13_matrix,
|
49
|
+
core_curve : int):
|
50
|
+
super().__init__(word, o13_matrix)
|
51
|
+
self.core_curve = core_curve
|
52
|
+
|
53
|
+
class GeodesicKeyInfo(GeodesicInfoBase):
|
54
|
+
"""
|
55
|
+
Information for a geodesic which might potentially a multiple of another
|
56
|
+
geodesic or even a core curve.
|
57
|
+
|
58
|
+
Via geodesic_start_point_info, we can determine whether this geodesic
|
59
|
+
corresponds to a multiple of a core curve.
|
60
|
+
|
61
|
+
Given two geodesics that are not core curves, we can also use this
|
62
|
+
information here to determine whether one is a conjugate of a multiple of
|
63
|
+
the other.
|
64
|
+
|
65
|
+
Also see get_geodesic_key_info_dict and get_geodesic_key_info_set.
|
66
|
+
"""
|
67
|
+
def __init__(self,
|
68
|
+
mcomplex : Mcomplex,
|
69
|
+
word : List[int],
|
70
|
+
o13_matrix):
|
71
|
+
super().__init__(word, o13_matrix)
|
72
|
+
self.mcomplex = mcomplex
|
73
|
+
|
74
|
+
self._r13_line_with_matrix : Optional[R13LineWithMatrix] = None
|
75
|
+
self._info : Optional[GeodesicStartPointInfo] = None
|
76
|
+
|
77
|
+
def r13_line_with_matrix(self) -> R13LineWithMatrix:
|
78
|
+
"""
|
79
|
+
The actual line in H^3 with the matrix corresponding to the
|
80
|
+
geodesic.
|
81
|
+
"""
|
82
|
+
if self._r13_line_with_matrix is None:
|
83
|
+
self._r13_line_with_matrix = (
|
84
|
+
r13_fixed_line_of_psl2c_matrix(self.psl2c_matrix))
|
85
|
+
|
86
|
+
return self._r13_line_with_matrix
|
87
|
+
|
88
|
+
def r13_line(self) -> R13Line:
|
89
|
+
"""
|
90
|
+
The actually line in H^3 corresponding to the geodesic.
|
91
|
+
"""
|
92
|
+
return self.r13_line_with_matrix().r13_line
|
93
|
+
|
94
|
+
def geodesic_start_point_info(self) -> GeodesicStartPointInfo:
|
95
|
+
"""
|
96
|
+
Information to start developing about the geodesic.
|
97
|
+
"""
|
98
|
+
if self._info is None:
|
99
|
+
start_point = sample_line(self.r13_line())
|
100
|
+
|
101
|
+
self._info = GeodesicStartPointInfo(
|
102
|
+
mcomplex=self.mcomplex,
|
103
|
+
word=self.word,
|
104
|
+
trace=self.psl2c_matrix.trace(),
|
105
|
+
unnormalised_start_point = start_point,
|
106
|
+
unnormalised_end_point=self.o13_matrix * start_point,
|
107
|
+
line=self.r13_line_with_matrix())
|
108
|
+
self._info.find_tet_or_core_curve()
|
109
|
+
|
110
|
+
return self._info
|
@@ -0,0 +1,117 @@
|
|
1
|
+
from .geodesic_piece import GeodesicPiece, get_geodesic_piece_dict
|
2
|
+
from .geodesic_info import GeodesicKeyInfo
|
3
|
+
|
4
|
+
from ..tiling.canonical_key_dict import CanonicalKeyDict
|
5
|
+
from ..tiling.dict_based_set import DictBasedSet
|
6
|
+
from ..geometric_structure.geodesic.tiles_for_geodesic import compute_tiles_for_geodesic
|
7
|
+
from ..geometric_structure.geodesic.geodesic_start_point_info import GeodesicStartPointInfo
|
8
|
+
from ..hyperboloid import o13_inverse, r13_to_klein
|
9
|
+
from ..snap.t3mlite import Mcomplex
|
10
|
+
from ..exceptions import InsufficientPrecisionError
|
11
|
+
|
12
|
+
from typing import List, Sequence
|
13
|
+
|
14
|
+
def get_geodesic_key_info_dict(mcomplex : Mcomplex):
|
15
|
+
"""
|
16
|
+
Given a triangulation with a geometric structure, gives an (empty)
|
17
|
+
dictionary where keys are GeodesicKeyInfo's not corresponding to
|
18
|
+
core curves.
|
19
|
+
|
20
|
+
Two keys are regarded the same if they give the same geodesic in the
|
21
|
+
manifold up to multiplicity and orientation of the geodesic.
|
22
|
+
|
23
|
+
Note that the same caveat from get_geodesic_piece_dict about this not
|
24
|
+
being an equivalence relationship applies.
|
25
|
+
|
26
|
+
In particular, it assumed that we insert the primitive geodesic before
|
27
|
+
we insert a multiple of that primitive geodesic.
|
28
|
+
"""
|
29
|
+
return CanonicalKeyDict(
|
30
|
+
get_geodesic_piece_dict(mcomplex),
|
31
|
+
_canonical_keys)
|
32
|
+
|
33
|
+
def get_geodesic_key_info_set(mcomplex : Mcomplex):
|
34
|
+
"""
|
35
|
+
Analogous to get_geodesic_key_info_dict, gives a set where the
|
36
|
+
elements are GeodesicKeyInfo's not corresponding to core curves.
|
37
|
+
|
38
|
+
The same caveats apply.
|
39
|
+
"""
|
40
|
+
return DictBasedSet(get_geodesic_key_info_dict(mcomplex))
|
41
|
+
|
42
|
+
def _canonical_keys(key_info : GeodesicKeyInfo) -> List[GeodesicPiece]:
|
43
|
+
"""
|
44
|
+
To see whether two geodesics are the same, we compute the intersection
|
45
|
+
of the geodesic with each tetrahedron and store the information in
|
46
|
+
GeodesicPiece's.
|
47
|
+
|
48
|
+
If a part of the geodesic is so close to the skeleton that it cannot be
|
49
|
+
decided whether it intersects a tetrahedron or not, we conservatively add
|
50
|
+
the GeodesicPiece. In particular, if a geodesic is going through a face
|
51
|
+
of a tetrahedron, we add the two tetrahedra neighboring that face.
|
52
|
+
|
53
|
+
We obtain the GeodesicPieces by developing a tube about the geodesic until
|
54
|
+
we can verify that the tube has positive radius.
|
55
|
+
"""
|
56
|
+
|
57
|
+
if key_info.geodesic_start_point_info().core_curve_cusp:
|
58
|
+
raise ValueError(
|
59
|
+
"Expected a non-core curve geodesic as key for dictionary of "
|
60
|
+
"GeodesicKeyInfo's.")
|
61
|
+
|
62
|
+
# Note that geodesic_start_point_info might compute a transform of
|
63
|
+
# the given geodesic. This is to ensure that it can find a lifted
|
64
|
+
# tetrahedron in the fundamental domain containing the point about which
|
65
|
+
# we start developing (or a pair of two lifted tetrahedra where one
|
66
|
+
# is in the fundamental domain).
|
67
|
+
|
68
|
+
return list(
|
69
|
+
_compute_geodesic_pieces(
|
70
|
+
key_info.mcomplex,
|
71
|
+
key_info.geodesic_start_point_info(),
|
72
|
+
key_info.length.real()))
|
73
|
+
|
74
|
+
def _compute_geodesic_pieces(
|
75
|
+
mcomplex : Mcomplex,
|
76
|
+
info : GeodesicStartPointInfo,
|
77
|
+
real_length) -> Sequence[GeodesicPiece]:
|
78
|
+
|
79
|
+
g = info.line.o13_matrix
|
80
|
+
|
81
|
+
for tile in compute_tiles_for_geodesic(
|
82
|
+
mcomplex, info, avoid_core_curves = True):
|
83
|
+
if tile.lower_bound_distance > 0:
|
84
|
+
break
|
85
|
+
|
86
|
+
h = tile.lifted_tetrahedron.o13_matrix
|
87
|
+
|
88
|
+
# Compute the matrix corresponding to line given by
|
89
|
+
# tile.inverse_lifted_geometric_object.
|
90
|
+
#
|
91
|
+
# Ideally, compute_tiles_for_geodesic could work with
|
92
|
+
# both types, R13Line and R13LineWithMatrix and do the
|
93
|
+
# appropriate thing.
|
94
|
+
#
|
95
|
+
m0 = o13_inverse(h) * g * h
|
96
|
+
|
97
|
+
# Also compute the inverse
|
98
|
+
m1 = o13_inverse(m0)
|
99
|
+
|
100
|
+
pt0, pt1 = tile.inverse_lifted_geometric_object.points
|
101
|
+
|
102
|
+
# We do not know which of pt0 and pt1 is the attracting fixed point
|
103
|
+
# of m0 or m1.
|
104
|
+
# Check and switch around if necessary.
|
105
|
+
|
106
|
+
if (m0 * pt0)[0] > pt0[0]:
|
107
|
+
pass
|
108
|
+
elif (m0 * pt1)[0] > pt1[0]:
|
109
|
+
pt1, pt0 = pt0, pt1
|
110
|
+
else:
|
111
|
+
raise InsufficientPrecisionError(
|
112
|
+
"Could not determine which fixed point is attracting. "
|
113
|
+
"Increasing the precision should fix this.")
|
114
|
+
|
115
|
+
# Emit a GeodesicPiece for both orientations of the geodesic.
|
116
|
+
for pt, m in ((pt0, m0), (pt1, m1)):
|
117
|
+
yield GeodesicPiece(r13_to_klein(pt), m, real_length)
|
@@ -0,0 +1,143 @@
|
|
1
|
+
from ..tiling.real_hash_dict import RealHashDict
|
2
|
+
from ..hyperboloid import o13_inverse
|
3
|
+
from ..hyperboloid.distances import distance_r13_points
|
4
|
+
from ..snap.t3mlite import Mcomplex
|
5
|
+
from ..exceptions import InsufficientPrecisionError
|
6
|
+
|
7
|
+
from typing import Tuple
|
8
|
+
|
9
|
+
class GeodesicPiece:
|
10
|
+
"""
|
11
|
+
For a hyperbolic manifold given through context, this class stores enough
|
12
|
+
information about a loxodromic Decktransformation of H^3 to determine
|
13
|
+
whether one loxodromic is a positive multiple of another one.
|
14
|
+
|
15
|
+
This can be used as keys in a dictionary constructed with
|
16
|
+
get_geodesic_piece_dict.
|
17
|
+
|
18
|
+
The information consists of the attracting fixed point encoded as 3-vector
|
19
|
+
in S^2 (as boundary of the Klein or Poincare ball model), the associated
|
20
|
+
matrix and the real part of the translation length.
|
21
|
+
|
22
|
+
Note that intervals for the attracing fixed point can be used to verify
|
23
|
+
two loxodromics apart up to multiplicity (and are good for hashing).
|
24
|
+
But we need the matrix to verify that two loxodromics are the same - or
|
25
|
+
that one is a multiple of another.
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __init__(self,
|
29
|
+
klein_endpoint, # 3-vector in S^2
|
30
|
+
o13_matrix,
|
31
|
+
real_length):
|
32
|
+
self.klein_endpoint = klein_endpoint
|
33
|
+
self.o13_matrix = o13_matrix
|
34
|
+
self.real_length = real_length
|
35
|
+
|
36
|
+
def get_geodesic_piece_dict(mcomplex : Mcomplex):
|
37
|
+
"""
|
38
|
+
Returns a dictionary where the keys can be GeodesicPiece's.
|
39
|
+
The GeodesicPiece's have to be for loxodromics coming from the given
|
40
|
+
triangulation with a geometric structure.
|
41
|
+
|
42
|
+
Two keys are regarded as the same if the matrix of one is a multiple
|
43
|
+
of the matrix of the other key.
|
44
|
+
|
45
|
+
Note that this is not quite an equivalence relation: if B and C are
|
46
|
+
multiples of A, then B is not necessarily a multiple of C.
|
47
|
+
|
48
|
+
It is assumed that we insert the primitive matrix before we insert a
|
49
|
+
multiple of that primitive matrix.
|
50
|
+
"""
|
51
|
+
return RealHashDict(
|
52
|
+
_equality_predicate(mcomplex),
|
53
|
+
_hash(mcomplex.RF),
|
54
|
+
_epsilon_inverse,
|
55
|
+
mcomplex.verified)
|
56
|
+
|
57
|
+
_epsilon_inverse = 1024
|
58
|
+
|
59
|
+
def _hash(RF):
|
60
|
+
weights = [ RF(1.2003), RF(0.94533), RF(1.431112) ]
|
61
|
+
|
62
|
+
def result(piece : GeodesicPiece):
|
63
|
+
"""
|
64
|
+
Use attracting fixed point for computing the hash.
|
65
|
+
"""
|
66
|
+
return (piece.klein_endpoint[0] * weights[0] +
|
67
|
+
piece.klein_endpoint[1] * weights[1] +
|
68
|
+
piece.klein_endpoint[2] * weights[2])
|
69
|
+
|
70
|
+
return result
|
71
|
+
|
72
|
+
def _equality_predicate(mcomplex):
|
73
|
+
def unsymmetrized_result(piece_0 : GeodesicPiece,
|
74
|
+
piece_1 : GeodesicPiece) -> bool:
|
75
|
+
"""
|
76
|
+
Check whether the matrix of piece_1 is a multiple of
|
77
|
+
the matrix of piece_0.
|
78
|
+
|
79
|
+
Raise an exception if this could not be decided.
|
80
|
+
"""
|
81
|
+
|
82
|
+
candidate_multiplicity = piece_1.real_length / piece_0.real_length
|
83
|
+
|
84
|
+
multiplicity = _int_or_none(
|
85
|
+
candidate_multiplicity, mcomplex.verified)
|
86
|
+
if multiplicity is None:
|
87
|
+
return False
|
88
|
+
|
89
|
+
# Compute translates of base points.
|
90
|
+
base = mcomplex.R13_baseTetInCenter
|
91
|
+
|
92
|
+
base_0 = base
|
93
|
+
for i in range(multiplicity):
|
94
|
+
base_0 = piece_0.o13_matrix * base_0
|
95
|
+
|
96
|
+
base_1 = piece_1.o13_matrix * base
|
97
|
+
|
98
|
+
# And then use the distance to see whether one matrix is
|
99
|
+
# a multiple of the other.
|
100
|
+
d = distance_r13_points(base_1, base_0)
|
101
|
+
if d < mcomplex.baseTetInRadius:
|
102
|
+
return True
|
103
|
+
if d > mcomplex.baseTetInRadius:
|
104
|
+
return False
|
105
|
+
raise InsufficientPrecisionError(
|
106
|
+
"Could not determine whether two pieces of a geodesic are the "
|
107
|
+
"same.\n"
|
108
|
+
"Distance of images of basepoints: %r.\n"
|
109
|
+
"Base tetrahedron in radius: %r.\n"
|
110
|
+
"Increasing precision should fix this." % (
|
111
|
+
d, mcomplex.baseTetInRadius))
|
112
|
+
|
113
|
+
def result(piece_0 : GeodesicPiece,
|
114
|
+
piece_1 : GeodesicPiece) -> bool:
|
115
|
+
"""
|
116
|
+
Check whether the matrix of piece_0 is a multiple of
|
117
|
+
the matrix of piece_1 or vice versa.
|
118
|
+
"""
|
119
|
+
if piece_0.real_length > piece_1.real_length:
|
120
|
+
return unsymmetrized_result(piece_1, piece_0)
|
121
|
+
else:
|
122
|
+
return unsymmetrized_result(piece_0, piece_1)
|
123
|
+
|
124
|
+
return result
|
125
|
+
|
126
|
+
_is_int_epsilon = 0.001
|
127
|
+
|
128
|
+
def _int_or_none(r, verified) -> Tuple[bool, int]:
|
129
|
+
if verified:
|
130
|
+
if r.floor() < r:
|
131
|
+
return None
|
132
|
+
is_int, r_int = r.is_int()
|
133
|
+
if is_int:
|
134
|
+
return r_int
|
135
|
+
|
136
|
+
raise InsufficientPrecisionError(
|
137
|
+
"When computing multiplicity of geodesic, "
|
138
|
+
"could not determine whether interval contains an integer or not.")
|
139
|
+
else:
|
140
|
+
r_int = r.round()
|
141
|
+
if abs(r_int -r) < _is_int_epsilon:
|
142
|
+
return int(r_int)
|
143
|
+
return None
|
@@ -0,0 +1,182 @@
|
|
1
|
+
from .spine import add_spine
|
2
|
+
|
3
|
+
from ..geometric_structure import add_r13_geometry, add_filling_information
|
4
|
+
from ..geometric_structure.geodesic.add_core_curves import add_r13_core_curves
|
5
|
+
from ..geometric_structure.cusp_neighborhood.complex_cusp_cross_section import ComplexCuspCrossSection
|
6
|
+
from ..geometric_structure.cusp_neighborhood.vertices import scale_vertices_from_horotriangles
|
7
|
+
|
8
|
+
from ..cusps.trig_cusp_area_matrix import triangulation_dependent_cusp_area_matrix_from_cusp_cross_section
|
9
|
+
from ..cusps.cusp_areas_from_matrix import unbiased_cusp_areas_from_cusp_area_matrix
|
10
|
+
from ..tiling.triangle import add_triangles_to_tetrahedra
|
11
|
+
from ..math_basics import correct_min
|
12
|
+
from ..matrix import make_matrix
|
13
|
+
from ..snap.t3mlite import Mcomplex
|
14
|
+
|
15
|
+
from typing import Optional
|
16
|
+
|
17
|
+
def mcomplex_for_len_spec(
|
18
|
+
manifold, bits_prec : Optional[int], verified : bool) -> Mcomplex:
|
19
|
+
"""
|
20
|
+
Convert a SnapPy manifold (wrapping a SnapPea kernel C triangulation) to
|
21
|
+
an Mcomplex (a python triangulation) and a geometric structures to the
|
22
|
+
Mcomplex necessary to compute the length spectrum.
|
23
|
+
|
24
|
+
The basic geometric structures are:
|
25
|
+
- the shapes of the ideal tetrahedra in tet.ShapeParameters
|
26
|
+
- the position of the vertices when developing the fundamental domain
|
27
|
+
in R13 in tet.R13_vertices (scaled to define a cusp neighborhood or
|
28
|
+
tube about a core curve, see later for details)
|
29
|
+
- the O13 face-pairing matrices between the tetrahedra in tet.O13_matrices
|
30
|
+
- to what (possibly trivial) generate a face-pairing belongs
|
31
|
+
in tet.GeneratorsInfo
|
32
|
+
- the plane equations for the faces (with normal facing outward)
|
33
|
+
in tet in tet.R13_planes and tet.R13_unnormalised_planes
|
34
|
+
- ideal triangles for each face in tet.R13_triangles
|
35
|
+
- the (possibly trivial) filling of each cusp as matrix tet.filling_matrix
|
36
|
+
encoding the filling curve as well as a cure parallel to the core curve.
|
37
|
+
- the core curves in tet.core_curve as R13LineWithMatrix
|
38
|
+
|
39
|
+
Furthermore, we also pick disjoint and embedded cusp neighborhoods (for
|
40
|
+
complete cusps) or tubes (for filled cusps) about the core curve for all
|
41
|
+
cusps.
|
42
|
+
|
43
|
+
We always work with horotriangles to truncate tetrahedra. That is, if we
|
44
|
+
have a tube about a core curve, we pick the horotriangles large
|
45
|
+
enough that they are fully outside the tube. Through a scale factor, we
|
46
|
+
also (indirectly) specify the horotriangles small enough that they are
|
47
|
+
fully inside the tube. So for a core curve, the truncated tetrahedra look
|
48
|
+
like a triangular version of the Giant's Causeway in Northern Ireland.
|
49
|
+
|
50
|
+
The picked horotriangles are such that the regions of a
|
51
|
+
tetrahedron they cut off are disjoint and do not cut-off the incenter of
|
52
|
+
the tetrahedron.
|
53
|
+
|
54
|
+
We use the cusp neighborhood choices and horotriangles to compute:
|
55
|
+
- the radius of the tube about the core curve in
|
56
|
+
cusp.core_curve_tube_radius so that if a geodesic goes through a
|
57
|
+
core curve, we can avoid developing the geodesic inside this tube
|
58
|
+
(which would require infinitely many pieces to reach the core curve)
|
59
|
+
by calling replace_piece_in_core_curve_tube.
|
60
|
+
- scale the tet.R13_vertices so that they define the horosphere that
|
61
|
+
cuts the tetrahedron in the picked horotriangle.
|
62
|
+
|
63
|
+
Recall that a spine of the triangulation has the key property that each
|
64
|
+
geodesic that is not a core curve is intersecting the spine.
|
65
|
+
|
66
|
+
We also use the cusp neighborhood choices and horotriangles to compute:
|
67
|
+
- use the tetrahedron's incenter as its spine center tet.spine_center.
|
68
|
+
- compute tet.out_radius, the radius (about the spine center) of a
|
69
|
+
tetrahedron truncated by the smaller horotriangles given by the scale
|
70
|
+
factor.
|
71
|
+
- tet.spine_radius is the radius of a ball about tet.spine_center
|
72
|
+
containing the restriction of the spine to the tetrahedron.
|
73
|
+
- tet.inv_spine_cosh = 1 / cosh(r) where r is the tet.spine_radius
|
74
|
+
- The spine center of the base tetrahedron is stored in
|
75
|
+
mcomplex.spine_center. We regard it as center for the lift of the
|
76
|
+
entire spine to H^3 and restricted to a fundamental domain.
|
77
|
+
mcomplex.spine_radius is the radius of a ball about this spine
|
78
|
+
center that contains the entire spine.
|
79
|
+
"""
|
80
|
+
|
81
|
+
mcomplex = Mcomplex(manifold)
|
82
|
+
|
83
|
+
# Add shapes, vertex positions, face-pairings, plane equations,
|
84
|
+
# generator info
|
85
|
+
add_r13_geometry(mcomplex,
|
86
|
+
manifold,
|
87
|
+
verified=verified, bits_prec=bits_prec)
|
88
|
+
# Add tet.filling_matrix
|
89
|
+
add_filling_information(mcomplex, manifold)
|
90
|
+
# Add tet.core_curve
|
91
|
+
add_r13_core_curves(mcomplex, manifold)
|
92
|
+
# Add ideal triangles in tet.R13_triangles
|
93
|
+
add_triangles_to_tetrahedra(mcomplex)
|
94
|
+
|
95
|
+
# Pick disjoint/embedded cusp neighborhoods and tubes about core curves
|
96
|
+
# avoiding the incenter of each tetrahedron.
|
97
|
+
_add_and_scale_cusp_cross_section(mcomplex)
|
98
|
+
|
99
|
+
# Scale tet.R13_vertices to correspond to the just chosen horotriangles
|
100
|
+
scale_vertices_from_horotriangles(mcomplex)
|
101
|
+
|
102
|
+
# Construct spine.
|
103
|
+
add_spine(mcomplex)
|
104
|
+
|
105
|
+
return mcomplex
|
106
|
+
|
107
|
+
def _add_and_scale_cusp_cross_section(mcomplex : Mcomplex):
|
108
|
+
"""
|
109
|
+
Pick disjoint/embedded cusp neighborhoods and tubes about core curves
|
110
|
+
avoiding the incenter of each tetrahedron.
|
111
|
+
|
112
|
+
Also store scaling factor for a horotriangle to be inside the chosen
|
113
|
+
tube about a core curve in inverse_scale_to_be_inside_tube.
|
114
|
+
"""
|
115
|
+
|
116
|
+
c = ComplexCuspCrossSection(mcomplex)
|
117
|
+
c.add_structures()
|
118
|
+
|
119
|
+
# Develop vertices in C for incomplete cusps.
|
120
|
+
c.add_vertex_positions_to_horotriangles()
|
121
|
+
# The similarities about some point in C. But we want to work with
|
122
|
+
# similarities of C^*, so move.
|
123
|
+
c.move_fixed_point_to_zero()
|
124
|
+
|
125
|
+
c.scale_triangles_to_avoid_standard_tubes()
|
126
|
+
|
127
|
+
_scale_cusp_cross_section(c)
|
128
|
+
|
129
|
+
def _scale_cusp_cross_section(c : ComplexCuspCrossSection):
|
130
|
+
"""
|
131
|
+
Scale horotriangles. That is scale all horotriangles belonging to
|
132
|
+
the same (complete or filled) cusp by the same factor.
|
133
|
+
|
134
|
+
We scale them such that the regions the horotriangles cut off a
|
135
|
+
particular tetrahedron are disjoint and don't cut-off the incenter.
|
136
|
+
|
137
|
+
Also compute the radius of the corresponding tube about the core curve
|
138
|
+
(that is contained inside the the regions we cut off and thus embedded
|
139
|
+
and disjoint from the other tubes or cusp neighborhoods).
|
140
|
+
"""
|
141
|
+
|
142
|
+
# Cusp areas we start with. For a filled cusp, this is the area of the
|
143
|
+
# horotriangles that touch a standard tube about the core curve.
|
144
|
+
original_cusp_areas = c.cusp_areas()
|
145
|
+
# Maximal areas to avoid incenters of the tetrahedra
|
146
|
+
max_areas = [ area * (c.compute_scale_to_avoid_incenter(v) ** 2)
|
147
|
+
for v, area in zip(c.mcomplex.Vertices, original_cusp_areas) ]
|
148
|
+
cusp_area_matrix = (
|
149
|
+
triangulation_dependent_cusp_area_matrix_from_cusp_cross_section(c))
|
150
|
+
# Adjust the diagonal entries so that the incenter of a tetrahedron
|
151
|
+
# cannot be in a cusp neighborhoods/ horotriangles outside a tube about
|
152
|
+
# a core curve.
|
153
|
+
incenter_cusp_area_matrix = _min_matrix(cusp_area_matrix, max_areas)
|
154
|
+
cusp_areas = (
|
155
|
+
unbiased_cusp_areas_from_cusp_area_matrix(incenter_cusp_area_matrix))
|
156
|
+
c.normalize_cusps(cusp_areas)
|
157
|
+
|
158
|
+
# Compute (lower bound) on radius of tubes about core curves that are
|
159
|
+
# embedded/disjoint from the cusp neighborhoods.
|
160
|
+
for i, cusp in enumerate(c.mcomplex.Vertices):
|
161
|
+
if cusp.is_complete:
|
162
|
+
continue
|
163
|
+
cusp_area_scale = cusp_areas[i] / original_cusp_areas[i]
|
164
|
+
cusp_scale = cusp_area_scale.sqrt()
|
165
|
+
cusp.core_curve_tube_radius = cusp_scale.arcsinh()
|
166
|
+
|
167
|
+
def _min_matrix(m, diag_sqrt):
|
168
|
+
"""
|
169
|
+
Compute new matrix by replacing the diagonal.
|
170
|
+
|
171
|
+
A new diagonal entry will be computed by taking the minimum of the
|
172
|
+
old entry and the square of the corresponding entry in diag_sqrt.
|
173
|
+
"""
|
174
|
+
|
175
|
+
n = len(diag_sqrt)
|
176
|
+
|
177
|
+
return make_matrix(
|
178
|
+
[ [
|
179
|
+
m[i,j] if i != j
|
180
|
+
else correct_min([diag_sqrt[i] ** 2, m[i, j]])
|
181
|
+
for j in range(n)]
|
182
|
+
for i in range(n)])
|
@@ -0,0 +1,80 @@
|
|
1
|
+
from ..hyperboloid.distances import (
|
2
|
+
distance_r13_points, lower_bound_distance_r13_point_triangle)
|
3
|
+
|
4
|
+
from ..math_basics import correct_min, correct_max # type: ignore
|
5
|
+
|
6
|
+
from ..snap.t3mlite import simplex, Tetrahedron
|
7
|
+
|
8
|
+
def lower_bound_geodesic_length(
|
9
|
+
lower_bound_distance, inv_spine_cosh):
|
10
|
+
"""
|
11
|
+
This implements a version of Proposition 3.5 of
|
12
|
+
Weeks-Hodgson's Symmetries, Isometries and Length Spectra of Closed
|
13
|
+
Hyperbolic Three-Manifolds. Slightly changing notation, it says:
|
14
|
+
|
15
|
+
To find all closed geodesics of length at most L, it sufficies to
|
16
|
+
find all translates gD such that d(x, gx) <= R where
|
17
|
+
R = 2 arccosh(cosh(r) cosh(L/2)).
|
18
|
+
|
19
|
+
The input is a lower_bound_distance, a lower bound on the radius R of the
|
20
|
+
ball we have covered by tiles, and inv_spine_cosh = 1/cosh(r) where
|
21
|
+
r is a given tetrahedron's spine radius. More precisely, r is the radius
|
22
|
+
with respect to a given's tetrahedron's spine center (typically incenter)
|
23
|
+
of the intersection of the triangulation's spine with the tetrahedron.
|
24
|
+
|
25
|
+
The output is L which has the following property: Any geodesic in M that
|
26
|
+
intersects the given tetrahedron's spine and has length less than L is
|
27
|
+
among the ones we have encountered during tiling so far.
|
28
|
+
|
29
|
+
Note that our R is defined slightly differently, thus we can actually drop
|
30
|
+
the factor of 2 through out:
|
31
|
+
|
32
|
+
R = arccosh(cosh(r) cosh(L))
|
33
|
+
|
34
|
+
We also want an expression in L:
|
35
|
+
|
36
|
+
L = arccosh(cosh(R) / cosh(r))
|
37
|
+
|
38
|
+
And want to conservatively return 0 if this is not well-defined.
|
39
|
+
|
40
|
+
Note that we use the tetrahedron's spine radius here. But since we are
|
41
|
+
interested in geodesics and length bounds intrinsic to the manifold, the
|
42
|
+
length spectrum computation starts a tiling process for each tetrahedron.
|
43
|
+
|
44
|
+
Note that if the geometric structure is complete, every geodesic
|
45
|
+
will intersect the spine. However, for a spun-triangulation, this
|
46
|
+
only applies to geodesics that are not core curves. This is fine
|
47
|
+
since we treat core curves separately when computing the length
|
48
|
+
spectrum.
|
49
|
+
"""
|
50
|
+
|
51
|
+
if lower_bound_distance > 0:
|
52
|
+
q = lower_bound_distance.cosh() * inv_spine_cosh
|
53
|
+
if q > 1:
|
54
|
+
return q.arccosh()
|
55
|
+
RF = lower_bound_distance.parent()
|
56
|
+
return RF(0)
|
57
|
+
|
58
|
+
def lower_bound_distance_r13_point_truncated_tetrahedron(
|
59
|
+
point, tet : Tetrahedron, verified : bool):
|
60
|
+
"""
|
61
|
+
A lower bound for the distance of a point to a truncated tetrahedron.
|
62
|
+
Assuming the point is not inside the truncated tetrahedron.
|
63
|
+
|
64
|
+
The truncated tetrahedron is given as follows: we have the ideal
|
65
|
+
triangles for each face of the underlying ideal tetrahedra. We have
|
66
|
+
a lower bound on the radius of the truncated tetrahedron with respect
|
67
|
+
to its spine center (typically the incenter).
|
68
|
+
"""
|
69
|
+
|
70
|
+
# One lower bound is given by computing the distance of the incenter
|
71
|
+
# and subtracting the radius.
|
72
|
+
d_out = distance_r13_points(point, tet.spine_center) - tet.out_radius
|
73
|
+
# Another lower bound is given by computing the distance to the underlying
|
74
|
+
# ideal tetrahedron. Assuming the point is not in the tetrahedron, it is
|
75
|
+
# given by the distances to the ideal faces.
|
76
|
+
d_faces = correct_min(
|
77
|
+
[ lower_bound_distance_r13_point_triangle(
|
78
|
+
point, tet.R13_triangles[f], verified)
|
79
|
+
for f in simplex.TwoSubsimplices ])
|
80
|
+
return correct_max([d_out, d_faces])
|