smftools 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (137) hide show
  1. smftools/__init__.py +29 -0
  2. smftools/_settings.py +20 -0
  3. smftools/_version.py +1 -0
  4. smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
  5. smftools/datasets/F1_sample_sheet.csv +5 -0
  6. smftools/datasets/__init__.py +9 -0
  7. smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
  8. smftools/datasets/datasets.py +28 -0
  9. smftools/informatics/__init__.py +16 -0
  10. smftools/informatics/archived/bam_conversion.py +59 -0
  11. smftools/informatics/archived/bam_direct.py +63 -0
  12. smftools/informatics/archived/basecalls_to_adata.py +71 -0
  13. smftools/informatics/archived/print_bam_query_seq.py +29 -0
  14. smftools/informatics/basecall_pod5s.py +80 -0
  15. smftools/informatics/conversion_smf.py +132 -0
  16. smftools/informatics/direct_smf.py +137 -0
  17. smftools/informatics/fast5_to_pod5.py +21 -0
  18. smftools/informatics/helpers/LoadExperimentConfig.py +75 -0
  19. smftools/informatics/helpers/__init__.py +74 -0
  20. smftools/informatics/helpers/align_and_sort_BAM.py +59 -0
  21. smftools/informatics/helpers/aligned_BAM_to_bed.py +74 -0
  22. smftools/informatics/helpers/archived/informatics.py +260 -0
  23. smftools/informatics/helpers/archived/load_adata.py +516 -0
  24. smftools/informatics/helpers/bam_qc.py +66 -0
  25. smftools/informatics/helpers/bed_to_bigwig.py +39 -0
  26. smftools/informatics/helpers/binarize_converted_base_identities.py +79 -0
  27. smftools/informatics/helpers/canoncall.py +34 -0
  28. smftools/informatics/helpers/complement_base_list.py +21 -0
  29. smftools/informatics/helpers/concatenate_fastqs_to_bam.py +55 -0
  30. smftools/informatics/helpers/converted_BAM_to_adata.py +245 -0
  31. smftools/informatics/helpers/converted_BAM_to_adata_II.py +369 -0
  32. smftools/informatics/helpers/count_aligned_reads.py +43 -0
  33. smftools/informatics/helpers/demux_and_index_BAM.py +52 -0
  34. smftools/informatics/helpers/extract_base_identities.py +44 -0
  35. smftools/informatics/helpers/extract_mods.py +83 -0
  36. smftools/informatics/helpers/extract_read_features_from_bam.py +31 -0
  37. smftools/informatics/helpers/extract_read_lengths_from_bed.py +25 -0
  38. smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
  39. smftools/informatics/helpers/find_conversion_sites.py +50 -0
  40. smftools/informatics/helpers/generate_converted_FASTA.py +99 -0
  41. smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
  42. smftools/informatics/helpers/get_native_references.py +28 -0
  43. smftools/informatics/helpers/index_fasta.py +12 -0
  44. smftools/informatics/helpers/make_dirs.py +21 -0
  45. smftools/informatics/helpers/make_modbed.py +27 -0
  46. smftools/informatics/helpers/modQC.py +27 -0
  47. smftools/informatics/helpers/modcall.py +36 -0
  48. smftools/informatics/helpers/modkit_extract_to_adata.py +884 -0
  49. smftools/informatics/helpers/ohe_batching.py +76 -0
  50. smftools/informatics/helpers/ohe_layers_decode.py +32 -0
  51. smftools/informatics/helpers/one_hot_decode.py +27 -0
  52. smftools/informatics/helpers/one_hot_encode.py +57 -0
  53. smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +53 -0
  54. smftools/informatics/helpers/run_multiqc.py +28 -0
  55. smftools/informatics/helpers/separate_bam_by_bc.py +43 -0
  56. smftools/informatics/helpers/split_and_index_BAM.py +36 -0
  57. smftools/informatics/load_adata.py +182 -0
  58. smftools/informatics/readwrite.py +106 -0
  59. smftools/informatics/subsample_fasta_from_bed.py +47 -0
  60. smftools/informatics/subsample_pod5.py +104 -0
  61. smftools/plotting/__init__.py +15 -0
  62. smftools/plotting/classifiers.py +355 -0
  63. smftools/plotting/general_plotting.py +205 -0
  64. smftools/plotting/position_stats.py +462 -0
  65. smftools/preprocessing/__init__.py +33 -0
  66. smftools/preprocessing/append_C_context.py +82 -0
  67. smftools/preprocessing/archives/mark_duplicates.py +146 -0
  68. smftools/preprocessing/archives/preprocessing.py +614 -0
  69. smftools/preprocessing/archives/remove_duplicates.py +21 -0
  70. smftools/preprocessing/binarize_on_Youden.py +45 -0
  71. smftools/preprocessing/binary_layers_to_ohe.py +40 -0
  72. smftools/preprocessing/calculate_complexity.py +72 -0
  73. smftools/preprocessing/calculate_consensus.py +47 -0
  74. smftools/preprocessing/calculate_converted_read_methylation_stats.py +94 -0
  75. smftools/preprocessing/calculate_coverage.py +42 -0
  76. smftools/preprocessing/calculate_pairwise_differences.py +49 -0
  77. smftools/preprocessing/calculate_pairwise_hamming_distances.py +27 -0
  78. smftools/preprocessing/calculate_position_Youden.py +115 -0
  79. smftools/preprocessing/calculate_read_length_stats.py +79 -0
  80. smftools/preprocessing/clean_NaN.py +46 -0
  81. smftools/preprocessing/filter_adata_by_nan_proportion.py +31 -0
  82. smftools/preprocessing/filter_converted_reads_on_methylation.py +44 -0
  83. smftools/preprocessing/filter_reads_on_length.py +51 -0
  84. smftools/preprocessing/flag_duplicate_reads.py +149 -0
  85. smftools/preprocessing/invert_adata.py +30 -0
  86. smftools/preprocessing/load_sample_sheet.py +38 -0
  87. smftools/preprocessing/make_dirs.py +21 -0
  88. smftools/preprocessing/min_non_diagonal.py +25 -0
  89. smftools/preprocessing/recipes.py +127 -0
  90. smftools/preprocessing/subsample_adata.py +58 -0
  91. smftools/readwrite.py +198 -0
  92. smftools/tools/__init__.py +49 -0
  93. smftools/tools/apply_hmm.py +202 -0
  94. smftools/tools/apply_hmm_batched.py +241 -0
  95. smftools/tools/archived/classify_methylated_features.py +66 -0
  96. smftools/tools/archived/classify_non_methylated_features.py +75 -0
  97. smftools/tools/archived/subset_adata_v1.py +32 -0
  98. smftools/tools/archived/subset_adata_v2.py +46 -0
  99. smftools/tools/calculate_distances.py +18 -0
  100. smftools/tools/calculate_umap.py +62 -0
  101. smftools/tools/call_hmm_peaks.py +105 -0
  102. smftools/tools/classifiers.py +787 -0
  103. smftools/tools/cluster_adata_on_methylation.py +105 -0
  104. smftools/tools/data/__init__.py +2 -0
  105. smftools/tools/data/anndata_data_module.py +90 -0
  106. smftools/tools/data/preprocessing.py +6 -0
  107. smftools/tools/display_hmm.py +18 -0
  108. smftools/tools/evaluation/__init__.py +0 -0
  109. smftools/tools/general_tools.py +69 -0
  110. smftools/tools/hmm_readwrite.py +16 -0
  111. smftools/tools/inference/__init__.py +1 -0
  112. smftools/tools/inference/lightning_inference.py +41 -0
  113. smftools/tools/models/__init__.py +9 -0
  114. smftools/tools/models/base.py +14 -0
  115. smftools/tools/models/cnn.py +34 -0
  116. smftools/tools/models/lightning_base.py +41 -0
  117. smftools/tools/models/mlp.py +17 -0
  118. smftools/tools/models/positional.py +17 -0
  119. smftools/tools/models/rnn.py +16 -0
  120. smftools/tools/models/sklearn_models.py +40 -0
  121. smftools/tools/models/transformer.py +133 -0
  122. smftools/tools/models/wrappers.py +20 -0
  123. smftools/tools/nucleosome_hmm_refinement.py +104 -0
  124. smftools/tools/position_stats.py +239 -0
  125. smftools/tools/read_stats.py +70 -0
  126. smftools/tools/subset_adata.py +28 -0
  127. smftools/tools/train_hmm.py +78 -0
  128. smftools/tools/training/__init__.py +1 -0
  129. smftools/tools/training/train_lightning_model.py +47 -0
  130. smftools/tools/utils/__init__.py +2 -0
  131. smftools/tools/utils/device.py +10 -0
  132. smftools/tools/utils/grl.py +14 -0
  133. {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/METADATA +5 -2
  134. smftools-0.1.7.dist-info/RECORD +136 -0
  135. smftools-0.1.6.dist-info/RECORD +0 -4
  136. {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/WHEEL +0 -0
  137. {smftools-0.1.6.dist-info → smftools-0.1.7.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,47 @@
1
+ # subsample_fasta_from_bed
2
+
3
+ def subsample_fasta_from_bed(input_FASTA, input_bed, output_directory, output_FASTA):
4
+ """
5
+ Take a genome-wide FASTA file and a bed file containing coordinate windows of interest. Outputs a subsampled FASTA.
6
+
7
+ Parameters:
8
+ input_FASTA (str): String representing the path to the input FASTA file.
9
+ input_bed (str): String representing the path to the input BED file.
10
+ output_directory (str): String representing the path to the output directory for the new FASTA file.
11
+ output_FASTA (str): Name of the output FASTA.
12
+
13
+ Returns:
14
+ None
15
+ """
16
+ from pyfaidx import Fasta
17
+ import os
18
+
19
+ # Load the FASTA file using pyfaidx
20
+ fasta = Fasta(input_FASTA)
21
+
22
+ output_FASTA_path = os.path.join(output_directory, output_FASTA)
23
+
24
+ # Open the BED file
25
+ with open(input_bed, 'r') as bed, open(output_FASTA_path, 'w') as out_fasta:
26
+ for line in bed:
27
+ # Each line in BED file contains: chrom, start, end (and possibly more columns)
28
+ fields = line.strip().split()
29
+ n_fields = len(fields)
30
+ chrom = fields[0]
31
+ start = int(fields[1]) # BED is 0-based
32
+ end = int(fields[2]) # BED is 0-based and end is exclusive
33
+ if n_fields > 3:
34
+ description = " ".join(fields[3:])
35
+
36
+ # Check if the chromosome exists in the FASTA file
37
+ if chrom in fasta:
38
+ # pyfaidx is 1-based, so convert coordinates accordingly
39
+ sequence = fasta[chrom][start:end].seq
40
+ # Write the sequence to the output FASTA file
41
+ if n_fields > 3:
42
+ out_fasta.write(f">{chrom}:{start}-{end} {description}\n")
43
+ else:
44
+ out_fasta.write(f">{chrom}:{start}-{end}\n")
45
+ out_fasta.write(f"{sequence}\n")
46
+ else:
47
+ print(f"Warning: {chrom} not found in the FASTA file")
@@ -0,0 +1,104 @@
1
+ # subsample_pod5
2
+
3
+ def subsample_pod5(pod5_path, read_name_path, output_directory):
4
+ """
5
+ Takes a POD5 file and a text file containing read names of interest and writes out a subsampled POD5 for just those reads.
6
+ This is a useful function when you have a list of read names that mapped to a region of interest that you want to reanalyze from the pod5 level.
7
+
8
+ Parameters:
9
+ pod5_path (str): File path to the POD5 file (or directory of multiple pod5 files) to subsample.
10
+ read_name_path (str | int): File path to a text file of read names. One read name per line. If an int value is passed, a random subset of that many reads will occur
11
+ output_directory (str): A file path to the directory to output the file.
12
+
13
+ Returns:
14
+ None
15
+ """
16
+ import pod5 as p5
17
+ import os
18
+
19
+ if os.path.isdir(pod5_path):
20
+ pod5_path_is_dir = True
21
+ input_pod5_base = 'input_pod5s.pod5'
22
+ files = os.listdir(pod5_path)
23
+ pod5_files = [os.path.join(pod5_path, file) for file in files if '.pod5' in file]
24
+ pod5_files.sort()
25
+ print(f'Found input pod5s: {pod5_files}')
26
+
27
+ elif os.path.exists(pod5_path):
28
+ pod5_path_is_dir = False
29
+ input_pod5_base = os.path.basename(pod5_path)
30
+
31
+ else:
32
+ print('Error: pod5_path passed does not exist')
33
+ return None
34
+
35
+ if type(read_name_path) == str:
36
+ input_read_name_base = os.path.basename(read_name_path)
37
+ output_base = input_pod5_base.split('.pod5')[0] + '_' + input_read_name_base.split('.txt')[0] + '_subsampled.pod5'
38
+
39
+ # extract read names into a list of strings
40
+ with open(read_name_path, 'r') as file:
41
+ read_names = [line.strip() for line in file]
42
+
43
+ print(f'Looking for read_ids: {read_names}')
44
+ read_records = []
45
+
46
+ if pod5_path_is_dir:
47
+ for input_pod5 in pod5_files:
48
+ with p5.Reader(input_pod5) as reader:
49
+ try:
50
+ for read_record in reader.reads(selection=read_names, missing_ok=True):
51
+ read_records.append(read_record.to_read())
52
+ print(f'Found read in {input_pod5}: {read_record.read_id}')
53
+ except:
54
+ print('Skipping pod5, could not find reads')
55
+ else:
56
+ with p5.Reader(pod5_path) as reader:
57
+ try:
58
+ for read_record in reader.reads(selection=read_names):
59
+ read_records.append(read_record.to_read())
60
+ print(f'Found read in {input_pod5}: {read_record}')
61
+ except:
62
+ print('Could not find reads')
63
+
64
+ elif type(read_name_path) == int:
65
+ import random
66
+ output_base = input_pod5_base.split('.pod5')[0] + f'_{read_name_path}_randomly_subsampled.pod5'
67
+ all_read_records = []
68
+
69
+ if pod5_path_is_dir:
70
+ # Shuffle the list of input pod5 paths
71
+ random.shuffle(pod5_files)
72
+ for input_pod5 in pod5_files:
73
+ # iterate over the input pod5s
74
+ print(f'Opening pod5 file {input_pod5}')
75
+ with p5.Reader(pod5_path) as reader:
76
+ for read_record in reader.reads():
77
+ all_read_records.append(read_record.to_read())
78
+ # When enough reads are in all_read_records, stop accumulating reads.
79
+ if len(all_read_records) >= read_name_path:
80
+ break
81
+
82
+ if read_name_path <= len(all_read_records):
83
+ read_records = random.sample(all_read_records, read_name_path)
84
+ else:
85
+ print('Trying to sample more reads than are contained in the input pod5s, taking all reads')
86
+ read_records = all_read_records
87
+
88
+ else:
89
+ with p5.Reader(pod5_path) as reader:
90
+ for read_record in reader.reads():
91
+ # get all read records from the input pod5
92
+ all_read_records.append(read_record.to_read())
93
+ if read_name_path <= len(all_read_records):
94
+ # if the subsampling amount is less than the record amount in the file, randomly subsample the reads
95
+ read_records = random.sample(all_read_records, read_name_path)
96
+ else:
97
+ print('Trying to sample more reads than are contained in the input pod5s, taking all reads')
98
+ read_records = all_read_records
99
+
100
+ output_pod5 = os.path.join(output_directory, output_base)
101
+
102
+ # Write the subsampled POD5
103
+ with p5.Writer(output_pod5) as writer:
104
+ writer.add_reads(read_records)
@@ -0,0 +1,15 @@
1
+ from .position_stats import plot_bar_relative_risk, plot_volcano_relative_risk, plot_positionwise_matrix, plot_positionwise_matrix_grid
2
+ from .general_plotting import combined_hmm_raw_clustermap
3
+ from .classifiers import plot_model_performance, plot_feature_importances_or_saliency, plot_model_curves_from_adata, plot_model_curves_from_adata_with_frequency_grid
4
+
5
+ __all__ = [
6
+ "combined_hmm_raw_clustermap",
7
+ "plot_bar_relative_risk",
8
+ "plot_positionwise_matrix",
9
+ "plot_positionwise_matrix_grid",
10
+ "plot_volcano_relative_risk",
11
+ "plot_feature_importances_or_saliency",
12
+ "plot_model_performance",
13
+ "plot_model_curves_from_adata",
14
+ "plot_model_curves_from_adata_with_frequency_grid"
15
+ ]
@@ -0,0 +1,355 @@
1
+
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import torch
5
+ import os
6
+
7
+ def plot_model_performance(metrics, save_path=None):
8
+ import matplotlib.pyplot as plt
9
+ import os
10
+ for ref in metrics.keys():
11
+ plt.figure(figsize=(12, 5))
12
+
13
+ # ROC Curve
14
+ plt.subplot(1, 2, 1)
15
+ for model_name, vals in metrics[ref].items():
16
+ model_type = model_name.split('_')[0]
17
+ data_type = model_name.split(f"{model_type}_")[1]
18
+ plt.plot(vals['fpr'], vals['tpr'], label=f"{model_type.upper()} - AUC: {vals['auc']:.4f}")
19
+ plt.xlabel('False Positive Rate')
20
+ plt.ylabel('True Positive Rate')
21
+ plt.title(f'{data_type} ROC Curve ({ref})')
22
+ plt.legend()
23
+
24
+ # PR Curve
25
+ plt.subplot(1, 2, 2)
26
+ for model_name, vals in metrics[ref].items():
27
+ model_type = model_name.split('_')[0]
28
+ data_type = model_name.split(f"{model_type}_")[1]
29
+ plt.plot(vals['recall'], vals['precision'], label=f"{model_type.upper()} - F1: {vals['f1']:.4f}")
30
+ plt.xlabel('Recall')
31
+ plt.ylabel('Precision')
32
+ plt.title(f'{data_type} Precision-Recall Curve ({ref})')
33
+ plt.legend()
34
+
35
+ plt.tight_layout()
36
+
37
+ if save_path:
38
+ save_name = f"{ref}"
39
+ os.makedirs(save_path, exist_ok=True)
40
+ safe_name = save_name.replace("=", "").replace("__", "_").replace(",", "_")
41
+ out_file = os.path.join(save_path, f"{safe_name}.png")
42
+ plt.savefig(out_file, dpi=300)
43
+ print(f"📁 Saved: {out_file}")
44
+ plt.show()
45
+
46
+ # Confusion Matrices
47
+ for model_name, vals in metrics[ref].items():
48
+ print(f"Confusion Matrix for {ref} - {model_name.upper()}:")
49
+ print(vals['confusion_matrix'])
50
+ print()
51
+
52
+ def plot_feature_importances_or_saliency(
53
+ models,
54
+ positions,
55
+ tensors,
56
+ site_config,
57
+ adata=None,
58
+ layer_name=None,
59
+ save_path=None,
60
+ shaded_regions=None
61
+ ):
62
+ import torch
63
+ import numpy as np
64
+ import matplotlib.pyplot as plt
65
+ import os
66
+
67
+ # Select device for NN models
68
+ device = (
69
+ torch.device('cuda') if torch.cuda.is_available() else
70
+ torch.device('mps') if torch.backends.mps.is_available() else
71
+ torch.device('cpu')
72
+ )
73
+
74
+ for ref, model_dict in models.items():
75
+ if layer_name:
76
+ suffix = layer_name
77
+ else:
78
+ suffix = "_".join(site_config[ref]) if ref in site_config else "full"
79
+
80
+ if ref not in positions or suffix not in positions[ref]:
81
+ print(f"Positions not found for {ref} with suffix {suffix}. Skipping {ref}.")
82
+ continue
83
+
84
+ coords_index = positions[ref][suffix]
85
+ coords = coords_index.astype(int)
86
+
87
+ # Classify positions using adata.var columns
88
+ cpg_sites = set()
89
+ gpc_sites = set()
90
+ other_sites = set()
91
+
92
+ if adata is None:
93
+ print("⚠️ AnnData object is required to classify site types. Skipping site type markers.")
94
+ else:
95
+ gpc_col = f"{ref}_GpC_site"
96
+ cpg_col = f"{ref}_CpG_site"
97
+ for idx_str in coords_index:
98
+ try:
99
+ gpc = adata.var.at[idx_str, gpc_col] if gpc_col in adata.var.columns else False
100
+ cpg = adata.var.at[idx_str, cpg_col] if cpg_col in adata.var.columns else False
101
+ coord_int = int(idx_str)
102
+ if gpc and not cpg:
103
+ gpc_sites.add(coord_int)
104
+ elif cpg and not gpc:
105
+ cpg_sites.add(coord_int)
106
+ else:
107
+ other_sites.add(coord_int)
108
+ except KeyError:
109
+ print(f"⚠️ Index '{idx_str}' not found in adata.var. Skipping.")
110
+ continue
111
+
112
+ for model_key, model in model_dict.items():
113
+ if not model_key.endswith(suffix):
114
+ continue
115
+
116
+ if model_key.startswith("rf"):
117
+ if hasattr(model, "feature_importances_"):
118
+ importances = model.feature_importances_
119
+ else:
120
+ print(f"Random Forest model {model_key} has no feature_importances_. Skipping.")
121
+ continue
122
+ plot_title = f"RF Feature Importances for {ref} ({model_key})"
123
+ y_label = "Feature Importance"
124
+ else:
125
+ if tensors is None or ref not in tensors or suffix not in tensors[ref]:
126
+ print(f"No input data provided for NN saliency for {model_key}. Skipping.")
127
+ continue
128
+ input_tensor = tensors[ref][suffix]
129
+ model.eval()
130
+ input_tensor = input_tensor.to(device)
131
+ input_tensor.requires_grad_()
132
+
133
+ with torch.enable_grad():
134
+ logits = model(input_tensor)
135
+ score = logits[:, 1].sum()
136
+ score.backward()
137
+ saliency = input_tensor.grad.abs().mean(dim=0).cpu().numpy()
138
+ importances = saliency
139
+ plot_title = f"Feature Saliency for {ref} ({model_key})"
140
+ y_label = "Feature Saliency"
141
+
142
+ sorted_idx = np.argsort(coords)
143
+ positions_sorted = coords[sorted_idx]
144
+ importances_sorted = np.array(importances)[sorted_idx]
145
+
146
+ plt.figure(figsize=(12, 4))
147
+ for pos, imp in zip(positions_sorted, importances_sorted):
148
+ if pos in cpg_sites:
149
+ plt.plot(pos, imp, marker='*', color='black', markersize=10, linestyle='None',
150
+ label='CpG site' if 'CpG site' not in plt.gca().get_legend_handles_labels()[1] else "")
151
+ elif pos in gpc_sites:
152
+ plt.plot(pos, imp, marker='o', color='blue', markersize=6, linestyle='None',
153
+ label='GpC site' if 'GpC site' not in plt.gca().get_legend_handles_labels()[1] else "")
154
+ else:
155
+ plt.plot(pos, imp, marker='.', color='gray', linestyle='None',
156
+ label='Other' if 'Other' not in plt.gca().get_legend_handles_labels()[1] else "")
157
+
158
+ plt.plot(positions_sorted, importances_sorted, linestyle='-', alpha=0.5, color='black')
159
+
160
+ if shaded_regions:
161
+ for (start, end) in shaded_regions:
162
+ plt.axvspan(start, end, color='gray', alpha=0.3)
163
+
164
+ plt.xlabel("Genomic Position")
165
+ plt.ylabel(y_label)
166
+ plt.title(plot_title)
167
+ plt.grid(True)
168
+ plt.legend()
169
+ plt.tight_layout()
170
+
171
+ if save_path:
172
+ os.makedirs(save_path, exist_ok=True)
173
+ safe_name = plot_title.replace("=", "").replace("__", "_").replace(",", "_").replace(" ", "_")
174
+ out_file = os.path.join(save_path, f"{safe_name}.png")
175
+ plt.savefig(out_file, dpi=300)
176
+ print(f"📁 Saved: {out_file}")
177
+
178
+ plt.show()
179
+
180
+ def plot_model_curves_from_adata(
181
+ adata,
182
+ label_col='activity_status',
183
+ model_names = ["cnn", "mlp", "rf"],
184
+ suffix='GpC_site_CpG_site',
185
+ omit_training=True,
186
+ save_path=None,
187
+ ylim_roc=(0.0, 1.05),
188
+ ylim_pr=(0.0, 1.05)):
189
+
190
+ from sklearn.metrics import precision_recall_curve, roc_curve, auc
191
+ import matplotlib.pyplot as plt
192
+ import seaborn as sns
193
+
194
+ if omit_training:
195
+ subset = adata[adata.obs['used_for_training'].astype(bool) == False]
196
+
197
+ label = subset.obs[label_col].map({'Active': 1, 'Silent': 0}).values
198
+
199
+ positive_ratio = np.sum(label.astype(int)) / len(label)
200
+
201
+ plt.figure(figsize=(12, 5))
202
+
203
+ # ROC curve
204
+ plt.subplot(1, 2, 1)
205
+ for model in model_names:
206
+ prob_col = f"{model}_active_prob_{suffix}"
207
+ if prob_col in subset.obs.columns:
208
+ probs = subset.obs[prob_col].astype(float).values
209
+ fpr, tpr, _ = roc_curve(label, probs)
210
+ roc_auc = auc(fpr, tpr)
211
+ plt.plot(fpr, tpr, label=f"{model.upper()} (AUC={roc_auc:.4f})")
212
+
213
+ plt.plot([0, 1], [0, 1], 'k--', alpha=0.5)
214
+ plt.xlabel("False Positive Rate")
215
+ plt.ylabel("True Positive Rate")
216
+ plt.title("ROC Curve")
217
+ plt.ylim(*ylim_roc)
218
+ plt.legend()
219
+
220
+ # PR curve
221
+ plt.subplot(1, 2, 2)
222
+ for model in model_names:
223
+ prob_col = f"{model}_active_prob_{suffix}"
224
+ if prob_col in subset.obs.columns:
225
+ probs = subset.obs[prob_col].astype(float).values
226
+ precision, recall, _ = precision_recall_curve(label, probs)
227
+ pr_auc = auc(recall, precision)
228
+ plt.plot(recall, precision, label=f"{model.upper()} (AUC={pr_auc:.4f})")
229
+
230
+ plt.xlabel("Recall")
231
+ plt.ylabel("Precision")
232
+ plt.ylim(*ylim_pr)
233
+ plt.axhline(y=positive_ratio, linestyle='--', color='gray', label='Random Baseline')
234
+ plt.title("Precision-Recall Curve")
235
+ plt.legend()
236
+
237
+ plt.tight_layout()
238
+ if save_path:
239
+ save_name = f"ROC_PR_curves"
240
+ os.makedirs(save_path, exist_ok=True)
241
+ safe_name = save_name.replace("=", "").replace("__", "_").replace(",", "_")
242
+ out_file = os.path.join(save_path, f"{safe_name}.png")
243
+ plt.savefig(out_file, dpi=300)
244
+ print(f"📁 Saved: {out_file}")
245
+ plt.show()
246
+
247
+ def plot_model_curves_from_adata_with_frequency_grid(
248
+ adata,
249
+ label_col='activity_status',
250
+ model_names=["cnn", "mlp", "rf"],
251
+ suffix='GpC_site_CpG_site',
252
+ omit_training=True,
253
+ save_path=None,
254
+ ylim_roc=(0.0, 1.05),
255
+ ylim_pr=(0.0, 1.05),
256
+ pos_sample_count=500,
257
+ pos_freq_list=[0.01, 0.05, 0.1],
258
+ show_f1_iso_curves=False,
259
+ f1_levels=None):
260
+ import numpy as np
261
+ import matplotlib.pyplot as plt
262
+ import seaborn as sns
263
+ import os
264
+ from sklearn.metrics import precision_recall_curve, roc_curve, auc
265
+
266
+ if f1_levels is None:
267
+ f1_levels = np.linspace(0.2, 0.9, 8)
268
+
269
+ if omit_training:
270
+ subset = adata[adata.obs['used_for_training'].astype(bool) == False]
271
+ else:
272
+ subset = adata
273
+
274
+ label = subset.obs[label_col].map({'Active': 1, 'Silent': 0}).values
275
+ subset = subset.copy()
276
+ subset.obs["__label__"] = label
277
+
278
+ pos_indices = np.where(label == 1)[0]
279
+ neg_indices = np.where(label == 0)[0]
280
+
281
+ n_rows = len(pos_freq_list)
282
+ fig, axes = plt.subplots(n_rows, 2, figsize=(12, 5 * n_rows))
283
+ fig.suptitle(f'{suffix} Performance metrics')
284
+
285
+ for row_idx, pos_freq in enumerate(pos_freq_list):
286
+ desired_total = int(pos_sample_count / pos_freq)
287
+ neg_sample_count = desired_total - pos_sample_count
288
+
289
+ if pos_sample_count > len(pos_indices) or neg_sample_count > len(neg_indices):
290
+ print(f"⚠️ Skipping frequency {pos_freq:.3f}: not enough samples.")
291
+ continue
292
+
293
+ sampled_pos = np.random.choice(pos_indices, size=pos_sample_count, replace=False)
294
+ sampled_neg = np.random.choice(neg_indices, size=neg_sample_count, replace=False)
295
+ sampled_indices = np.concatenate([sampled_pos, sampled_neg])
296
+
297
+ data_sampled = subset[sampled_indices]
298
+ y_true = data_sampled.obs["__label__"].values
299
+
300
+ ax_roc = axes[row_idx, 0] if n_rows > 1 else axes[0]
301
+ ax_pr = axes[row_idx, 1] if n_rows > 1 else axes[1]
302
+
303
+ # ROC Curve
304
+ for model in model_names:
305
+ prob_col = f"{model}_active_prob_{suffix}"
306
+ if prob_col in data_sampled.obs.columns:
307
+ probs = data_sampled.obs[prob_col].astype(float).values
308
+ fpr, tpr, _ = roc_curve(y_true, probs)
309
+ roc_auc = auc(fpr, tpr)
310
+ ax_roc.plot(fpr, tpr, label=f"{model.upper()} (AUC={roc_auc:.4f})")
311
+ ax_roc.plot([0, 1], [0, 1], 'k--', alpha=0.5)
312
+ ax_roc.set_xlabel("False Positive Rate")
313
+ ax_roc.set_ylabel("True Positive Rate")
314
+ ax_roc.set_ylim(*ylim_roc)
315
+ ax_roc.set_title(f"ROC Curve (Pos Freq: {pos_freq:.2%})")
316
+ ax_roc.legend()
317
+ ax_roc.spines['top'].set_visible(False)
318
+ ax_roc.spines['right'].set_visible(False)
319
+
320
+ # PR Curve
321
+ for model in model_names:
322
+ prob_col = f"{model}_active_prob_{suffix}"
323
+ if prob_col in data_sampled.obs.columns:
324
+ probs = data_sampled.obs[prob_col].astype(float).values
325
+ precision, recall, _ = precision_recall_curve(y_true, probs)
326
+ pr_auc = auc(recall, precision)
327
+ ax_pr.plot(recall, precision, label=f"{model.upper()} (AUC={pr_auc:.4f})")
328
+ ax_pr.axhline(y=pos_freq, linestyle='--', color='gray', label='Random Baseline')
329
+
330
+ if show_f1_iso_curves:
331
+ recall_vals = np.linspace(0.01, 1, 500)
332
+ for f1 in f1_levels:
333
+ precision_vals = (f1 * recall_vals) / (2 * recall_vals - f1)
334
+ precision_vals[precision_vals < 0] = np.nan # Avoid plotting invalid values
335
+ ax_pr.plot(recall_vals, precision_vals, color='gray', linestyle=':', linewidth=1, alpha=0.6)
336
+ x_val = 0.9
337
+ y_val = (f1 * x_val) / (2 * x_val - f1)
338
+ if 0 < y_val < 1:
339
+ ax_pr.text(x_val, y_val, f"F1={f1:.1f}", fontsize=8, color='gray')
340
+
341
+ ax_pr.set_xlabel("Recall")
342
+ ax_pr.set_ylabel("Precision")
343
+ ax_pr.set_ylim(*ylim_pr)
344
+ ax_pr.set_title(f"PR Curve (Pos Freq: {pos_freq:.2%})")
345
+ ax_pr.legend()
346
+ ax_pr.spines['top'].set_visible(False)
347
+ ax_pr.spines['right'].set_visible(False)
348
+
349
+ plt.tight_layout(rect=[0, 0, 1, 0.97])
350
+ if save_path:
351
+ os.makedirs(save_path, exist_ok=True)
352
+ out_file = os.path.join(save_path, "ROC_PR_grid.png")
353
+ plt.savefig(out_file, dpi=300)
354
+ print(f"📁 Saved: {out_file}")
355
+ plt.show()