siat 3.10.125__py3-none-any.whl → 3.10.126__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (87) hide show
  1. siat/common.py +106 -2
  2. siat/exchange_bond_china.pickle +0 -0
  3. siat/fund_china.pickle +0 -0
  4. siat/stock.py +10 -2
  5. siat/stock_info.pickle +0 -0
  6. {siat-3.10.125.dist-info → siat-3.10.126.dist-info}/METADATA +234 -226
  7. siat-3.10.126.dist-info/RECORD +76 -0
  8. {siat-3.10.125.dist-info → siat-3.10.126.dist-info}/WHEEL +1 -1
  9. {siat-3.10.125.dist-info → siat-3.10.126.dist-info/licenses}/LICENSE +0 -0
  10. {siat-3.10.125.dist-info → siat-3.10.126.dist-info}/top_level.txt +0 -0
  11. siat/__init__ -20240701.py +0 -65
  12. siat/__init__.py.backup_20250214.py +0 -73
  13. siat/alpha_vantage_test.py +0 -24
  14. siat/assets_liquidity_test.py +0 -44
  15. siat/barrons_scraping_test.py +0 -276
  16. siat/beta_adjustment_test.py +0 -77
  17. siat/bond_test.py +0 -142
  18. siat/capm_beta_test.py +0 -49
  19. siat/cmat_commons.py +0 -961
  20. siat/compare_cross_test.py +0 -117
  21. siat/concepts_iwencai.py +0 -86
  22. siat/concepts_kpl.py +0 -93
  23. siat/cryptocurrency_test.py +0 -71
  24. siat/derivative.py +0 -1111
  25. siat/economy-20230125.py +0 -1206
  26. siat/economy_test.py +0 -360
  27. siat/esg_test.py +0 -63
  28. siat/fama_french_test.py +0 -115
  29. siat/financial_statements_test.py +0 -31
  30. siat/financials2 - /321/205/320/231/320/277/321/206/320/254/320/274.py" +0 -341
  31. siat/financials_china2_test.py +0 -67
  32. siat/financials_china2_test2.py +0 -88
  33. siat/financials_china2_test3.py +0 -87
  34. siat/financials_china_test.py +0 -475
  35. siat/financials_china_test2.py +0 -197
  36. siat/financials_china_test2_fin_indicator.py +0 -197
  37. siat/financials_test.py +0 -713
  38. siat/fred_test.py +0 -40
  39. siat/fund_china_test.py +0 -175
  40. siat/fund_test.py +0 -40
  41. siat/future_china_test.py +0 -37
  42. siat/global_index_test.py +0 -66
  43. siat/grafix_test.py +0 -112
  44. siat/holding_risk_test.py +0 -13
  45. siat/local_debug_test.py +0 -100
  46. siat/markowitz2-20240620.py +0 -2614
  47. siat/markowitz_ccb_test.py +0 -37
  48. siat/markowitz_ef_test.py +0 -136
  49. siat/markowitz_old.py +0 -871
  50. siat/markowitz_simple-20230709.py +0 -370
  51. siat/markowitz_test.py +0 -164
  52. siat/markowitz_test2.py +0 -69
  53. siat/ml_cases_example1.py +0 -60
  54. siat/option_china_test.py +0 -447
  55. siat/option_pricing_test.py +0 -81
  56. siat/option_sina_api_test.py +0 -112
  57. siat/proxy_test.py +0 -84
  58. siat/quandl_test.py +0 -39
  59. siat/risk_adjusted_return_test.py +0 -81
  60. siat/risk_evaluation_test.py +0 -96
  61. siat/risk_free_rate_test.py +0 -127
  62. siat/sector_china_test.py +0 -203
  63. siat/security_price.py +0 -831
  64. siat/security_prices_test.py +0 -310
  65. siat/security_trend2-20240620.py +0 -493
  66. siat/setup.py +0 -41
  67. siat/shenwan index history test.py +0 -41
  68. siat/stock_china_test.py +0 -38
  69. siat/stock_info_test.py +0 -189
  70. siat/stock_list_china_test.py +0 -33
  71. siat/stock_technical-20240620.py +0 -2736
  72. siat/stock_test.py +0 -487
  73. siat/temp.py +0 -36
  74. siat/test2_graphviz.py +0 -484
  75. siat/test_graphviz.py +0 -411
  76. siat/test_markowitz_simple.py +0 -198
  77. siat/test_markowitz_simple_revised.py +0 -215
  78. siat/test_markowitz_simple_revised2.py +0 -218
  79. siat/transaction_test.py +0 -436
  80. siat/translate-20230125.py +0 -2107
  81. siat/translate-20230206.py +0 -2109
  82. siat/translate-20230215.py +0 -2158
  83. siat/translate_20240606.py +0 -4206
  84. siat/translate_241003_keep.py +0 -4300
  85. siat/universal_test.py +0 -100
  86. siat/valuation_market_china_test.py +0 -36
  87. siat-3.10.125.dist-info/RECORD +0 -152
siat/fred_test.py DELETED
@@ -1,40 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import pandas as pd
4
- #if you get an error after executing the code, try adding below:
5
- pd.core.common.is_list_like = pd.api.types.is_list_like
6
-
7
- import pandas_datareader.data as web
8
- import datetime
9
-
10
- start = datetime.datetime(2021, 1, 1)
11
- end = datetime.datetime(2021, 11, 30)
12
-
13
- sp500 = web.DataReader(['sp500'], 'fred', start, end)
14
- djia = web.DataReader(['djia'], 'fred', start, end)
15
-
16
- hk50 = web.DataReader(['hk50'], 'fred', start, end) #失败
17
-
18
- def get_index_fred(ticker,start,end):
19
- """
20
- 功能:替代雅虎不能用的临时解决方案,获取标普500、道琼斯等指数
21
- """
22
- yahoolist=['^GSPC','^DJI','^VIX','^IXIC','^N225','^NDX']
23
- fredlist=['sp500','djia','vixcls','nasdaqcom','nikkei225','nasdaq100']
24
-
25
- if not (ticker in tidailist):
26
- return None
27
-
28
- import pandas as pd
29
- import pandas_datareader.data as web
30
- if ticker in yahoolist:
31
- pos=yahoolist.index(ticker)
32
- id=fredlist[pos]
33
-
34
- df = web.DataReader([id], 'fred', start, end)
35
- df.rename(columns={id:'Close'},inplace=True)
36
-
37
- #删除空值记录
38
- df.dropna(inplace=True)
39
-
40
- return df
siat/fund_china_test.py DELETED
@@ -1,175 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- # 绝对引用指定目录中的模块
4
-
5
- import os; os.chdir("S:/siat")
6
- from siat import *
7
- #==============================================================================
8
- df=etf_trend_china('510580','2022-1-1','2022-4-30',loc1='center left')
9
-
10
-
11
- df=oef_trend_china('000592','2021-1-1','2021-3-31',trend_type='收益率',power=5)
12
- df = mmf_rank_china()
13
-
14
- df=mmf_trend_china('320019','2020-7-1','2020-9-30', power=1)
15
- df=mmf_trend_china('001234','2021-1-1','2022-1-31', power=1)
16
- df2=mmf_trend_china('004972','2021-1-1','2022-1-31', power=1)
17
- df3=mmf_trend_china('004137','2021-1-1','2022-1-31', power=1)
18
- df4=mmf_trend_china('002890','2021-1-1','2022-1-31', power=1)
19
- df5=mmf_trend_china('004417','2021-1-1','2022-1-31', power=1)
20
- df6=mmf_trend_china('005151','2021-1-1','2022-1-31', power=1)
21
- df7=mmf_trend_china('001909','2021-1-1','2022-1-31', power=1)
22
- df8=mmf_trend_china('001821','2021-1-1','2022-1-31', power=1)
23
- df9=mmf_trend_china('000836','2021-1-1','2022-1-31', power=1)
24
- df10=mmf_trend_china('000700','2021-1-1','2022-1-31', power=1)
25
- #==============================================================================
26
- df10 = ak.fund_em_exchange_rank()
27
- df10s=df10[['基金代码','基金简称','单位净值','近1年']]
28
- df10s2=df10s[df10s['近1年']!='']
29
-
30
- df10s2['近1年']=df10s2['近1年'].astype('float')
31
- df10s.sort_values(by=['近1年'],ascending=False, inplace=True)
32
- df10s.reset_index(drop=True,inplace=True)
33
- df10s.head(10)
34
-
35
- #==============================================================================
36
- df90_lof=ak.fund_etf_category_sina(symbol="LOF基金") #可选参数为: 封闭式基金, ETF基金, LOF基金
37
- df90_lof_s=df90_etf_s[df90_etf_s["LOF"]==True]
38
-
39
- df90_cef=ak.fund_etf_category_sina(symbol="封闭式基金")
40
-
41
- df90_etf=ak.fund_etf_category_sina(symbol="ETF基金")
42
- df90_etf_s=df90_etf[['代码','名称']]
43
- df90_etf_s["沪深300"]= df90_etf_s["名称"].str.contains('沪深300')
44
- df90_etf_s1=df90_etf_s[df90_etf_s["沪深300"]==True]
45
-
46
- df90_etf_s["上证50"]= df90_etf_s["名称"].str.contains('上证50')
47
- df90_etf_s2=df90_etf_s[df90_etf_s["上证50"]==True]
48
-
49
- df90_etf_s["中证500"]= df90_etf_s["名称"].str.contains('中证500')
50
- df90_etf_s3=df90_etf_s[df90_etf_s["中证500"]==True]
51
-
52
- df90_etf_s["上证综指"]= df90_etf_s["名称"].str.contains('上证综指')
53
- df90_etf_s5=df90_etf_s[df90_etf_s["上证综指"]==True]
54
-
55
- df90_etf_s["标普500"]= df90_etf_s["名称"].str.contains('标普500')
56
- df90_etf_s6=df90_etf_s[df90_etf_s["标普500"]==True]
57
-
58
- df90_etf_s["纳斯达克"]= df90_etf_s["名称"].str.contains('纳')
59
- df90_etf_s7=df90_etf_s[df90_etf_s["纳斯达克"]==True]
60
-
61
- df90_etf_s["恒生"]= df90_etf_s["名称"].str.contains('恒生')
62
- df90_etf_s8=df90_etf_s[df90_etf_s["恒生"]==True]
63
-
64
- df90_etf_s["日经"]= df90_etf_s["名称"].str.contains('日经')
65
- df90_etf_s9=df90_etf_s[df90_etf_s["日经"]==True]
66
-
67
- df90_etf_s["深证成指"]= df90_etf_s["名称"].str.contains('深证成指')
68
- df90_etf_s10=df90_etf_s[df90_etf_s["深证成指"]==True]
69
-
70
- df90_etf_s["CAC"]= df90_etf_s["名称"].str.contains('CAC')
71
- df90_etf_s11=df90_etf_s[df90_etf_s["CAC"]==True]
72
-
73
- df90_etf_s["富时"]= df90_etf_s["名称"].str.contains('富时')
74
- df90_etf_s12=df90_etf_s[df90_etf_s["富时"]==True]
75
-
76
- df90_etf_s["债指"]= df90_etf_s["名称"].str.contains('债')
77
- df90_etf_s13=df90_etf_s[df90_etf_s["债指"]==True]
78
-
79
-
80
-
81
- df90 = ak.fund_etf_hist_sina(symbol="sz169103")
82
-
83
- #==============================================================================
84
- df=security_price("169103.SZ",'2021-7-1','2021-10-15')
85
- df=security_price("180801.SZ",'2021-7-1','2021-10-15')
86
-
87
- df1=fund_stock_holding_compare_china('005827.SS','2021Q1','2021Q2')
88
- df2=fund_stock_holding_rank_china('005827')
89
-
90
-
91
- df=reits_profile_china()
92
- df=reits_profile_china(top = 3)
93
- df=reits_profile_china(top = -3)
94
- df=reits_profile_china('508056')
95
- #==============================================================================
96
- from siat.translate import *
97
-
98
- #==============================================================================
99
- from siat import *
100
- df=oef_rank_china('单位净值','全部类型')
101
- set(list(df['基金类型'])) #基金类别列表
102
- set(list(df['基金代码'])) #基金个数
103
- df=oef_trend_china('180801','2020-1-1','2021-9-30',"收益率")
104
-
105
- import akshare as ak
106
- df = ak.fund_em_open_fund_info(fund="710001", indicator="累计收益率走势")
107
- df=oef_trend_china('710001','2020-1-1','2021-9-30',"收益率")
108
- #==============================================================================
109
- df=oef_trend_china('000592','2021-1-1','2021-3-31',trend_type='收益率',power=5)
110
-
111
- df=mmf_trend_china('320019','2020-7-1','2020-9-30',power=1)
112
-
113
- df=oef_trend_china('000595','2019-1-1','2020-12-31',trend_type='净值')
114
- df=oef_trend_china('000592','2021-1-1','2021-3-31',trend_type='收益率',power=5)
115
- df=oef_trend_china('050111','2020-9-1','2020-9-30',trend_type='排名')
116
- df=mmf_trend_china('320019','2020-7-1','2020-9-30',power=3)
117
- df=etf_trend_china('510580','2019-1-1','2020-9-30')
118
-
119
- #==============================================================================
120
-
121
- df=oef_rank_china('单位净值','全部类型')
122
-
123
-
124
- df=pof_list_china()
125
-
126
-
127
- df=oef_rank_china('单位净值','全部类型')
128
- df=oef_rank_china('累计净值','全部类型')
129
- df=oef_rank_china('手续费','全部类型')
130
-
131
-
132
- df=oef_rank_china('单位净值','股票型')
133
- df=oef_rank_china('累计净值','股票型')
134
-
135
-
136
- df=oef_rank_china('单位净值','债券型')
137
- df=oef_rank_china('累计净值','债券型')
138
-
139
- df=oef_trend_china('519035','2019-1-1','2020-10-16',trend_type='净值')
140
-
141
- df=oef_trend_china('519035','2020-5-1','2020-10-16',trend_type='收益率',power=5)
142
-
143
- df=oef_trend_china('519035','2020-9-1','2020-9-30',trend_type='排名')
144
-
145
-
146
- df=oef_trend_china('000595','2019-1-1','2020-10-16',trend_type='净值')
147
- df=oef_trend_china('000592','2020-7-1','2020-9-30',trend_type='收益率',power=5)
148
- df=oef_trend_china('050111','2020-9-1','2020-9-30',trend_type='排名')
149
-
150
- df = ak.fund_em_money_fund_daily()
151
- df = mmf_rank_china()
152
-
153
- df=mmf_trend_china('320019','2020-7-1','2020-9-30',power=1)
154
-
155
- amac_member_list=list(set(list(amac_member_info_df['机构类型'])))
156
-
157
- df=etf_rank_china(info_type='单位净值',fund_type='全部类型')
158
- df=etf_rank_china(info_type='累计净值')
159
- df=etf_trend_china('510580','2019-1-1','2020-9-30')
160
-
161
-
162
- from siat.fund_china import *
163
- df=fund_summary_china()
164
-
165
- df=pef_manager_china()
166
- df=pef_manager_china("广东省")
167
- df=pef_manager_china("上海市")
168
- df=pef_manager_china("北京市")
169
- df=pef_product_china()
170
-
171
-
172
-
173
-
174
-
175
-
siat/fund_test.py DELETED
@@ -1,40 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- Created on Sun Oct 18 20:02:52 2020
4
-
5
- @author: Peter
6
- """
7
-
8
- import os; os.chdir("S:/siat")
9
- from siat.fund import *
10
-
11
- df=pof_list_china()
12
-
13
-
14
- df=oef_rank_china('单位净值','全部类型')
15
- df=oef_rank_china('累计净值','全部类型')
16
- df=oef_rank_china('手续费','全部类型')
17
-
18
-
19
- df=oef_rank_china('单位净值','股票型')
20
- df=oef_rank_china('累计净值','股票型')
21
-
22
-
23
- df=oef_rank_china('单位净值','债券型')
24
- df=oef_rank_china('累计净值','债券型')
25
-
26
- df=oef_trend_china('519035','2019-1-1','2020-10-16',trend_type='净值')
27
-
28
- df=oef_trend_china('519035','2020-5-1','2020-10-16',trend_type='收益率',power=5)
29
-
30
- df=oef_trend_china('519035','2020-9-1','2020-9-30',trend_type='排名')
31
-
32
-
33
- df=oef_trend_china('000595','2019-1-1','2020-10-16',trend_type='净值')
34
- df=oef_trend_china('000592','2020-7-1','2020-9-30',trend_type='收益率',power=5)
35
- df=oef_trend_china('050111','2020-9-1','2020-9-30',trend_type='排名')
36
-
37
- df = ak.fund_em_money_fund_daily()
38
- df = mmf_rank_china()
39
-
40
- df=mmf_trend_china('320019','2020-7-1','2020-9-30',power=1)
siat/future_china_test.py DELETED
@@ -1,37 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # 绝对引用指定目录中的模块
3
- import sys
4
- sys.path.insert(0,r'S:\siat\siat')
5
-
6
- from future_china import *
7
-
8
- clist=[0.021,0.024,0.027,0.03,0.04,0.05,0.06]
9
- df=cf_day_coupon_trend(clist,30,10,2,0.03)
10
-
11
- #=====内盘期货=====
12
- #列示全部品种与代码
13
- df=future_type_china()
14
-
15
- #列示某个期货品种的基本信息
16
- df=future_type_china("SC")
17
-
18
- #列示某个品种在某个时间段的所有合约
19
- df=future_price_china("SC","2021-8-1","2022-1-31")
20
-
21
- #列示某个合约在某个时间段的交易状况
22
- df=future_price_china("SC2406","2021-8-1","2021-8-31")
23
-
24
- #=====外盘期货(品种与合约合一)=====
25
- #列示全部品种与代码
26
- df=future_type_foreign()
27
-
28
- #列示某个期货品种的基本信息
29
- df=future_type_foreign("AHD")
30
-
31
- #列示某个合约在某个时间段的交易状况
32
- df=future_price_foreign("AHD","2021-8-1","2021-8-31")
33
-
34
- #==========================================================================================
35
- import akshare as ak
36
- futures_rule_df = ak.futures_rule(date="20200713")
37
- #==========================================================================================
siat/global_index_test.py DELETED
@@ -1,66 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import os; os.chdir("S:/siat")
4
- from siat import *
5
-
6
- #==============================================================================
7
- if __name__=='__main__':
8
- yahoo_index='^VIX'
9
- start='19910101'
10
- end='20101231'
11
- freq='daily'
12
-
13
- def get_index_investing(yahoo_index,start,end,freq='daily'):
14
- """
15
- 功能:获得全球指数历史行情
16
- 数据源:https://cn.investing.com/indices/
17
- 输入:雅虎财经指数代码
18
- 输出:历史行情df
19
- 注意:
20
- """
21
- import pandas as pd
22
- freq_cvt=pd.DataFrame([
23
- ['daily','每日'],['weekly','每周'],['monthly','每月'],
24
- ], columns=['freq','freq_investing'])
25
- try:
26
- freq_investing=freq_cvt[freq_cvt['freq']==freq]['freq_investing'].values[0]
27
- except:
28
- #未查到
29
- freq_investing='每日'
30
-
31
- index_cvt=pd.DataFrame([
32
- ['^RUT','美国','罗素2000小盘股'],['^VIX','美国','VIX恐慌指数'],
33
-
34
-
35
-
36
-
37
-
38
- ], columns=['yahoo_index','country','investing_index'])
39
-
40
- try:
41
- country=index_cvt[index_cvt['yahoo_index']==yahoo_index]['country'].values[0]
42
- investing_index=index_cvt[index_cvt['yahoo_index']==yahoo_index]['investing_index'].values[0]
43
- except:
44
- #未查到
45
- return None
46
-
47
-
48
- import akshare as ak
49
- df = ak.index_investing_global(country=country, index_name=investing_index, \
50
- period=freq_investing, start_date=start, end_date=end)
51
- print(index_investing_global_df)
52
-
53
-
54
- df = ak.index_investing_global(country="美国", index_name="VIX恐慌指数", period="每月", start_date="2005-01-01", end_date="2020-06-05")
55
- ak.index_investing_global_country_name_url("美国")
56
-
57
-
58
- ak.index_investing_global(country="美国", index_name="VIX恐慌指数", period="每月", start_date="2005-01-01", end_date="2020-06-05")
59
-
60
-
61
- index_investing_global_df = ak.index_investing_global(country="中国", index_name="富时中国A50指数", period="每日", start_date="20000101", end_date="20210909")
62
- print(index_investing_global_df)
63
-
64
-
65
- index_investing_global_df = ak.index_investing_global_from_url(url="https://www.investing.com/indices/ftse-epra-nareit-hong-kong", period="每日", start_date="19900101", end_date="20210909")
66
- print(index_investing_global_df)
siat/grafix_test.py DELETED
@@ -1,112 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import os; os.chdir('S:/siat')
4
- from siat import *
5
-
6
-
7
- df=security_price('000300.SS','2004-1-1','2022-4-30',power=1)
8
- #==============================================================================
9
- hhstocks=['600221.SS','600115.SS','600029.SS']
10
- cfps=compare_snapshot(hhstocks,'Cashflow per Share')
11
-
12
-
13
-
14
- #==============================================================================
15
-
16
- df=get_prices('INTC','2021-1-1','2021-3-31')
17
- df.Close.plot()
18
-
19
- dfm=df_smooth(df,method='pchip',sampling='H',order=3)
20
- dfm.Close.plot()
21
-
22
- dfa=df_smooth(df,method='akima')
23
- dfa.Close.plot()
24
-
25
- #==============================================================================
26
-
27
- df.plot(y=['High','Close','Low'])
28
-
29
- #================
30
- #按照小时为单位重新采样日期时间
31
- dfh=df.resample('H')
32
- methodlist=['quadratic','cubic','slinear','linear','zero','nearest','time','index','barycentric', \
33
- 'krogh','piecewise_polynomial','pchip','akima','from_derivatives']
34
- for m in methodlist:
35
- dfm=dfh.interpolate(method=m)
36
- dfm.plot(y=['High','Close','Low'],xlabel='Method = '+m)
37
- #结果:pchip效果最真实,akima也不错
38
-
39
- methodlist_o=['spline','polynomial']
40
- orderlist=[1,2,3,4,5,6]
41
- for mo in methodlist_o:
42
- for od in orderlist:
43
- try:
44
- dfm=dfh.interpolate(method=mo,order=od)
45
- dfm.plot(y=['High','Close','Low'],xlabel='Method = '+mo+', order = '+str(od))
46
- except: continue
47
- #结果:效果都不佳
48
- #===================
49
-
50
- dfh=df.resample('H')
51
- dfhp=dfh.interpolate(method='pchip')
52
-
53
- import matplotlib.pyplot as plt
54
- # 解决中文显示问题:SimHei黑体 FangSong仿宋
55
- plt.rcParams['font.sans-serif'] = ['SimHei']
56
- plt.rcParams['axes.unicode_minus'] = False
57
-
58
- titletxt='绘图'
59
- stylelist=[]
60
- footnote='日期'
61
- ylabeltxtleft='收盘价'
62
- ylabeltxtright='最高价'
63
- dfh.Close.plot(title=titletxt,legend=True,xlabel=footnote,ylabel=ylabeltxt,fontsize=8)
64
-
65
- dfhp[['High','Close']].plot(secondary_y=['High'])
66
- ax=dfhp.plot(y=['High','Close'],secondary_y=['High'])
67
- ax.set_ylabel(ylabeltxtleft)
68
- ax.right_ax.set_ylabel(ylabeltxtright)
69
-
70
- dfhc.plot(y=['Close'])
71
- dfhc.plot(y=['High'],secondary_y=True)
72
- plt.show()
73
-
74
-
75
- import matplotlib.pyplot as plt
76
- # 解决中文显示问题:SimHei黑体 FangSong仿宋
77
- plt.rcParams['font.sans-serif'] = ['SimHei']
78
- plt.rcParams['axes.unicode_minus'] = False
79
-
80
- x=dfhc.index; y=dfhc.Close
81
-
82
- plt.plot(x, y, linewidth=1)
83
- plt.title("绘图", fontsize=14)#标题及字号
84
- plt.xlabel("X", fontsize=12)#X轴标题及字号
85
- plt.ylabel("Y", fontsize=12)#Y轴标题及字号
86
- plt.tick_params(axis='both', labelsize=8)#刻度大小
87
- plt.show()
88
-
89
-
90
- #==============================================================================
91
- from siat import *
92
- plot_norm(0,1,'pdf')
93
- plot_norm(0,1,'pdf',200)
94
-
95
- plot_norm(0,1,'cdf')
96
- plot_norm(0,1,'cdf',200)
97
-
98
- plot_norm(0,1,'ppf')
99
- plot_norm(0,1,'ppf',200)
100
-
101
- import scipy.stats as st
102
- st.norm.cdf(0)
103
- st.norm.cdf(1)
104
- st.norm.cdf(2)
105
- st.norm.cdf(2.43)
106
- st.norm.cdf(3)
107
-
108
- st.norm.ppf(0.5)
109
- st.norm.ppf(0.8)
110
- st.norm.ppf(0.9)
111
- st.norm.ppf(0.95)
112
- st.norm.ppf(0.99)
siat/holding_risk_test.py DELETED
@@ -1,13 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import os; os.chdir('S:/siat')
4
-
5
- from siat import *
6
-
7
- portfolio={'Market':("China","000001.SS"),'300782.SZ':1}
8
- portfolio_rets_curve(portfolio,'2022-1-1','2022-4-18')
9
- e,r=get_ES_portfolio(portfolio,'2022-4-18',5,0.99,model='historical')
10
-
11
- portfolio2={'Market':("China","000001.SS"),'300782.SZ':0.3,'300563.SZ':0.7}
12
- portfolio_rets_curve(portfolio2,'2022-1-1','2022-4-18')
13
- e,r=get_ES_portfolio(portfolio2,'2022-4-18',5,0.99,model='historical')
siat/local_debug_test.py DELETED
@@ -1,100 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- """
4
- 本地测试的简单方法:
5
- 1、卸载siat插件: pip uninstall siat
6
- 2、import os; os.chdir("S:/siat")
7
- 3、from siat import *
8
- """
9
-
10
- import os; os.chdir("S:/siat")
11
- from siat import *
12
- #=====================================================================
13
- df=oef_trend_china('050111','2021-7-1','2021-8-31',trend_type='排名',twinx=True)
14
-
15
-
16
-
17
- #=====================================================================
18
- compare_stock("MSFT", ["Open", "Close"], "2020-3-16", "2020-3-31")
19
- prices = compare_stock(["DAI.DE","BMW.DE"], "Close", "2020-1-1", "2020-3-31")
20
- compare_stock("7203.T", ["High", "Low"], "2020-3-1", "2020-3-31")
21
- info=candlestick("00700.HK","2020-2-1","2020-3-31", mav=2, volume=True, style='blueskies')
22
- compare_stock("IBM", ["Annual Ret%", "Daily Ret%"], "2019-1-1", "2019-12-31")
23
- compare_stock(["JD", "AMZN"], "Exp Ret%", "2019-1-1", "2020-12-31")
24
- compare_security(["FRI","^RUT"],"Exp Ret%","2010-1-1","2020-6-30")
25
-
26
- compare_security(["GCZ25.CMX","GCZ24.CMX"],"Close","2020-1-1","2020-6-30")
27
-
28
- compare_security(['^HSI','000001.SS'],"Close","1991-1-1","2021-2-28", twinx=True)
29
- compare_security(['^TWII','000001.SS'],"Close","1997-1-1","2021-2-28", twinx=True)
30
- compare_security(['^KS11','000001.SS'],"Close","1997-1-1","2021-2-28", twinx=True)
31
- compare_security(['^BSESN','000001.SS'],"Close","1997-1-1","2021-2-28", twinx=True)
32
- compare_security(['^FTSE','000001.SS'],"Close","1991-1-1","2021-2-28", twinx=True)
33
-
34
- tickers=['AMZN','EBAY','SHOP','MELI','BABA','JD','VIPS','PDD']
35
- roa=compare_snapshot(tickers,'ROA')
36
-
37
- tat=compare_history(['AMZN','JD'],'Total Asset Turnover')
38
-
39
- tickers=['600519.SS','000858.SZ','600779.SS','000596.SZ','603589.SS']
40
- df=compare_dupont(tickers,fsdate='2020-12-31',scale1 = 10,scale2 = 10)
41
-
42
- Market={'Market':('US','^GSPC')}
43
- Stocks={'AAPL':.1,'MSFT':.13,'XOM':.09,'JNJ':.09,'JPM':.09,'AMZN':.15,'GE':.08,'FB':.13,'T':.14}
44
- portfolio=dict(Market,**Stocks)
45
- pf_info=portfolio_cumret(portfolio,'2019-12-31')
46
-
47
- beta=capm_beta('600000.SS','000001.SS','2011-1-1','2020-12-31')
48
-
49
- members=['IBM','AAPL','MSFT']
50
- shares=[1, 1, 3]
51
- yearlist=gen_yearlist('2010','2020')
52
- df=capm_beta_portfolio_yearly(members, shares,'^GSPC',yearlist)
53
-
54
- yearlist=gen_yearlist('2011','2020')
55
- betas_sw=get_beta_SW('4452.T','^N225', yearlist)
56
-
57
- yearlist=gen_yearlist('2011','2019')
58
- betas_sw= get_beta_SW('HMI.F','^FCHI', yearlist)
59
- betas_sw=get_beta_SW('DIO.F','^FCHI', yearlist)
60
-
61
- ff3_betas=reg_ff3_betas('BILI','2018-1-1','2019-4-30','US')
62
-
63
- ff3_betas=reg_ff3_betas('AEM','2018-3-1','2019-8-31','US')
64
-
65
- vix=security_price("^VIX", "2021-1-1", "2021-3-31",power=10)
66
-
67
- var,ratio=stock_VaR_normal_standard('BABA',1000,'2019-8-8',1,0.99)
68
-
69
- plot_rets_curve('01166.HK','2015-1-1','2015-3-31')
70
-
71
- var, ratio=stock_VaR_normal_standard('ZM',1000,'2020-5-1',1,0.99)
72
-
73
- var, r=stock_VaR_historical_grouping('00992.HK',1000,'2020-5-1',1,0.99, pastyears=3)
74
-
75
- var, ratio=get_VaR_allmodels('01810.HK',1000,'2020-7-20',5,0.99)
76
-
77
- pf_sohu={'Market':('US','^GSPC'),'SOHU':1.0}
78
- rs15=roll_spread_portfolio(pf_sohu,'2015-1-1','2015-12-31')
79
-
80
- portfolio={'Market':('US','^GSPC'),'DPW':0.4,'RIOT':0.3,'MARA':0.2,'NCTY':0.1}
81
- sr,rp=rar_ratio_portfolio(portfolio,'2018-1-1','2020-12-31',ratio_name='sortino')
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
- #=====================================================================
91
- #=====================================================================
92
- #=====================================================================
93
- #=====================================================================
94
-
95
- df_all=oef_rank_china(info_type='单位净值',fund_type='全部类型',rank=15)
96
-
97
- df_z=oef_rank_china(info_type='单位净值',fund_type='债券型')
98
- df_g=oef_rank_china('单位净值','股票型',rank=5)
99
- df_e=etf_rank_china(info_type='单位净值',fund_type='全部类型',rank=10)
100
- #=====================================================================