shotgun-sh 0.1.14__py3-none-any.whl → 0.2.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of shotgun-sh might be problematic. Click here for more details.

Files changed (143) hide show
  1. shotgun/agents/agent_manager.py +715 -75
  2. shotgun/agents/common.py +80 -75
  3. shotgun/agents/config/constants.py +21 -10
  4. shotgun/agents/config/manager.py +322 -97
  5. shotgun/agents/config/models.py +114 -84
  6. shotgun/agents/config/provider.py +232 -88
  7. shotgun/agents/context_analyzer/__init__.py +28 -0
  8. shotgun/agents/context_analyzer/analyzer.py +471 -0
  9. shotgun/agents/context_analyzer/constants.py +9 -0
  10. shotgun/agents/context_analyzer/formatter.py +115 -0
  11. shotgun/agents/context_analyzer/models.py +212 -0
  12. shotgun/agents/conversation_history.py +125 -2
  13. shotgun/agents/conversation_manager.py +57 -19
  14. shotgun/agents/export.py +6 -7
  15. shotgun/agents/history/compaction.py +10 -5
  16. shotgun/agents/history/context_extraction.py +93 -6
  17. shotgun/agents/history/history_processors.py +129 -12
  18. shotgun/agents/history/token_counting/__init__.py +31 -0
  19. shotgun/agents/history/token_counting/anthropic.py +127 -0
  20. shotgun/agents/history/token_counting/base.py +78 -0
  21. shotgun/agents/history/token_counting/openai.py +90 -0
  22. shotgun/agents/history/token_counting/sentencepiece_counter.py +127 -0
  23. shotgun/agents/history/token_counting/tokenizer_cache.py +92 -0
  24. shotgun/agents/history/token_counting/utils.py +144 -0
  25. shotgun/agents/history/token_estimation.py +12 -12
  26. shotgun/agents/llm.py +62 -0
  27. shotgun/agents/models.py +59 -4
  28. shotgun/agents/plan.py +6 -7
  29. shotgun/agents/research.py +7 -8
  30. shotgun/agents/specify.py +6 -7
  31. shotgun/agents/tasks.py +6 -7
  32. shotgun/agents/tools/__init__.py +0 -2
  33. shotgun/agents/tools/codebase/codebase_shell.py +6 -0
  34. shotgun/agents/tools/codebase/directory_lister.py +6 -0
  35. shotgun/agents/tools/codebase/file_read.py +11 -2
  36. shotgun/agents/tools/codebase/query_graph.py +6 -0
  37. shotgun/agents/tools/codebase/retrieve_code.py +6 -0
  38. shotgun/agents/tools/file_management.py +82 -16
  39. shotgun/agents/tools/registry.py +217 -0
  40. shotgun/agents/tools/web_search/__init__.py +55 -16
  41. shotgun/agents/tools/web_search/anthropic.py +76 -51
  42. shotgun/agents/tools/web_search/gemini.py +50 -27
  43. shotgun/agents/tools/web_search/openai.py +26 -17
  44. shotgun/agents/tools/web_search/utils.py +2 -2
  45. shotgun/agents/usage_manager.py +164 -0
  46. shotgun/api_endpoints.py +15 -0
  47. shotgun/cli/clear.py +53 -0
  48. shotgun/cli/compact.py +186 -0
  49. shotgun/cli/config.py +41 -67
  50. shotgun/cli/context.py +111 -0
  51. shotgun/cli/export.py +1 -1
  52. shotgun/cli/feedback.py +50 -0
  53. shotgun/cli/models.py +3 -2
  54. shotgun/cli/plan.py +1 -1
  55. shotgun/cli/research.py +1 -1
  56. shotgun/cli/specify.py +1 -1
  57. shotgun/cli/tasks.py +1 -1
  58. shotgun/cli/update.py +16 -2
  59. shotgun/codebase/core/change_detector.py +5 -3
  60. shotgun/codebase/core/code_retrieval.py +4 -2
  61. shotgun/codebase/core/ingestor.py +57 -16
  62. shotgun/codebase/core/manager.py +20 -7
  63. shotgun/codebase/core/nl_query.py +1 -1
  64. shotgun/codebase/models.py +4 -4
  65. shotgun/exceptions.py +32 -0
  66. shotgun/llm_proxy/__init__.py +19 -0
  67. shotgun/llm_proxy/clients.py +44 -0
  68. shotgun/llm_proxy/constants.py +15 -0
  69. shotgun/logging_config.py +18 -27
  70. shotgun/main.py +91 -12
  71. shotgun/posthog_telemetry.py +81 -10
  72. shotgun/prompts/agents/export.j2 +18 -1
  73. shotgun/prompts/agents/partials/common_agent_system_prompt.j2 +5 -1
  74. shotgun/prompts/agents/partials/interactive_mode.j2 +24 -7
  75. shotgun/prompts/agents/plan.j2 +1 -1
  76. shotgun/prompts/agents/research.j2 +1 -1
  77. shotgun/prompts/agents/specify.j2 +270 -3
  78. shotgun/prompts/agents/state/system_state.j2 +4 -0
  79. shotgun/prompts/agents/tasks.j2 +1 -1
  80. shotgun/prompts/loader.py +2 -2
  81. shotgun/prompts/tools/web_search.j2 +14 -0
  82. shotgun/sentry_telemetry.py +27 -18
  83. shotgun/settings.py +238 -0
  84. shotgun/shotgun_web/__init__.py +19 -0
  85. shotgun/shotgun_web/client.py +138 -0
  86. shotgun/shotgun_web/constants.py +21 -0
  87. shotgun/shotgun_web/models.py +47 -0
  88. shotgun/telemetry.py +24 -36
  89. shotgun/tui/app.py +251 -23
  90. shotgun/tui/commands/__init__.py +1 -1
  91. shotgun/tui/components/context_indicator.py +179 -0
  92. shotgun/tui/components/mode_indicator.py +70 -0
  93. shotgun/tui/components/status_bar.py +48 -0
  94. shotgun/tui/containers.py +91 -0
  95. shotgun/tui/dependencies.py +39 -0
  96. shotgun/tui/protocols.py +45 -0
  97. shotgun/tui/screens/chat/__init__.py +5 -0
  98. shotgun/tui/screens/chat/chat.tcss +54 -0
  99. shotgun/tui/screens/chat/chat_screen.py +1234 -0
  100. shotgun/tui/screens/chat/codebase_index_prompt_screen.py +64 -0
  101. shotgun/tui/screens/chat/codebase_index_selection.py +12 -0
  102. shotgun/tui/screens/chat/help_text.py +40 -0
  103. shotgun/tui/screens/chat/prompt_history.py +48 -0
  104. shotgun/tui/screens/chat.tcss +11 -0
  105. shotgun/tui/screens/chat_screen/command_providers.py +226 -11
  106. shotgun/tui/screens/chat_screen/history/__init__.py +22 -0
  107. shotgun/tui/screens/chat_screen/history/agent_response.py +66 -0
  108. shotgun/tui/screens/chat_screen/history/chat_history.py +116 -0
  109. shotgun/tui/screens/chat_screen/history/formatters.py +115 -0
  110. shotgun/tui/screens/chat_screen/history/partial_response.py +43 -0
  111. shotgun/tui/screens/chat_screen/history/user_question.py +42 -0
  112. shotgun/tui/screens/confirmation_dialog.py +151 -0
  113. shotgun/tui/screens/feedback.py +193 -0
  114. shotgun/tui/screens/github_issue.py +102 -0
  115. shotgun/tui/screens/model_picker.py +352 -0
  116. shotgun/tui/screens/onboarding.py +431 -0
  117. shotgun/tui/screens/pipx_migration.py +153 -0
  118. shotgun/tui/screens/provider_config.py +156 -39
  119. shotgun/tui/screens/shotgun_auth.py +295 -0
  120. shotgun/tui/screens/welcome.py +198 -0
  121. shotgun/tui/services/__init__.py +5 -0
  122. shotgun/tui/services/conversation_service.py +184 -0
  123. shotgun/tui/state/__init__.py +7 -0
  124. shotgun/tui/state/processing_state.py +185 -0
  125. shotgun/tui/utils/mode_progress.py +14 -7
  126. shotgun/tui/widgets/__init__.py +5 -0
  127. shotgun/tui/widgets/widget_coordinator.py +262 -0
  128. shotgun/utils/datetime_utils.py +77 -0
  129. shotgun/utils/env_utils.py +13 -0
  130. shotgun/utils/file_system_utils.py +22 -2
  131. shotgun/utils/marketing.py +110 -0
  132. shotgun/utils/update_checker.py +69 -14
  133. shotgun_sh-0.2.11.dist-info/METADATA +130 -0
  134. shotgun_sh-0.2.11.dist-info/RECORD +194 -0
  135. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/entry_points.txt +1 -0
  136. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/licenses/LICENSE +1 -1
  137. shotgun/agents/history/token_counting.py +0 -429
  138. shotgun/agents/tools/user_interaction.py +0 -37
  139. shotgun/tui/screens/chat.py +0 -797
  140. shotgun/tui/screens/chat_screen/history.py +0 -350
  141. shotgun_sh-0.1.14.dist-info/METADATA +0 -466
  142. shotgun_sh-0.1.14.dist-info/RECORD +0 -133
  143. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/WHEEL +0 -0
@@ -1,5 +1,9 @@
1
1
  """Context extraction utilities for history processing."""
2
2
 
3
+ import json
4
+ import logging
5
+ import traceback
6
+
3
7
  from pydantic_ai.messages import (
4
8
  BuiltinToolCallPart,
5
9
  BuiltinToolReturnPart,
@@ -16,6 +20,46 @@ from pydantic_ai.messages import (
16
20
  UserPromptPart,
17
21
  )
18
22
 
23
+ logger = logging.getLogger(__name__)
24
+
25
+
26
+ def _safely_parse_tool_args(args: dict[str, object] | str | None) -> dict[str, object]:
27
+ """Safely parse tool call arguments, handling incomplete/invalid JSON.
28
+
29
+ Args:
30
+ args: Tool call arguments (dict, JSON string, or None)
31
+
32
+ Returns:
33
+ Parsed args dict, or empty dict if parsing fails
34
+ """
35
+ if args is None:
36
+ return {}
37
+
38
+ if isinstance(args, dict):
39
+ return args
40
+
41
+ if not isinstance(args, str):
42
+ return {}
43
+
44
+ try:
45
+ parsed = json.loads(args)
46
+ return parsed if isinstance(parsed, dict) else {}
47
+ except (json.JSONDecodeError, ValueError) as e:
48
+ # Only log warning if it looks like JSON (starts with { or [) - incomplete JSON
49
+ # Plain strings are valid args and shouldn't trigger warnings
50
+ stripped_args = args.strip()
51
+ if stripped_args.startswith(("{", "[")):
52
+ args_preview = args[:100] + "..." if len(args) > 100 else args
53
+ logger.warning(
54
+ "Detected incomplete/invalid JSON in tool call args during parsing",
55
+ extra={
56
+ "args_preview": args_preview,
57
+ "error": str(e),
58
+ "args_length": len(args),
59
+ },
60
+ )
61
+ return {}
62
+
19
63
 
20
64
  def extract_context_from_messages(messages: list[ModelMessage]) -> str:
21
65
  """Extract context from a list of messages for summarization."""
@@ -87,12 +131,55 @@ def extract_context_from_part(
87
131
  return f"<ASSISTANT_TEXT>\n{message_part.content}\n</ASSISTANT_TEXT>"
88
132
 
89
133
  elif isinstance(message_part, ToolCallPart):
90
- if isinstance(message_part.args, dict):
91
- args_str = ", ".join(f"{k}={repr(v)}" for k, v in message_part.args.items())
92
- tool_call_str = f"{message_part.tool_name}({args_str})"
93
- else:
94
- tool_call_str = f"{message_part.tool_name}({message_part.args})"
95
- return f"<TOOL_CALL>\n{tool_call_str}\n</TOOL_CALL>"
134
+ # Safely parse args to avoid crashes from incomplete JSON during streaming
135
+ try:
136
+ parsed_args = _safely_parse_tool_args(message_part.args)
137
+ if parsed_args:
138
+ # Successfully parsed as dict - format nicely
139
+ args_str = ", ".join(f"{k}={repr(v)}" for k, v in parsed_args.items())
140
+ tool_call_str = f"{message_part.tool_name}({args_str})"
141
+ elif isinstance(message_part.args, str) and message_part.args:
142
+ # Non-empty string that didn't parse as JSON
143
+ # Check if it looks like JSON (starts with { or [) - if so, it's incomplete
144
+ stripped_args = message_part.args.strip()
145
+ if stripped_args.startswith(("{", "[")):
146
+ # Looks like incomplete JSON - log warning and show empty parens
147
+ args_preview = (
148
+ stripped_args[:100] + "..."
149
+ if len(stripped_args) > 100
150
+ else stripped_args
151
+ )
152
+ stack_trace = "".join(traceback.format_stack())
153
+ logger.warning(
154
+ "ToolCallPart with unparseable args encountered during context extraction",
155
+ extra={
156
+ "tool_name": message_part.tool_name,
157
+ "tool_call_id": message_part.tool_call_id,
158
+ "args_preview": args_preview,
159
+ "args_type": type(message_part.args).__name__,
160
+ "stack_trace": stack_trace,
161
+ },
162
+ )
163
+ tool_call_str = f"{message_part.tool_name}()"
164
+ else:
165
+ # Plain string arg - display as-is
166
+ tool_call_str = f"{message_part.tool_name}({message_part.args})"
167
+ else:
168
+ # No args
169
+ tool_call_str = f"{message_part.tool_name}()"
170
+ return f"<TOOL_CALL>\n{tool_call_str}\n</TOOL_CALL>"
171
+ except Exception as e: # pragma: no cover - defensive catch-all
172
+ # If anything goes wrong, log full exception with stack trace
173
+ logger.error(
174
+ "Unexpected error processing ToolCallPart",
175
+ exc_info=True,
176
+ extra={
177
+ "tool_name": message_part.tool_name,
178
+ "tool_call_id": message_part.tool_call_id,
179
+ "error": str(e),
180
+ },
181
+ )
182
+ return f"<TOOL_CALL>\n{message_part.tool_name}()\n</TOOL_CALL>"
96
183
 
97
184
  elif isinstance(message_part, BuiltinToolCallPart):
98
185
  return f"<BUILTIN_TOOL_CALL>\n{message_part.tool_name}\n</BUILTIN_TOOL_CALL>"
@@ -1,7 +1,10 @@
1
1
  """History processors for managing conversation history in Shotgun agents."""
2
2
 
3
+ from collections.abc import Awaitable, Callable
3
4
  from typing import TYPE_CHECKING, Any, Protocol
4
5
 
6
+ from anthropic import APIStatusError
7
+ from pydantic_ai import ModelSettings
5
8
  from pydantic_ai.messages import (
6
9
  ModelMessage,
7
10
  ModelRequest,
@@ -10,9 +13,10 @@ from pydantic_ai.messages import (
10
13
  UserPromptPart,
11
14
  )
12
15
 
13
- from shotgun.agents.config.models import shotgun_model_request
16
+ from shotgun.agents.llm import shotgun_model_request
14
17
  from shotgun.agents.messages import AgentSystemPrompt, SystemStatusPrompt
15
18
  from shotgun.agents.models import AgentDeps
19
+ from shotgun.exceptions import ContextSizeLimitExceeded
16
20
  from shotgun.logging_config import get_logger
17
21
  from shotgun.posthog_telemetry import track_event
18
22
  from shotgun.prompts import PromptLoader
@@ -50,6 +54,86 @@ logger = get_logger(__name__)
50
54
  prompt_loader = PromptLoader()
51
55
 
52
56
 
57
+ async def _safe_token_estimation(
58
+ estimation_func: Callable[..., Awaitable[int]],
59
+ model_name: str,
60
+ max_tokens: int,
61
+ *args: Any,
62
+ **kwargs: Any,
63
+ ) -> int:
64
+ """Safely estimate tokens with proper error handling.
65
+
66
+ Wraps token estimation functions to handle failures gracefully.
67
+ Only RuntimeError (from token counters) is wrapped in ContextSizeLimitExceeded.
68
+ Other errors (network, auth) are allowed to bubble up.
69
+
70
+ Args:
71
+ estimation_func: Async function that estimates tokens
72
+ model_name: Name of the model for error messages
73
+ max_tokens: Maximum tokens for the model
74
+ *args: Arguments to pass to estimation_func
75
+ **kwargs: Keyword arguments to pass to estimation_func
76
+
77
+ Returns:
78
+ Token count from estimation_func
79
+
80
+ Raises:
81
+ ContextSizeLimitExceeded: If token counting fails with RuntimeError
82
+ Exception: Any other exceptions from estimation_func
83
+ """
84
+ try:
85
+ return await estimation_func(*args, **kwargs)
86
+ except Exception as e:
87
+ # Log the error with full context
88
+ logger.warning(
89
+ f"Token counting failed for {model_name}",
90
+ extra={
91
+ "error_type": type(e).__name__,
92
+ "error_message": str(e),
93
+ "model": model_name,
94
+ },
95
+ )
96
+
97
+ # Token counting behavior with oversized context (verified via testing):
98
+ #
99
+ # 1. OpenAI/tiktoken:
100
+ # - Successfully counts any size (tested with 752K tokens, no error)
101
+ # - Library errors: ValueError, KeyError, AttributeError, SSLError (file/cache issues)
102
+ # - Wrapped as: RuntimeError by our counter
103
+ #
104
+ # 2. Gemini/SentencePiece:
105
+ # - Successfully counts any size (tested with 752K tokens, no error)
106
+ # - Library errors: RuntimeError, IOError, TypeError (file/model loading issues)
107
+ # - Wrapped as: RuntimeError by our counter
108
+ #
109
+ # 3. Anthropic API:
110
+ # - Successfully counts large token counts (tested with 752K tokens, no error)
111
+ # - Only enforces 32 MB request size limit (not token count)
112
+ # - Raises: APIStatusError(413) with error type 'request_too_large' for 32MB+ requests
113
+ # - Other API errors: APIConnectionError, RateLimitError, APIStatusError (4xx/5xx)
114
+ # - Wrapped as: RuntimeError by our counter
115
+ #
116
+ # IMPORTANT: No provider raises errors for "too many tokens" during counting.
117
+ # Token count validation happens separately by comparing count to max_input_tokens.
118
+ #
119
+ # We wrap RuntimeError (library-level failures from tiktoken/sentencepiece).
120
+ # We also wrap Anthropic's 413 error (request exceeds 32 MB) as it indicates
121
+ # context is effectively too large and needs user action to reduce it.
122
+ if isinstance(e, RuntimeError):
123
+ raise ContextSizeLimitExceeded(
124
+ model_name=model_name, max_tokens=max_tokens
125
+ ) from e
126
+
127
+ # Check for Anthropic's 32 MB request size limit (APIStatusError with status 413)
128
+ if isinstance(e, APIStatusError) and e.status_code == 413:
129
+ raise ContextSizeLimitExceeded(
130
+ model_name=model_name, max_tokens=max_tokens
131
+ ) from e
132
+
133
+ # Re-raise other exceptions (network errors, auth failures, etc.)
134
+ raise
135
+
136
+
53
137
  def is_summary_part(part: Any) -> bool:
54
138
  """Check if a message part is a compacted summary."""
55
139
  return isinstance(part, TextPart) and part.content.startswith(SUMMARY_MARKER)
@@ -126,6 +210,7 @@ calculate_max_summarization_tokens = _calculate_max_summarization_tokens
126
210
  async def token_limit_compactor(
127
211
  ctx: ContextProtocol,
128
212
  messages: list[ModelMessage],
213
+ force: bool = False,
129
214
  ) -> list[ModelMessage]:
130
215
  """Compact message history based on token limits with incremental processing.
131
216
 
@@ -138,6 +223,7 @@ async def token_limit_compactor(
138
223
  Args:
139
224
  ctx: Run context with usage information and dependencies
140
225
  messages: Current conversation history
226
+ force: If True, force compaction even if below token threshold
141
227
 
142
228
  Returns:
143
229
  Compacted list of messages within token limits
@@ -154,9 +240,15 @@ async def token_limit_compactor(
154
240
 
155
241
  if last_summary_index is not None:
156
242
  # Check if post-summary conversation exceeds threshold for incremental compaction
157
- post_summary_tokens = estimate_post_summary_tokens(
158
- messages, last_summary_index, deps.llm_model
243
+ post_summary_tokens = await _safe_token_estimation(
244
+ estimate_post_summary_tokens,
245
+ deps.llm_model.name,
246
+ model_max_tokens,
247
+ messages,
248
+ last_summary_index,
249
+ deps.llm_model,
159
250
  )
251
+
160
252
  post_summary_percentage = (
161
253
  (post_summary_tokens / max_tokens) * 100 if max_tokens > 0 else 0
162
254
  )
@@ -168,7 +260,7 @@ async def token_limit_compactor(
168
260
  )
169
261
 
170
262
  # Only do incremental compaction if post-summary conversation exceeds threshold
171
- if post_summary_tokens < max_tokens:
263
+ if post_summary_tokens < max_tokens and not force:
172
264
  logger.debug(
173
265
  f"Post-summary conversation under threshold ({post_summary_tokens} < {max_tokens}), "
174
266
  f"keeping all {len(messages)} messages"
@@ -248,7 +340,7 @@ async def token_limit_compactor(
248
340
  ]
249
341
 
250
342
  # Calculate optimal max_tokens for summarization
251
- max_tokens = calculate_max_summarization_tokens(
343
+ max_tokens = await calculate_max_summarization_tokens(
252
344
  deps.llm_model, request_messages
253
345
  )
254
346
 
@@ -261,7 +353,9 @@ async def token_limit_compactor(
261
353
  summary_response = await shotgun_model_request(
262
354
  model_config=deps.llm_model,
263
355
  messages=request_messages,
264
- max_tokens=max_tokens, # Use calculated optimal tokens for summarization
356
+ model_settings=ModelSettings(
357
+ max_tokens=max_tokens # Use calculated optimal tokens for summarization
358
+ ),
265
359
  )
266
360
 
267
361
  log_summarization_response(summary_response, "INCREMENTAL")
@@ -328,13 +422,16 @@ async def token_limit_compactor(
328
422
 
329
423
  # Track compaction completion
330
424
  messages_after = len(compacted_messages)
331
- tokens_after = estimate_tokens_from_messages(compacted_messages, deps.llm_model)
425
+ tokens_after = await estimate_tokens_from_messages(
426
+ compacted_messages, deps.llm_model
427
+ )
332
428
  reduction_percentage = (
333
429
  ((messages_before - messages_after) / messages_before * 100)
334
430
  if messages_before > 0
335
431
  else 0
336
432
  )
337
433
 
434
+ # Track incremental compaction with simple metrics (fast, no token counting)
338
435
  track_event(
339
436
  "context_compaction_triggered",
340
437
  {
@@ -347,6 +444,10 @@ async def token_limit_compactor(
347
444
  "agent_mode": deps.agent_mode.value
348
445
  if hasattr(deps, "agent_mode") and deps.agent_mode
349
446
  else "unknown",
447
+ # Model and provider info (no computation needed)
448
+ "model_name": deps.llm_model.name.value,
449
+ "provider": deps.llm_model.provider.value,
450
+ "key_provider": deps.llm_model.key_provider.value,
350
451
  },
351
452
  )
352
453
 
@@ -354,7 +455,14 @@ async def token_limit_compactor(
354
455
 
355
456
  else:
356
457
  # Check if total conversation exceeds threshold for full compaction
357
- total_tokens = estimate_tokens_from_messages(messages, deps.llm_model)
458
+ total_tokens = await _safe_token_estimation(
459
+ estimate_tokens_from_messages,
460
+ deps.llm_model.name,
461
+ model_max_tokens,
462
+ messages,
463
+ deps.llm_model,
464
+ )
465
+
358
466
  total_percentage = (total_tokens / max_tokens) * 100 if max_tokens > 0 else 0
359
467
 
360
468
  logger.debug(
@@ -363,7 +471,7 @@ async def token_limit_compactor(
363
471
  )
364
472
 
365
473
  # Only do full compaction if total conversation exceeds threshold
366
- if total_tokens < max_tokens:
474
+ if total_tokens < max_tokens and not force:
367
475
  logger.debug(
368
476
  f"Total conversation under threshold ({total_tokens} < {max_tokens}), "
369
477
  f"keeping all {len(messages)} messages"
@@ -392,7 +500,9 @@ async def _full_compaction(
392
500
  ]
393
501
 
394
502
  # Calculate optimal max_tokens for summarization
395
- max_tokens = calculate_max_summarization_tokens(deps.llm_model, request_messages)
503
+ max_tokens = await calculate_max_summarization_tokens(
504
+ deps.llm_model, request_messages
505
+ )
396
506
 
397
507
  # Debug logging using shared utilities
398
508
  log_summarization_request(
@@ -403,11 +513,13 @@ async def _full_compaction(
403
513
  summary_response = await shotgun_model_request(
404
514
  model_config=deps.llm_model,
405
515
  messages=request_messages,
406
- max_tokens=max_tokens, # Use calculated optimal tokens for summarization
516
+ model_settings=ModelSettings(
517
+ max_tokens=max_tokens # Use calculated optimal tokens for summarization
518
+ ),
407
519
  )
408
520
 
409
521
  # Calculate token reduction
410
- current_tokens = estimate_tokens_from_messages(messages, deps.llm_model)
522
+ current_tokens = await estimate_tokens_from_messages(messages, deps.llm_model)
411
523
  summary_usage = summary_response.usage
412
524
  reduction_percentage = (
413
525
  ((current_tokens - summary_usage.output_tokens) / current_tokens) * 100
@@ -459,6 +571,7 @@ async def _full_compaction(
459
571
  tokens_before = current_tokens # Already calculated above
460
572
  tokens_after = summary_usage.output_tokens if summary_usage else 0
461
573
 
574
+ # Track full compaction with simple metrics (fast, no token counting)
462
575
  track_event(
463
576
  "context_compaction_triggered",
464
577
  {
@@ -471,6 +584,10 @@ async def _full_compaction(
471
584
  "agent_mode": deps.agent_mode.value
472
585
  if hasattr(deps, "agent_mode") and deps.agent_mode
473
586
  else "unknown",
587
+ # Model and provider info (no computation needed)
588
+ "model_name": deps.llm_model.name.value,
589
+ "provider": deps.llm_model.provider.value,
590
+ "key_provider": deps.llm_model.key_provider.value,
474
591
  },
475
592
  )
476
593
 
@@ -0,0 +1,31 @@
1
+ """Real token counting for all supported providers.
2
+
3
+ This module provides accurate token counting using each provider's official
4
+ APIs and libraries, eliminating the need for rough character-based estimation.
5
+ """
6
+
7
+ from .anthropic import AnthropicTokenCounter
8
+ from .base import TokenCounter, extract_text_from_messages
9
+ from .openai import OpenAITokenCounter
10
+ from .sentencepiece_counter import SentencePieceTokenCounter
11
+ from .utils import (
12
+ count_post_summary_tokens,
13
+ count_tokens_from_message_parts,
14
+ count_tokens_from_messages,
15
+ get_token_counter,
16
+ )
17
+
18
+ __all__ = [
19
+ # Base classes
20
+ "TokenCounter",
21
+ # Counter implementations
22
+ "OpenAITokenCounter",
23
+ "AnthropicTokenCounter",
24
+ "SentencePieceTokenCounter",
25
+ # Utility functions
26
+ "get_token_counter",
27
+ "count_tokens_from_messages",
28
+ "count_post_summary_tokens",
29
+ "count_tokens_from_message_parts",
30
+ "extract_text_from_messages",
31
+ ]
@@ -0,0 +1,127 @@
1
+ """Anthropic token counting using official client."""
2
+
3
+ import logfire
4
+ from pydantic_ai.messages import ModelMessage
5
+
6
+ from shotgun.agents.config.models import KeyProvider
7
+ from shotgun.llm_proxy import create_anthropic_proxy_provider
8
+ from shotgun.logging_config import get_logger
9
+
10
+ from .base import TokenCounter, extract_text_from_messages
11
+
12
+ logger = get_logger(__name__)
13
+
14
+
15
+ class AnthropicTokenCounter(TokenCounter):
16
+ """Token counter for Anthropic models using official client."""
17
+
18
+ def __init__(
19
+ self,
20
+ model_name: str,
21
+ api_key: str,
22
+ key_provider: KeyProvider = KeyProvider.BYOK,
23
+ ):
24
+ """Initialize Anthropic token counter.
25
+
26
+ Args:
27
+ model_name: Anthropic model name for token counting
28
+ api_key: API key (Anthropic for BYOK, Shotgun for proxy)
29
+ key_provider: Key provider type (BYOK or SHOTGUN)
30
+
31
+ Raises:
32
+ RuntimeError: If client initialization fails
33
+ """
34
+ self.model_name = model_name
35
+ import anthropic
36
+
37
+ try:
38
+ if key_provider == KeyProvider.SHOTGUN:
39
+ # Use LiteLLM proxy for Shotgun Account
40
+ # Get async client from AnthropicProvider
41
+ provider = create_anthropic_proxy_provider(api_key)
42
+ self.client = provider.client
43
+ logger.debug(
44
+ f"Initialized async Anthropic token counter for {model_name} via LiteLLM proxy"
45
+ )
46
+ else:
47
+ # Direct Anthropic API for BYOK - use async client
48
+ self.client = anthropic.AsyncAnthropic(api_key=api_key)
49
+ logger.debug(
50
+ f"Initialized async Anthropic token counter for {model_name} via direct API"
51
+ )
52
+ except Exception as e:
53
+ logfire.exception(
54
+ f"Failed to initialize Anthropic token counter for {model_name}",
55
+ model_name=model_name,
56
+ key_provider=key_provider.value,
57
+ exception_type=type(e).__name__,
58
+ )
59
+ raise RuntimeError(
60
+ f"Failed to initialize Anthropic async client for {model_name}: {type(e).__name__}: {str(e)}"
61
+ ) from e
62
+
63
+ async def count_tokens(self, text: str) -> int:
64
+ """Count tokens using Anthropic's official API (async).
65
+
66
+ Args:
67
+ text: Text to count tokens for
68
+
69
+ Returns:
70
+ Exact token count from Anthropic API
71
+
72
+ Raises:
73
+ RuntimeError: If API call fails
74
+ """
75
+ # Handle empty text to avoid unnecessary API calls
76
+ # Anthropic API requires non-empty content, so we need a strict check
77
+ if not text or not text.strip():
78
+ return 0
79
+
80
+ # Additional validation: ensure the text has actual content
81
+ # Some edge cases might have only whitespace or control characters
82
+ cleaned_text = text.strip()
83
+ if not cleaned_text:
84
+ return 0
85
+
86
+ try:
87
+ # Anthropic API expects messages format and model parameter
88
+ # Use await with async client
89
+ result = await self.client.messages.count_tokens(
90
+ messages=[{"role": "user", "content": cleaned_text}],
91
+ model=self.model_name,
92
+ )
93
+ return result.input_tokens
94
+ except Exception as e:
95
+ # Create a preview of the text for logging (truncated to avoid huge logs)
96
+ text_preview = text[:100] + "..." if len(text) > 100 else text
97
+
98
+ logfire.exception(
99
+ f"Anthropic token counting failed for {self.model_name}",
100
+ model_name=self.model_name,
101
+ text_length=len(text),
102
+ text_preview=text_preview,
103
+ exception_type=type(e).__name__,
104
+ exception_message=str(e),
105
+ )
106
+ raise RuntimeError(
107
+ f"Anthropic token counting API failed for {self.model_name}: {type(e).__name__}: {str(e)}"
108
+ ) from e
109
+
110
+ async def count_message_tokens(self, messages: list[ModelMessage]) -> int:
111
+ """Count tokens across all messages using Anthropic API (async).
112
+
113
+ Args:
114
+ messages: List of PydanticAI messages
115
+
116
+ Returns:
117
+ Total token count for all messages
118
+
119
+ Raises:
120
+ RuntimeError: If token counting fails
121
+ """
122
+ # Handle empty message list early
123
+ if not messages:
124
+ return 0
125
+
126
+ total_text = extract_text_from_messages(messages)
127
+ return await self.count_tokens(total_text)
@@ -0,0 +1,78 @@
1
+ """Base classes and shared utilities for token counting."""
2
+
3
+ from abc import ABC, abstractmethod
4
+
5
+ from pydantic_ai.messages import ModelMessage
6
+
7
+
8
+ class TokenCounter(ABC):
9
+ """Abstract base class for provider-specific token counting.
10
+
11
+ All methods are async to support non-blocking operations like
12
+ downloading tokenizer models or making API calls.
13
+ """
14
+
15
+ @abstractmethod
16
+ async def count_tokens(self, text: str) -> int:
17
+ """Count tokens in text using provider-specific method (async).
18
+
19
+ Args:
20
+ text: Text to count tokens for
21
+
22
+ Returns:
23
+ Exact token count as determined by the provider
24
+
25
+ Raises:
26
+ RuntimeError: If token counting fails
27
+ """
28
+
29
+ @abstractmethod
30
+ async def count_message_tokens(self, messages: list[ModelMessage]) -> int:
31
+ """Count tokens in PydanticAI message structures (async).
32
+
33
+ Args:
34
+ messages: List of messages to count tokens for
35
+
36
+ Returns:
37
+ Total token count across all messages
38
+
39
+ Raises:
40
+ RuntimeError: If token counting fails
41
+ """
42
+
43
+
44
+ def extract_text_from_messages(messages: list[ModelMessage]) -> str:
45
+ """Extract all text content from messages for token counting.
46
+
47
+ Args:
48
+ messages: List of PydanticAI messages
49
+
50
+ Returns:
51
+ Combined text content from all messages
52
+ """
53
+ text_parts = []
54
+
55
+ for message in messages:
56
+ if hasattr(message, "parts"):
57
+ for part in message.parts:
58
+ if hasattr(part, "content") and isinstance(part.content, str):
59
+ # Only add non-empty content
60
+ if part.content.strip():
61
+ text_parts.append(part.content)
62
+ else:
63
+ # Handle non-text parts (tool calls, etc.)
64
+ part_str = str(part)
65
+ if part_str.strip():
66
+ text_parts.append(part_str)
67
+ else:
68
+ # Handle messages without parts
69
+ msg_str = str(message)
70
+ if msg_str.strip():
71
+ text_parts.append(msg_str)
72
+
73
+ # If no valid text parts found, return a minimal placeholder
74
+ # This ensures we never send completely empty content to APIs
75
+ if not text_parts:
76
+ return "."
77
+
78
+ return "\n".join(text_parts)