smftools 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/__init__.py +29 -0
- smftools/_settings.py +20 -0
- smftools/_version.py +1 -0
- smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
- smftools/datasets/F1_sample_sheet.csv +5 -0
- smftools/datasets/__init__.py +9 -0
- smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
- smftools/datasets/datasets.py +28 -0
- smftools/informatics/__init__.py +16 -0
- smftools/informatics/archived/bam_conversion.py +59 -0
- smftools/informatics/archived/bam_direct.py +63 -0
- smftools/informatics/archived/basecalls_to_adata.py +71 -0
- smftools/informatics/archived/print_bam_query_seq.py +29 -0
- smftools/informatics/basecall_pod5s.py +80 -0
- smftools/informatics/conversion_smf.py +132 -0
- smftools/informatics/direct_smf.py +137 -0
- smftools/informatics/fast5_to_pod5.py +21 -0
- smftools/informatics/helpers/LoadExperimentConfig.py +75 -0
- smftools/informatics/helpers/__init__.py +74 -0
- smftools/informatics/helpers/align_and_sort_BAM.py +59 -0
- smftools/informatics/helpers/aligned_BAM_to_bed.py +74 -0
- smftools/informatics/helpers/archived/informatics.py +260 -0
- smftools/informatics/helpers/archived/load_adata.py +516 -0
- smftools/informatics/helpers/bam_qc.py +66 -0
- smftools/informatics/helpers/bed_to_bigwig.py +39 -0
- smftools/informatics/helpers/binarize_converted_base_identities.py +79 -0
- smftools/informatics/helpers/canoncall.py +34 -0
- smftools/informatics/helpers/complement_base_list.py +21 -0
- smftools/informatics/helpers/concatenate_fastqs_to_bam.py +55 -0
- smftools/informatics/helpers/converted_BAM_to_adata.py +245 -0
- smftools/informatics/helpers/converted_BAM_to_adata_II.py +369 -0
- smftools/informatics/helpers/count_aligned_reads.py +43 -0
- smftools/informatics/helpers/demux_and_index_BAM.py +52 -0
- smftools/informatics/helpers/extract_base_identities.py +44 -0
- smftools/informatics/helpers/extract_mods.py +83 -0
- smftools/informatics/helpers/extract_read_features_from_bam.py +31 -0
- smftools/informatics/helpers/extract_read_lengths_from_bed.py +25 -0
- smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
- smftools/informatics/helpers/find_conversion_sites.py +50 -0
- smftools/informatics/helpers/generate_converted_FASTA.py +99 -0
- smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
- smftools/informatics/helpers/get_native_references.py +28 -0
- smftools/informatics/helpers/index_fasta.py +12 -0
- smftools/informatics/helpers/make_dirs.py +21 -0
- smftools/informatics/helpers/make_modbed.py +27 -0
- smftools/informatics/helpers/modQC.py +27 -0
- smftools/informatics/helpers/modcall.py +36 -0
- smftools/informatics/helpers/modkit_extract_to_adata.py +884 -0
- smftools/informatics/helpers/ohe_batching.py +76 -0
- smftools/informatics/helpers/ohe_layers_decode.py +32 -0
- smftools/informatics/helpers/one_hot_decode.py +27 -0
- smftools/informatics/helpers/one_hot_encode.py +57 -0
- smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +53 -0
- smftools/informatics/helpers/run_multiqc.py +28 -0
- smftools/informatics/helpers/separate_bam_by_bc.py +43 -0
- smftools/informatics/helpers/split_and_index_BAM.py +36 -0
- smftools/informatics/load_adata.py +182 -0
- smftools/informatics/readwrite.py +106 -0
- smftools/informatics/subsample_fasta_from_bed.py +47 -0
- smftools/informatics/subsample_pod5.py +104 -0
- smftools/plotting/__init__.py +15 -0
- smftools/plotting/classifiers.py +355 -0
- smftools/plotting/general_plotting.py +205 -0
- smftools/plotting/position_stats.py +462 -0
- smftools/preprocessing/__init__.py +33 -0
- smftools/preprocessing/append_C_context.py +82 -0
- smftools/preprocessing/archives/mark_duplicates.py +146 -0
- smftools/preprocessing/archives/preprocessing.py +614 -0
- smftools/preprocessing/archives/remove_duplicates.py +21 -0
- smftools/preprocessing/binarize_on_Youden.py +45 -0
- smftools/preprocessing/binary_layers_to_ohe.py +40 -0
- smftools/preprocessing/calculate_complexity.py +72 -0
- smftools/preprocessing/calculate_consensus.py +47 -0
- smftools/preprocessing/calculate_converted_read_methylation_stats.py +94 -0
- smftools/preprocessing/calculate_coverage.py +42 -0
- smftools/preprocessing/calculate_pairwise_differences.py +49 -0
- smftools/preprocessing/calculate_pairwise_hamming_distances.py +27 -0
- smftools/preprocessing/calculate_position_Youden.py +115 -0
- smftools/preprocessing/calculate_read_length_stats.py +79 -0
- smftools/preprocessing/clean_NaN.py +46 -0
- smftools/preprocessing/filter_adata_by_nan_proportion.py +31 -0
- smftools/preprocessing/filter_converted_reads_on_methylation.py +44 -0
- smftools/preprocessing/filter_reads_on_length.py +51 -0
- smftools/preprocessing/flag_duplicate_reads.py +149 -0
- smftools/preprocessing/invert_adata.py +30 -0
- smftools/preprocessing/load_sample_sheet.py +38 -0
- smftools/preprocessing/make_dirs.py +21 -0
- smftools/preprocessing/min_non_diagonal.py +25 -0
- smftools/preprocessing/recipes.py +127 -0
- smftools/preprocessing/subsample_adata.py +58 -0
- smftools/readwrite.py +198 -0
- smftools/tools/__init__.py +49 -0
- smftools/tools/apply_hmm.py +202 -0
- smftools/tools/apply_hmm_batched.py +241 -0
- smftools/tools/archived/classify_methylated_features.py +66 -0
- smftools/tools/archived/classify_non_methylated_features.py +75 -0
- smftools/tools/archived/subset_adata_v1.py +32 -0
- smftools/tools/archived/subset_adata_v2.py +46 -0
- smftools/tools/calculate_distances.py +18 -0
- smftools/tools/calculate_umap.py +62 -0
- smftools/tools/call_hmm_peaks.py +105 -0
- smftools/tools/classifiers.py +787 -0
- smftools/tools/cluster_adata_on_methylation.py +105 -0
- smftools/tools/data/__init__.py +2 -0
- smftools/tools/data/anndata_data_module.py +90 -0
- smftools/tools/data/preprocessing.py +6 -0
- smftools/tools/display_hmm.py +18 -0
- smftools/tools/evaluation/__init__.py +0 -0
- smftools/tools/general_tools.py +69 -0
- smftools/tools/hmm_readwrite.py +16 -0
- smftools/tools/inference/__init__.py +1 -0
- smftools/tools/inference/lightning_inference.py +41 -0
- smftools/tools/models/__init__.py +9 -0
- smftools/tools/models/base.py +14 -0
- smftools/tools/models/cnn.py +34 -0
- smftools/tools/models/lightning_base.py +41 -0
- smftools/tools/models/mlp.py +17 -0
- smftools/tools/models/positional.py +17 -0
- smftools/tools/models/rnn.py +16 -0
- smftools/tools/models/sklearn_models.py +40 -0
- smftools/tools/models/transformer.py +133 -0
- smftools/tools/models/wrappers.py +20 -0
- smftools/tools/nucleosome_hmm_refinement.py +104 -0
- smftools/tools/position_stats.py +239 -0
- smftools/tools/read_stats.py +70 -0
- smftools/tools/subset_adata.py +28 -0
- smftools/tools/train_hmm.py +78 -0
- smftools/tools/training/__init__.py +1 -0
- smftools/tools/training/train_lightning_model.py +47 -0
- smftools/tools/utils/__init__.py +2 -0
- smftools/tools/utils/device.py +10 -0
- smftools/tools/utils/grl.py +14 -0
- {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/METADATA +5 -2
- smftools-0.1.7.dist-info/RECORD +136 -0
- smftools-0.1.6.dist-info/RECORD +0 -4
- {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/WHEEL +0 -0
- {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
def binarize_on_Youden(adata, obs_column='Reference'):
|
|
2
|
+
"""
|
|
3
|
+
Binarize SMF values based on position thresholds determined by calculate_position_Youden.
|
|
4
|
+
|
|
5
|
+
Parameters:
|
|
6
|
+
adata (AnnData): The anndata object to binarize. `calculate_position_Youden` must have been run first.
|
|
7
|
+
obs_column (str): The obs column to stratify on. Needs to match what was passed in `calculate_position_Youden`.
|
|
8
|
+
|
|
9
|
+
Modifies:
|
|
10
|
+
Adds a new layer to `adata.layers['binarized_methylation']` containing the binarized methylation matrix.
|
|
11
|
+
"""
|
|
12
|
+
import numpy as np
|
|
13
|
+
import anndata as ad
|
|
14
|
+
|
|
15
|
+
# Initialize an empty matrix to store the binarized methylation values
|
|
16
|
+
binarized_methylation = np.full_like(adata.X, np.nan, dtype=float) # Keeps same shape as adata.X
|
|
17
|
+
|
|
18
|
+
# Get unique categories
|
|
19
|
+
categories = adata.obs[obs_column].cat.categories
|
|
20
|
+
|
|
21
|
+
for cat in categories:
|
|
22
|
+
# Select subset for this category
|
|
23
|
+
cat_mask = adata.obs[obs_column] == cat
|
|
24
|
+
cat_subset = adata[cat_mask]
|
|
25
|
+
|
|
26
|
+
# Extract the probability matrix
|
|
27
|
+
original_matrix = cat_subset.X.copy()
|
|
28
|
+
|
|
29
|
+
# Extract the thresholds for each position efficiently
|
|
30
|
+
thresholds = np.array(cat_subset.var[f'{cat}_position_methylation_thresholding_Youden_stats'].apply(lambda x: x[0]))
|
|
31
|
+
|
|
32
|
+
# Identify NaN values
|
|
33
|
+
nan_mask = np.isnan(original_matrix)
|
|
34
|
+
|
|
35
|
+
# Binarize based on threshold
|
|
36
|
+
binarized_matrix = (original_matrix > thresholds).astype(float)
|
|
37
|
+
|
|
38
|
+
# Restore NaN values
|
|
39
|
+
binarized_matrix[nan_mask] = np.nan
|
|
40
|
+
|
|
41
|
+
# Assign the binarized values back into the preallocated storage
|
|
42
|
+
binarized_methylation[cat_mask, :] = binarized_matrix
|
|
43
|
+
|
|
44
|
+
# Store the binarized matrix in a new layer
|
|
45
|
+
adata.layers['binarized_methylation'] = binarized_methylation
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
## binary_layers_to_ohe
|
|
2
|
+
|
|
3
|
+
## Conversion SMF Specific
|
|
4
|
+
def binary_layers_to_ohe(adata, binary_layers, stack='hstack'):
|
|
5
|
+
"""
|
|
6
|
+
Parameters:
|
|
7
|
+
adata (AnnData): Anndata object.
|
|
8
|
+
binary_layers (list): a list of strings. Each string represents a layer in the adata object. The layer should encode a binary matrix.
|
|
9
|
+
stack (str): Dimension to stack the one-hot-encoding. Options include 'hstack' and 'vstack'. Default is 'hstack', since this is more efficient.
|
|
10
|
+
|
|
11
|
+
Returns:
|
|
12
|
+
ohe_dict (dict): A dictionary keyed by obs_name that points to a stacked (hstack or vstack) one-hot encoding of the binary layers
|
|
13
|
+
Input: An adata object and a list of layers containing a binary encoding.
|
|
14
|
+
"""
|
|
15
|
+
import numpy as np
|
|
16
|
+
import anndata as ad
|
|
17
|
+
|
|
18
|
+
# Ensure that the N layer is last!
|
|
19
|
+
# Grab all binary layers that are not encoding N
|
|
20
|
+
ACGT_binary_layers = [layer for layer in binary_layers if 'binary' in layer and layer != 'N_binary_encoding']
|
|
21
|
+
# If there is a binary layer encoding N, hold it in N_binary_layer
|
|
22
|
+
N_binary_layer = [layer for layer in binary_layers if layer == 'N_binary_encoding']
|
|
23
|
+
# Add the N_binary_encoding layer to the end of the list of binary layers
|
|
24
|
+
all_binary_layers = ACGT_binary_layers + N_binary_layer
|
|
25
|
+
print(f'Found {all_binary_layers} layers in adata')
|
|
26
|
+
|
|
27
|
+
# Extract the layers
|
|
28
|
+
layers = [adata.layers[layer_name] for layer_name in all_binary_layers]
|
|
29
|
+
n_reads = layers[0].shape[0]
|
|
30
|
+
ohe_dict = {}
|
|
31
|
+
for i in range(n_reads):
|
|
32
|
+
read_ohe = []
|
|
33
|
+
for layer in layers:
|
|
34
|
+
read_ohe.append(layer[i])
|
|
35
|
+
read_name = adata.obs_names[i]
|
|
36
|
+
if stack == 'hstack':
|
|
37
|
+
ohe_dict[read_name] = np.hstack(read_ohe)
|
|
38
|
+
elif stack == 'vstack':
|
|
39
|
+
ohe_dict[read_name] = np.vstack(read_ohe)
|
|
40
|
+
return ohe_dict
|
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
## calculate_complexity
|
|
2
|
+
|
|
3
|
+
def calculate_complexity(adata, output_directory='', obs_column='Reference', sample_col='Sample_names', plot=True, save_plot=False):
|
|
4
|
+
"""
|
|
5
|
+
A complexity analysis of the library.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
adata (AnnData): An adata object with mark_duplicates already run.
|
|
9
|
+
output_directory (str): String representing the path to the output directory.
|
|
10
|
+
obs_column (str): String of the obs column to iterate over.
|
|
11
|
+
sample_col (str): String of the sample column to iterate over.
|
|
12
|
+
plot (bool): Whether to plot the complexity model.
|
|
13
|
+
save_plot (bool): Whether to save the complexity model.
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
None
|
|
17
|
+
|
|
18
|
+
"""
|
|
19
|
+
import numpy as np
|
|
20
|
+
import pandas as pd
|
|
21
|
+
from scipy.optimize import curve_fit
|
|
22
|
+
|
|
23
|
+
def lander_waterman(x, C0):
|
|
24
|
+
return C0 * (1 - np.exp(-x / C0))
|
|
25
|
+
|
|
26
|
+
def count_unique_reads(reads, depth):
|
|
27
|
+
subsample = np.random.choice(reads, depth, replace=False)
|
|
28
|
+
return len(np.unique(subsample))
|
|
29
|
+
|
|
30
|
+
categories = adata.obs[obs_column].cat.categories
|
|
31
|
+
sample_names = adata.obs[sample_col].cat.categories
|
|
32
|
+
|
|
33
|
+
for cat in categories:
|
|
34
|
+
for sample in sample_names:
|
|
35
|
+
unique_reads = adata.uns[f'Hamming_distance_cluster_count_within_{cat}_{sample}']
|
|
36
|
+
total_reads = adata.uns[f'total_reads_within_{cat}_{sample}']
|
|
37
|
+
reads = np.concatenate((np.arange(unique_reads), np.random.choice(unique_reads, total_reads - unique_reads, replace=True)))
|
|
38
|
+
# Subsampling depths
|
|
39
|
+
subsampling_depths = [total_reads // (i+1) for i in range(10)]
|
|
40
|
+
# Arrays to store results
|
|
41
|
+
subsampled_total_reads = []
|
|
42
|
+
subsampled_unique_reads = []
|
|
43
|
+
# Perform subsampling
|
|
44
|
+
for depth in subsampling_depths:
|
|
45
|
+
unique_count = count_unique_reads(reads, depth)
|
|
46
|
+
subsampled_total_reads.append(depth)
|
|
47
|
+
subsampled_unique_reads.append(unique_count)
|
|
48
|
+
# Fit the Lander-Waterman model to the data
|
|
49
|
+
popt, _ = curve_fit(lander_waterman, subsampled_total_reads, subsampled_unique_reads)
|
|
50
|
+
# Generate data for the complexity curve
|
|
51
|
+
x_data = np.linspace(0, 5000, 100)
|
|
52
|
+
y_data = lander_waterman(x_data, *popt)
|
|
53
|
+
adata.uns[f'Library_complexity_of_{sample}_on_{cat}'] = popt[0]
|
|
54
|
+
if plot:
|
|
55
|
+
import matplotlib.pyplot as plt
|
|
56
|
+
# Plot the complexity curve
|
|
57
|
+
plt.figure(figsize=(6, 4))
|
|
58
|
+
plt.plot(total_reads, unique_reads, 'o', label='Observed unique reads')
|
|
59
|
+
plt.plot(x_data, y_data, '-', label=f'Lander-Waterman fit\nEstimated C0 = {popt[0]:.2f}')
|
|
60
|
+
plt.xlabel('Total number of reads')
|
|
61
|
+
plt.ylabel('Number of unique reads')
|
|
62
|
+
title = f'Library Complexity Analysis for {sample} on {cat}'
|
|
63
|
+
plt.title(title)
|
|
64
|
+
plt.legend()
|
|
65
|
+
plt.grid(True)
|
|
66
|
+
if save_plot:
|
|
67
|
+
date_string = date_string()
|
|
68
|
+
save_name = output_directory + f'/{date_string}_{title}'
|
|
69
|
+
plt.savefig(save_name, bbox_inches='tight', pad_inches=0.1)
|
|
70
|
+
plt.close()
|
|
71
|
+
else:
|
|
72
|
+
plt.show()
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
# calculate_consensus
|
|
2
|
+
|
|
3
|
+
def calculate_consensus(adata, reference, sample=False, reference_column='Reference', sample_column='Sample'):
|
|
4
|
+
"""
|
|
5
|
+
Takes an input AnnData object, the reference to subset on, and the sample name to subset on to calculate the consensus sequence of the read set.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
adata (AnnData): The input adata to append consensus metadata to.
|
|
9
|
+
reference (str): The name of the reference to subset the adata on.
|
|
10
|
+
sample (bool | str): If False, uses all samples. If a string is passed, the adata is further subsetted to only analyze that sample.
|
|
11
|
+
reference_column (str): The name of the reference column (Default is 'Reference')
|
|
12
|
+
sample_column (str): The name of the sample column (Default is 'Sample)
|
|
13
|
+
|
|
14
|
+
Returns:
|
|
15
|
+
None
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
# Subset the adata on the refernce of interest. Optionally, subset additionally on a sample of interest.
|
|
21
|
+
record_subset = adata[adata.obs[reference_column] == reference].copy()
|
|
22
|
+
if sample:
|
|
23
|
+
record_subset = record_subset[record_subset.obs[sample_column] == sample].copy()
|
|
24
|
+
else:
|
|
25
|
+
pass
|
|
26
|
+
|
|
27
|
+
# Grab layer names from the adata object that correspond to the binary encodings of the read sequences.
|
|
28
|
+
layers = [layer for layer in record_subset.layers if '_binary_' in layer]
|
|
29
|
+
layer_map, layer_counts = {}, []
|
|
30
|
+
for i, layer in enumerate(layers):
|
|
31
|
+
# Gives an integer mapping to access which sequence base the binary layer is encoding
|
|
32
|
+
layer_map[i] = layer.split('_')[0]
|
|
33
|
+
# Get the positional counts from all reads for the given base identity.
|
|
34
|
+
layer_counts.append(np.sum(record_subset.layers[layer], axis=0))
|
|
35
|
+
# Combine the positional counts array derived from each binary base layer into an ndarray
|
|
36
|
+
count_array = np.array(layer_counts)
|
|
37
|
+
# Determine the row index that contains the largest count for each position and store this in an array.
|
|
38
|
+
nucleotide_indexes = np.argmax(count_array, axis=0)
|
|
39
|
+
# Map the base sequence derived from the row index array to attain the consensus sequence in a list.
|
|
40
|
+
consensus_sequence_list = [layer_map[i] for i in nucleotide_indexes]
|
|
41
|
+
|
|
42
|
+
if sample:
|
|
43
|
+
adata.var[f'{reference}_consensus_from_{sample}'] = consensus_sequence_list
|
|
44
|
+
else:
|
|
45
|
+
adata.var[f'{reference}_consensus_across_samples'] = consensus_sequence_list
|
|
46
|
+
|
|
47
|
+
adata.uns[f'{reference}_consensus_sequence'] = consensus_sequence_list
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
## calculate_converted_read_methylation_stats
|
|
2
|
+
|
|
3
|
+
## Conversion SMF Specific
|
|
4
|
+
# Read methylation QC
|
|
5
|
+
|
|
6
|
+
def calculate_converted_read_methylation_stats(adata, reference_column, sample_names_col):
|
|
7
|
+
"""
|
|
8
|
+
Adds methylation statistics for each read. Indicates whether the read GpC methylation exceeded other_C methylation (background false positives).
|
|
9
|
+
|
|
10
|
+
Parameters:
|
|
11
|
+
adata (AnnData): An adata object
|
|
12
|
+
reference_column (str): String representing the name of the Reference column to use
|
|
13
|
+
sample_names_col (str): String representing the name of the sample name column to use
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
None
|
|
17
|
+
"""
|
|
18
|
+
import numpy as np
|
|
19
|
+
import anndata as ad
|
|
20
|
+
import pandas as pd
|
|
21
|
+
|
|
22
|
+
print('Calculating read level methylation statistics')
|
|
23
|
+
|
|
24
|
+
references = set(adata.obs[reference_column])
|
|
25
|
+
sample_names = set(adata.obs[sample_names_col])
|
|
26
|
+
|
|
27
|
+
site_types = ['GpC_site', 'CpG_site', 'ambiguous_GpC_CpG_site', 'other_C']
|
|
28
|
+
|
|
29
|
+
for site_type in site_types:
|
|
30
|
+
adata.obs[f'{site_type}_row_methylation_sums'] = pd.Series(0, index=adata.obs_names, dtype=int)
|
|
31
|
+
adata.obs[f'{site_type}_row_methylation_means'] = pd.Series(np.nan, index=adata.obs_names, dtype=float)
|
|
32
|
+
adata.obs[f'number_valid_{site_type}_in_read'] = pd.Series(0, index=adata.obs_names, dtype=int)
|
|
33
|
+
adata.obs[f'fraction_valid_{site_type}_in_range'] = pd.Series(np.nan, index=adata.obs_names, dtype=float)
|
|
34
|
+
for cat in references:
|
|
35
|
+
cat_subset = adata[adata.obs[reference_column] == cat].copy()
|
|
36
|
+
for site_type in site_types:
|
|
37
|
+
print(f'Iterating over {cat}_{site_type}')
|
|
38
|
+
observation_matrix = cat_subset.obsm[f'{cat}_{site_type}']
|
|
39
|
+
number_valid_positions_in_read = np.nansum(~np.isnan(observation_matrix), axis=1)
|
|
40
|
+
row_methylation_sums = np.nansum(observation_matrix, axis=1)
|
|
41
|
+
number_valid_positions_in_read[number_valid_positions_in_read == 0] = 1
|
|
42
|
+
fraction_valid_positions_in_range = number_valid_positions_in_read / np.max(number_valid_positions_in_read)
|
|
43
|
+
row_methylation_means = np.divide(row_methylation_sums, number_valid_positions_in_read)
|
|
44
|
+
temp_obs_data = pd.DataFrame({f'number_valid_{site_type}_in_read': number_valid_positions_in_read,
|
|
45
|
+
f'fraction_valid_{site_type}_in_range': fraction_valid_positions_in_range,
|
|
46
|
+
f'{site_type}_row_methylation_sums': row_methylation_sums,
|
|
47
|
+
f'{site_type}_row_methylation_means': row_methylation_means}, index=cat_subset.obs.index)
|
|
48
|
+
adata.obs.update(temp_obs_data)
|
|
49
|
+
# Indicate whether the read-level GpC methylation rate exceeds the false methylation rate of the read
|
|
50
|
+
pass_array = np.array(adata.obs[f'GpC_site_row_methylation_means'] > adata.obs[f'other_C_row_methylation_means'])
|
|
51
|
+
adata.obs['GpC_above_other_C'] = pd.Series(pass_array, index=adata.obs.index, dtype=bool)
|
|
52
|
+
|
|
53
|
+
# Below should be a plotting function
|
|
54
|
+
# adata.uns['methylation_dict'] = {}
|
|
55
|
+
# n_bins = 50
|
|
56
|
+
# site_types_to_analyze = ['GpC_site', 'CpG_site', 'ambiguous_GpC_CpG_site', 'other_C']
|
|
57
|
+
|
|
58
|
+
# for reference in references:
|
|
59
|
+
# reference_adata = adata[adata.obs[reference_column] == reference].copy()
|
|
60
|
+
# split_reference = reference.split('_')[0][1:]
|
|
61
|
+
# for sample in sample_names:
|
|
62
|
+
# sample_adata = reference_adata[reference_adata.obs[sample_names_col] == sample].copy()
|
|
63
|
+
# for site_type in site_types_to_analyze:
|
|
64
|
+
# methylation_data = sample_adata.obs[f'{site_type}_row_methylation_means']
|
|
65
|
+
# max_meth = np.max(sample_adata.obs[f'{site_type}_row_methylation_sums'])
|
|
66
|
+
# if not np.isnan(max_meth):
|
|
67
|
+
# n_bins = int(max_meth // 2)
|
|
68
|
+
# else:
|
|
69
|
+
# n_bins = 1
|
|
70
|
+
# mean = np.mean(methylation_data)
|
|
71
|
+
# median = np.median(methylation_data)
|
|
72
|
+
# stdev = np.std(methylation_data)
|
|
73
|
+
# adata.uns['methylation_dict'][f'{reference}_{sample}_{site_type}'] = [mean, median, stdev]
|
|
74
|
+
# if show_methylation_histogram or save_methylation_histogram:
|
|
75
|
+
# fig, ax = plt.subplots(figsize=(6, 4))
|
|
76
|
+
# count, bins, patches = plt.hist(methylation_data, bins=n_bins, weights=np.ones(len(methylation_data)) / len(methylation_data), alpha=0.7, color='blue', edgecolor='black')
|
|
77
|
+
# plt.axvline(median, color='red', linestyle='dashed', linewidth=1)
|
|
78
|
+
# plt.text(median + stdev, max(count)*0.8, f'Median: {median:.2f}', color='red')
|
|
79
|
+
# plt.axvline(median - stdev, color='green', linestyle='dashed', linewidth=1, label=f'Stdev: {stdev:.2f}')
|
|
80
|
+
# plt.axvline(median + stdev, color='green', linestyle='dashed', linewidth=1)
|
|
81
|
+
# plt.text(median + stdev + 0.05, max(count) / 3, f'+1 Stdev: {stdev:.2f}', color='green')
|
|
82
|
+
# plt.xlabel('Fraction methylated')
|
|
83
|
+
# plt.ylabel('Proportion')
|
|
84
|
+
# title = f'Distribution of {methylation_data.shape[0]} read {site_type} methylation means \nfor {sample} sample on {split_reference} after filtering'
|
|
85
|
+
# plt.title(title, pad=20)
|
|
86
|
+
# plt.xlim(-0.05, 1.05) # Set x-axis range from 0 to 1
|
|
87
|
+
# ax.spines['right'].set_visible(False)
|
|
88
|
+
# ax.spines['top'].set_visible(False)
|
|
89
|
+
# save_name = output_directory + f'/{readwrite.date_string()} {title}'
|
|
90
|
+
# if save_methylation_histogram:
|
|
91
|
+
# plt.savefig(save_name, bbox_inches='tight', pad_inches=0.1)
|
|
92
|
+
# plt.close()
|
|
93
|
+
# else:
|
|
94
|
+
# plt.show()
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
def calculate_coverage(adata, obs_column='Reference_strand', position_nan_threshold=0.05):
|
|
2
|
+
"""
|
|
3
|
+
Append position-level metadata regarding whether the position is informative within the given observation category.
|
|
4
|
+
|
|
5
|
+
Parameters:
|
|
6
|
+
adata (AnnData): An AnnData object
|
|
7
|
+
obs_column (str): Observation column value to subset on prior to calculating position statistics for that category.
|
|
8
|
+
position_nan_threshold (float): A minimal fractional threshold of coverage within the obs_column category to call the position as valid.
|
|
9
|
+
|
|
10
|
+
Modifies:
|
|
11
|
+
- Adds new columns to `adata.var` containing coverage statistics.
|
|
12
|
+
"""
|
|
13
|
+
import numpy as np
|
|
14
|
+
import pandas as pd
|
|
15
|
+
import anndata as ad
|
|
16
|
+
|
|
17
|
+
categories = adata.obs[obs_column].cat.categories
|
|
18
|
+
n_categories_with_position = np.zeros(adata.shape[1])
|
|
19
|
+
|
|
20
|
+
# Loop over categories
|
|
21
|
+
for cat in categories:
|
|
22
|
+
print(f'Assessing positional coverage across samples for {cat} reference')
|
|
23
|
+
|
|
24
|
+
# Subset to current category
|
|
25
|
+
cat_mask = adata.obs[obs_column] == cat
|
|
26
|
+
temp_cat_adata = adata[cat_mask]
|
|
27
|
+
|
|
28
|
+
# Compute fraction of valid coverage
|
|
29
|
+
cat_valid_coverage = np.sum(~np.isnan(temp_cat_adata.X), axis=0)
|
|
30
|
+
cat_valid_fraction = cat_valid_coverage / temp_cat_adata.shape[0] # Avoid extra computation
|
|
31
|
+
|
|
32
|
+
# Store coverage stats
|
|
33
|
+
adata.var[f'{cat}_valid_fraction'] = pd.Series(cat_valid_fraction, index=adata.var.index)
|
|
34
|
+
|
|
35
|
+
# Assign whether the position is covered based on threshold
|
|
36
|
+
adata.var[f'position_in_{cat}'] = cat_valid_fraction >= position_nan_threshold
|
|
37
|
+
|
|
38
|
+
# Sum the number of categories covering each position
|
|
39
|
+
n_categories_with_position += adata.var[f'position_in_{cat}'].values
|
|
40
|
+
|
|
41
|
+
# Store final category count
|
|
42
|
+
adata.var[f'N_{obs_column}_with_position'] = n_categories_with_position.astype(int)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# calculate_pairwise_differences
|
|
2
|
+
|
|
3
|
+
def calculate_pairwise_differences(arrays):
|
|
4
|
+
"""
|
|
5
|
+
Calculate the pairwise differences for a list of h-stacked ndarrays. Ignore N-positions
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
arrays (str): A list of ndarrays.
|
|
9
|
+
|
|
10
|
+
Returns:
|
|
11
|
+
distance_matrix (ndarray): a 2D array containing the pairwise differences between all arrays.
|
|
12
|
+
"""
|
|
13
|
+
import numpy as np
|
|
14
|
+
from tqdm import tqdm
|
|
15
|
+
|
|
16
|
+
num_arrays = len(arrays)
|
|
17
|
+
|
|
18
|
+
n_rows = 5
|
|
19
|
+
reshaped_arrays = [array.reshape(n_rows, -1) for array in arrays]
|
|
20
|
+
N_masks = [array[-1].astype(bool) for array in reshaped_arrays]
|
|
21
|
+
reshaped_arrays_minus_N = [array[:-1].flatten() for array in reshaped_arrays]
|
|
22
|
+
|
|
23
|
+
# Precompute the repeated N masks to avoid repeated computations
|
|
24
|
+
repeated_N_masks = [np.tile(N_mask, (n_rows - 1)) for N_mask in N_masks]
|
|
25
|
+
|
|
26
|
+
# Initialize the distance matrix
|
|
27
|
+
distance_matrix = np.zeros((num_arrays, num_arrays), dtype=np.float32)
|
|
28
|
+
|
|
29
|
+
# Calculate pairwise distances with progress bar
|
|
30
|
+
for i in tqdm(range(num_arrays), desc="Calculating Pairwise Differences"):
|
|
31
|
+
array_i = reshaped_arrays_minus_N[i]
|
|
32
|
+
N_mask_i = repeated_N_masks[i]
|
|
33
|
+
|
|
34
|
+
for j in range(i + 1, num_arrays):
|
|
35
|
+
array_j = reshaped_arrays_minus_N[j]
|
|
36
|
+
N_mask_j = repeated_N_masks[j]
|
|
37
|
+
|
|
38
|
+
# Combined mask to ignore N positions
|
|
39
|
+
combined_mask = N_mask_i | N_mask_j
|
|
40
|
+
|
|
41
|
+
# Calculate the hamming distance directly with boolean operations
|
|
42
|
+
differences = (array_i != array_j) & ~combined_mask
|
|
43
|
+
distance = np.sum(differences) / np.sum(~combined_mask)
|
|
44
|
+
|
|
45
|
+
# Store the symmetric distances
|
|
46
|
+
distance_matrix[i, j] = distance
|
|
47
|
+
distance_matrix[j, i] = distance
|
|
48
|
+
|
|
49
|
+
return distance_matrix
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
## calculate_pairwise_hamming_distances
|
|
2
|
+
|
|
3
|
+
## Conversion SMF Specific
|
|
4
|
+
def calculate_pairwise_hamming_distances(arrays):
|
|
5
|
+
"""
|
|
6
|
+
Calculate the pairwise Hamming distances for a list of h-stacked ndarrays.
|
|
7
|
+
|
|
8
|
+
Parameters:
|
|
9
|
+
arrays (str): A list of ndarrays.
|
|
10
|
+
|
|
11
|
+
Returns:
|
|
12
|
+
distance_matrix (ndarray): a 2D array containing the pairwise Hamming distances between all arrays.
|
|
13
|
+
|
|
14
|
+
"""
|
|
15
|
+
import numpy as np
|
|
16
|
+
from tqdm import tqdm
|
|
17
|
+
from scipy.spatial.distance import hamming
|
|
18
|
+
num_arrays = len(arrays)
|
|
19
|
+
# Initialize an empty distance matrix
|
|
20
|
+
distance_matrix = np.zeros((num_arrays, num_arrays))
|
|
21
|
+
# Calculate pairwise distances with progress bar
|
|
22
|
+
for i in tqdm(range(num_arrays), desc="Calculating Hamming Distances"):
|
|
23
|
+
for j in range(i + 1, num_arrays):
|
|
24
|
+
distance = hamming(arrays[i], arrays[j])
|
|
25
|
+
distance_matrix[i, j] = distance
|
|
26
|
+
distance_matrix[j, i] = distance
|
|
27
|
+
return distance_matrix
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
## calculate_position_Youden
|
|
2
|
+
|
|
3
|
+
## Calculating and applying position level thresholds for methylation calls to binarize the SMF data
|
|
4
|
+
def calculate_position_Youden(adata, positive_control_sample='positive', negative_control_sample='negative', J_threshold=0.5, obs_column='Reference', infer_on_percentile=False, inference_variable='', save=False, output_directory=''):
|
|
5
|
+
"""
|
|
6
|
+
Adds new variable metadata to each position indicating whether the position provides reliable SMF methylation calls. Also outputs plots of the positional ROC curves.
|
|
7
|
+
|
|
8
|
+
Parameters:
|
|
9
|
+
adata (AnnData): An AnnData object.
|
|
10
|
+
positive_control_sample (str): string representing the sample name corresponding to the Plus MTase control sample.
|
|
11
|
+
negative_control_sample (str): string representing the sample name corresponding to the Minus MTase control sample.
|
|
12
|
+
J_threshold (float): A float indicating the J-statistic used to indicate whether a position passes QC for methylation calls.
|
|
13
|
+
obs_column (str): The category to iterate over.
|
|
14
|
+
infer_on_perdentile (bool | int): If False, use defined postive and negative control samples. If an int (0 < int < 100) is passed, this uses the top and bottom int percentile of methylated reads based on metric in inference_variable column.
|
|
15
|
+
inference_variable (str): If infer_on_percentile has an integer value passed, use the AnnData observation column name passed by this string as the metric.
|
|
16
|
+
save (bool): Whether to save the ROC plots.
|
|
17
|
+
output_directory (str): String representing the path to the output directory to output the ROC curves.
|
|
18
|
+
|
|
19
|
+
Returns:
|
|
20
|
+
None
|
|
21
|
+
"""
|
|
22
|
+
import numpy as np
|
|
23
|
+
import pandas as pd
|
|
24
|
+
import anndata as ad
|
|
25
|
+
import matplotlib.pyplot as plt
|
|
26
|
+
from sklearn.metrics import roc_curve, roc_auc_score
|
|
27
|
+
|
|
28
|
+
control_samples = [positive_control_sample, negative_control_sample]
|
|
29
|
+
categories = adata.obs[obs_column].cat.categories
|
|
30
|
+
# Iterate over each category in the specified obs_column
|
|
31
|
+
for cat in categories:
|
|
32
|
+
print(f"Calculating position Youden statistics for {cat}")
|
|
33
|
+
# Subset to keep only reads associated with the category
|
|
34
|
+
cat_subset = adata[adata.obs[obs_column] == cat]
|
|
35
|
+
# Iterate over positive and negative control samples
|
|
36
|
+
for control in control_samples:
|
|
37
|
+
# Initialize a dictionary for the given control sample. This will be keyed by dataset and position to point to a tuple of coordinate position and an array of methylation probabilities
|
|
38
|
+
adata.uns[f'{cat}_position_methylation_dict_{control}'] = {}
|
|
39
|
+
if infer_on_percentile:
|
|
40
|
+
sorted_column = cat_subset.obs[inference_variable].sort_values(ascending=False)
|
|
41
|
+
if control == "positive":
|
|
42
|
+
threshold = np.percentile(sorted_column, 100 - infer_on_percentile)
|
|
43
|
+
control_subset = cat_subset[cat_subset.obs[inference_variable] >= threshold, :]
|
|
44
|
+
else:
|
|
45
|
+
threshold = np.percentile(sorted_column, infer_on_percentile)
|
|
46
|
+
control_subset = cat_subset[cat_subset.obs[inference_variable] <= threshold, :]
|
|
47
|
+
else:
|
|
48
|
+
# get the current control subset on the given category
|
|
49
|
+
filtered_obs = cat_subset.obs[cat_subset.obs['Sample_names'].str.contains(control, na=False, regex=True)]
|
|
50
|
+
control_subset = cat_subset[filtered_obs.index]
|
|
51
|
+
# Iterate through every position in the control subset
|
|
52
|
+
for position in range(control_subset.shape[1]):
|
|
53
|
+
# Get the coordinate name associated with that position
|
|
54
|
+
coordinate = control_subset.var_names[position]
|
|
55
|
+
# Get the array of methlyation probabilities for each read in the subset at that position
|
|
56
|
+
position_data = control_subset.X[:, position]
|
|
57
|
+
# Get the indexes of everywhere that is not a nan value
|
|
58
|
+
nan_mask = ~np.isnan(position_data)
|
|
59
|
+
# Keep only the methlyation data that has real values
|
|
60
|
+
position_data = position_data[nan_mask]
|
|
61
|
+
# Get the position data coverage
|
|
62
|
+
position_coverage = len(position_data)
|
|
63
|
+
# Get fraction coverage
|
|
64
|
+
fraction_coverage = position_coverage / control_subset.shape[0]
|
|
65
|
+
# Save the position and the position methylation data for the control subset
|
|
66
|
+
adata.uns[f'{cat}_position_methylation_dict_{control}'][f'{position}'] = (position, position_data, fraction_coverage)
|
|
67
|
+
|
|
68
|
+
for cat in categories:
|
|
69
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
70
|
+
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
|
|
71
|
+
plt.xlabel('False Positive Rate')
|
|
72
|
+
plt.ylabel('True Positive Rate')
|
|
73
|
+
ax.spines['right'].set_visible(False)
|
|
74
|
+
ax.spines['top'].set_visible(False)
|
|
75
|
+
n_passed_positions = 0
|
|
76
|
+
n_total_positions = 0
|
|
77
|
+
# Initialize a list that will hold the positional thresholds for the category
|
|
78
|
+
probability_thresholding_list = [(np.nan, np.nan)] * adata.shape[1]
|
|
79
|
+
for i, key in enumerate(adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'].keys()):
|
|
80
|
+
position = int(adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][0])
|
|
81
|
+
positive_position_array = adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][1]
|
|
82
|
+
fraction_coverage = adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][2]
|
|
83
|
+
if fraction_coverage > 0.2:
|
|
84
|
+
try:
|
|
85
|
+
negative_position_array = adata.uns[f'{cat}_position_methylation_dict_{negative_control_sample}'][key][1]
|
|
86
|
+
# Combine the negative and positive control data
|
|
87
|
+
data = np.concatenate([negative_position_array, positive_position_array])
|
|
88
|
+
labels = np.array([0] * len(negative_position_array) + [1] * len(positive_position_array))
|
|
89
|
+
# Calculate the ROC curve
|
|
90
|
+
fpr, tpr, thresholds = roc_curve(labels, data)
|
|
91
|
+
# Calculate Youden's J statistic
|
|
92
|
+
J = tpr - fpr
|
|
93
|
+
optimal_idx = np.argmax(J)
|
|
94
|
+
optimal_threshold = thresholds[optimal_idx]
|
|
95
|
+
max_J = np.max(J)
|
|
96
|
+
data_tuple = (optimal_threshold, max_J)
|
|
97
|
+
probability_thresholding_list[position] = data_tuple
|
|
98
|
+
n_total_positions += 1
|
|
99
|
+
if max_J > J_threshold:
|
|
100
|
+
n_passed_positions += 1
|
|
101
|
+
plt.plot(fpr, tpr, label='ROC curve')
|
|
102
|
+
except:
|
|
103
|
+
probability_thresholding_list[position] = (0.8, np.nan)
|
|
104
|
+
title = f'ROC Curve for {n_passed_positions} positions with J-stat greater than {J_threshold}\n out of {n_total_positions} total positions on {cat}'
|
|
105
|
+
plt.title(title)
|
|
106
|
+
save_name = output_directory + f'/{title}'
|
|
107
|
+
if save:
|
|
108
|
+
plt.savefig(save_name)
|
|
109
|
+
plt.close()
|
|
110
|
+
else:
|
|
111
|
+
plt.show()
|
|
112
|
+
|
|
113
|
+
adata.var[f'{cat}_position_methylation_thresholding_Youden_stats'] = probability_thresholding_list
|
|
114
|
+
J_max_list = [probability_thresholding_list[i][1] for i in range(adata.shape[1])]
|
|
115
|
+
adata.var[f'{cat}_position_passed_QC'] = [True if i > J_threshold else False for i in J_max_list]
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
## calculate_read_length_stats
|
|
2
|
+
|
|
3
|
+
# Read length QC
|
|
4
|
+
def calculate_read_length_stats(adata, reference_column='', sample_names_col=''):
|
|
5
|
+
"""
|
|
6
|
+
Append first valid position in a read and last valid position in the read. From this determine and append the read length.
|
|
7
|
+
|
|
8
|
+
Parameters:
|
|
9
|
+
adata (AnnData): An adata object
|
|
10
|
+
reference_column (str): String representing the name of the Reference column to use
|
|
11
|
+
sample_names_col (str): String representing the name of the sample name column to use
|
|
12
|
+
|
|
13
|
+
Returns:
|
|
14
|
+
upper_bound (int): last valid position in the dataset
|
|
15
|
+
lower_bound (int): first valid position in the dataset
|
|
16
|
+
"""
|
|
17
|
+
import numpy as np
|
|
18
|
+
import anndata as ad
|
|
19
|
+
import pandas as pd
|
|
20
|
+
|
|
21
|
+
print('Calculating read length statistics')
|
|
22
|
+
|
|
23
|
+
references = set(adata.obs[reference_column])
|
|
24
|
+
sample_names = set(adata.obs[sample_names_col])
|
|
25
|
+
|
|
26
|
+
## Add basic observation-level (read-level) metadata to the object: first valid position in a read and last valid position in the read. From this determine the read length. Save two new variable which hold the first and last valid positions in the entire dataset
|
|
27
|
+
print('calculating read length stats')
|
|
28
|
+
# Add some basic observation-level (read-level) metadata to the anndata object
|
|
29
|
+
read_first_valid_position = np.array([int(adata.var_names[i]) for i in np.argmax(~np.isnan(adata.X), axis=1)])
|
|
30
|
+
read_last_valid_position = np.array([int(adata.var_names[i]) for i in (adata.X.shape[1] - 1 - np.argmax(~np.isnan(adata.X[:, ::-1]), axis=1))])
|
|
31
|
+
read_length = read_last_valid_position - read_first_valid_position + np.ones(len(read_first_valid_position))
|
|
32
|
+
|
|
33
|
+
adata.obs['first_valid_position'] = pd.Series(read_first_valid_position, index=adata.obs.index, dtype=int)
|
|
34
|
+
adata.obs['last_valid_position'] = pd.Series(read_last_valid_position, index=adata.obs.index, dtype=int)
|
|
35
|
+
adata.obs['read_length'] = pd.Series(read_length, index=adata.obs.index, dtype=int)
|
|
36
|
+
|
|
37
|
+
# Define variables to hold the first and last valid position in the dataset
|
|
38
|
+
upper_bound = int(np.nanmax(adata.obs['last_valid_position']))
|
|
39
|
+
lower_bound = int(np.nanmin(adata.obs['first_valid_position']))
|
|
40
|
+
|
|
41
|
+
return upper_bound, lower_bound
|
|
42
|
+
|
|
43
|
+
# # Add an unstructured element to the anndata object which points to a dictionary of read lengths keyed by reference and sample name. Points to a tuple containing (mean, median, stdev) of the read lengths of the sample for the given reference strand
|
|
44
|
+
# ## Plot histogram of read length data and save the median and stdev of the read lengths for each sample.
|
|
45
|
+
# adata.uns['read_length_dict'] = {}
|
|
46
|
+
|
|
47
|
+
# for reference in references:
|
|
48
|
+
# temp_reference_adata = adata[adata.obs[reference_column] == reference].copy()
|
|
49
|
+
# split_reference = reference.split('_')[0][1:]
|
|
50
|
+
# for sample in sample_names:
|
|
51
|
+
# temp_sample_adata = temp_reference_adata[temp_reference_adata.obs[sample_names_col] == sample].copy()
|
|
52
|
+
# temp_data = temp_sample_adata.obs['read_length']
|
|
53
|
+
# max_length = np.max(temp_data)
|
|
54
|
+
# mean = np.mean(temp_data)
|
|
55
|
+
# median = np.median(temp_data)
|
|
56
|
+
# stdev = np.std(temp_data)
|
|
57
|
+
# adata.uns['read_length_dict'][f'{reference}_{sample}'] = [mean, median, stdev]
|
|
58
|
+
# if not np.isnan(max_length):
|
|
59
|
+
# n_bins = int(max_length // 100)
|
|
60
|
+
# else:
|
|
61
|
+
# n_bins = 1
|
|
62
|
+
# if show_read_length_histogram or save_read_length_histogram:
|
|
63
|
+
# plt.figure(figsize=(10, 6))
|
|
64
|
+
# plt.text(median + 0.5, max(plt.hist(temp_data, bins=n_bins)[0]) / 2, f'Median: {median:.2f}', color='red')
|
|
65
|
+
# plt.hist(temp_data, bins=n_bins, alpha=0.7, color='blue', edgecolor='black')
|
|
66
|
+
# plt.xlabel('Read Length')
|
|
67
|
+
# plt.ylabel('Count')
|
|
68
|
+
# title = f'Read length distribution of {temp_sample_adata.shape[0]} total reads from {sample} sample on {split_reference} allele'
|
|
69
|
+
# plt.title(title)
|
|
70
|
+
# # Add a vertical line at the median
|
|
71
|
+
# plt.axvline(median, color='red', linestyle='dashed', linewidth=1)
|
|
72
|
+
# # Annotate the median
|
|
73
|
+
# plt.xlim(lower_bound - 100, upper_bound + 100)
|
|
74
|
+
# if save_read_length_histogram:
|
|
75
|
+
# save_name = output_directory + f'/{readwrite.date_string()} {title}'
|
|
76
|
+
# plt.savefig(save_name, bbox_inches='tight', pad_inches=0.1)
|
|
77
|
+
# plt.close()
|
|
78
|
+
# else:
|
|
79
|
+
# plt.show()
|