shotgun-sh 0.1.14__py3-none-any.whl → 0.2.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of shotgun-sh might be problematic. Click here for more details.

Files changed (143) hide show
  1. shotgun/agents/agent_manager.py +715 -75
  2. shotgun/agents/common.py +80 -75
  3. shotgun/agents/config/constants.py +21 -10
  4. shotgun/agents/config/manager.py +322 -97
  5. shotgun/agents/config/models.py +114 -84
  6. shotgun/agents/config/provider.py +232 -88
  7. shotgun/agents/context_analyzer/__init__.py +28 -0
  8. shotgun/agents/context_analyzer/analyzer.py +471 -0
  9. shotgun/agents/context_analyzer/constants.py +9 -0
  10. shotgun/agents/context_analyzer/formatter.py +115 -0
  11. shotgun/agents/context_analyzer/models.py +212 -0
  12. shotgun/agents/conversation_history.py +125 -2
  13. shotgun/agents/conversation_manager.py +57 -19
  14. shotgun/agents/export.py +6 -7
  15. shotgun/agents/history/compaction.py +10 -5
  16. shotgun/agents/history/context_extraction.py +93 -6
  17. shotgun/agents/history/history_processors.py +129 -12
  18. shotgun/agents/history/token_counting/__init__.py +31 -0
  19. shotgun/agents/history/token_counting/anthropic.py +127 -0
  20. shotgun/agents/history/token_counting/base.py +78 -0
  21. shotgun/agents/history/token_counting/openai.py +90 -0
  22. shotgun/agents/history/token_counting/sentencepiece_counter.py +127 -0
  23. shotgun/agents/history/token_counting/tokenizer_cache.py +92 -0
  24. shotgun/agents/history/token_counting/utils.py +144 -0
  25. shotgun/agents/history/token_estimation.py +12 -12
  26. shotgun/agents/llm.py +62 -0
  27. shotgun/agents/models.py +59 -4
  28. shotgun/agents/plan.py +6 -7
  29. shotgun/agents/research.py +7 -8
  30. shotgun/agents/specify.py +6 -7
  31. shotgun/agents/tasks.py +6 -7
  32. shotgun/agents/tools/__init__.py +0 -2
  33. shotgun/agents/tools/codebase/codebase_shell.py +6 -0
  34. shotgun/agents/tools/codebase/directory_lister.py +6 -0
  35. shotgun/agents/tools/codebase/file_read.py +11 -2
  36. shotgun/agents/tools/codebase/query_graph.py +6 -0
  37. shotgun/agents/tools/codebase/retrieve_code.py +6 -0
  38. shotgun/agents/tools/file_management.py +82 -16
  39. shotgun/agents/tools/registry.py +217 -0
  40. shotgun/agents/tools/web_search/__init__.py +55 -16
  41. shotgun/agents/tools/web_search/anthropic.py +76 -51
  42. shotgun/agents/tools/web_search/gemini.py +50 -27
  43. shotgun/agents/tools/web_search/openai.py +26 -17
  44. shotgun/agents/tools/web_search/utils.py +2 -2
  45. shotgun/agents/usage_manager.py +164 -0
  46. shotgun/api_endpoints.py +15 -0
  47. shotgun/cli/clear.py +53 -0
  48. shotgun/cli/compact.py +186 -0
  49. shotgun/cli/config.py +41 -67
  50. shotgun/cli/context.py +111 -0
  51. shotgun/cli/export.py +1 -1
  52. shotgun/cli/feedback.py +50 -0
  53. shotgun/cli/models.py +3 -2
  54. shotgun/cli/plan.py +1 -1
  55. shotgun/cli/research.py +1 -1
  56. shotgun/cli/specify.py +1 -1
  57. shotgun/cli/tasks.py +1 -1
  58. shotgun/cli/update.py +16 -2
  59. shotgun/codebase/core/change_detector.py +5 -3
  60. shotgun/codebase/core/code_retrieval.py +4 -2
  61. shotgun/codebase/core/ingestor.py +57 -16
  62. shotgun/codebase/core/manager.py +20 -7
  63. shotgun/codebase/core/nl_query.py +1 -1
  64. shotgun/codebase/models.py +4 -4
  65. shotgun/exceptions.py +32 -0
  66. shotgun/llm_proxy/__init__.py +19 -0
  67. shotgun/llm_proxy/clients.py +44 -0
  68. shotgun/llm_proxy/constants.py +15 -0
  69. shotgun/logging_config.py +18 -27
  70. shotgun/main.py +91 -12
  71. shotgun/posthog_telemetry.py +81 -10
  72. shotgun/prompts/agents/export.j2 +18 -1
  73. shotgun/prompts/agents/partials/common_agent_system_prompt.j2 +5 -1
  74. shotgun/prompts/agents/partials/interactive_mode.j2 +24 -7
  75. shotgun/prompts/agents/plan.j2 +1 -1
  76. shotgun/prompts/agents/research.j2 +1 -1
  77. shotgun/prompts/agents/specify.j2 +270 -3
  78. shotgun/prompts/agents/state/system_state.j2 +4 -0
  79. shotgun/prompts/agents/tasks.j2 +1 -1
  80. shotgun/prompts/loader.py +2 -2
  81. shotgun/prompts/tools/web_search.j2 +14 -0
  82. shotgun/sentry_telemetry.py +27 -18
  83. shotgun/settings.py +238 -0
  84. shotgun/shotgun_web/__init__.py +19 -0
  85. shotgun/shotgun_web/client.py +138 -0
  86. shotgun/shotgun_web/constants.py +21 -0
  87. shotgun/shotgun_web/models.py +47 -0
  88. shotgun/telemetry.py +24 -36
  89. shotgun/tui/app.py +251 -23
  90. shotgun/tui/commands/__init__.py +1 -1
  91. shotgun/tui/components/context_indicator.py +179 -0
  92. shotgun/tui/components/mode_indicator.py +70 -0
  93. shotgun/tui/components/status_bar.py +48 -0
  94. shotgun/tui/containers.py +91 -0
  95. shotgun/tui/dependencies.py +39 -0
  96. shotgun/tui/protocols.py +45 -0
  97. shotgun/tui/screens/chat/__init__.py +5 -0
  98. shotgun/tui/screens/chat/chat.tcss +54 -0
  99. shotgun/tui/screens/chat/chat_screen.py +1234 -0
  100. shotgun/tui/screens/chat/codebase_index_prompt_screen.py +64 -0
  101. shotgun/tui/screens/chat/codebase_index_selection.py +12 -0
  102. shotgun/tui/screens/chat/help_text.py +40 -0
  103. shotgun/tui/screens/chat/prompt_history.py +48 -0
  104. shotgun/tui/screens/chat.tcss +11 -0
  105. shotgun/tui/screens/chat_screen/command_providers.py +226 -11
  106. shotgun/tui/screens/chat_screen/history/__init__.py +22 -0
  107. shotgun/tui/screens/chat_screen/history/agent_response.py +66 -0
  108. shotgun/tui/screens/chat_screen/history/chat_history.py +116 -0
  109. shotgun/tui/screens/chat_screen/history/formatters.py +115 -0
  110. shotgun/tui/screens/chat_screen/history/partial_response.py +43 -0
  111. shotgun/tui/screens/chat_screen/history/user_question.py +42 -0
  112. shotgun/tui/screens/confirmation_dialog.py +151 -0
  113. shotgun/tui/screens/feedback.py +193 -0
  114. shotgun/tui/screens/github_issue.py +102 -0
  115. shotgun/tui/screens/model_picker.py +352 -0
  116. shotgun/tui/screens/onboarding.py +431 -0
  117. shotgun/tui/screens/pipx_migration.py +153 -0
  118. shotgun/tui/screens/provider_config.py +156 -39
  119. shotgun/tui/screens/shotgun_auth.py +295 -0
  120. shotgun/tui/screens/welcome.py +198 -0
  121. shotgun/tui/services/__init__.py +5 -0
  122. shotgun/tui/services/conversation_service.py +184 -0
  123. shotgun/tui/state/__init__.py +7 -0
  124. shotgun/tui/state/processing_state.py +185 -0
  125. shotgun/tui/utils/mode_progress.py +14 -7
  126. shotgun/tui/widgets/__init__.py +5 -0
  127. shotgun/tui/widgets/widget_coordinator.py +262 -0
  128. shotgun/utils/datetime_utils.py +77 -0
  129. shotgun/utils/env_utils.py +13 -0
  130. shotgun/utils/file_system_utils.py +22 -2
  131. shotgun/utils/marketing.py +110 -0
  132. shotgun/utils/update_checker.py +69 -14
  133. shotgun_sh-0.2.11.dist-info/METADATA +130 -0
  134. shotgun_sh-0.2.11.dist-info/RECORD +194 -0
  135. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/entry_points.txt +1 -0
  136. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/licenses/LICENSE +1 -1
  137. shotgun/agents/history/token_counting.py +0 -429
  138. shotgun/agents/tools/user_interaction.py +0 -37
  139. shotgun/tui/screens/chat.py +0 -797
  140. shotgun/tui/screens/chat_screen/history.py +0 -350
  141. shotgun_sh-0.1.14.dist-info/METADATA +0 -466
  142. shotgun_sh-0.1.14.dist-info/RECORD +0 -133
  143. {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/WHEEL +0 -0
@@ -1,429 +0,0 @@
1
- """Real token counting for all supported providers.
2
-
3
- This module provides accurate token counting using each provider's official
4
- APIs and libraries, eliminating the need for rough character-based estimation.
5
- """
6
-
7
- from abc import ABC, abstractmethod
8
- from typing import TYPE_CHECKING
9
-
10
- from pydantic_ai.messages import ModelMessage
11
-
12
- from shotgun.agents.config.models import ModelConfig, ProviderType
13
- from shotgun.logging_config import get_logger
14
-
15
- if TYPE_CHECKING:
16
- pass
17
-
18
- logger = get_logger(__name__)
19
-
20
- # Global cache for token counter instances (singleton pattern)
21
- _token_counter_cache: dict[tuple[str, str, str], "TokenCounter"] = {}
22
-
23
-
24
- class TokenCounter(ABC):
25
- """Abstract base class for provider-specific token counting."""
26
-
27
- @abstractmethod
28
- def count_tokens(self, text: str) -> int:
29
- """Count tokens in text using provider-specific method.
30
-
31
- Args:
32
- text: Text to count tokens for
33
-
34
- Returns:
35
- Exact token count as determined by the provider
36
-
37
- Raises:
38
- RuntimeError: If token counting fails
39
- """
40
-
41
- @abstractmethod
42
- def count_message_tokens(self, messages: list[ModelMessage]) -> int:
43
- """Count tokens in PydanticAI message structures.
44
-
45
- Args:
46
- messages: List of messages to count tokens for
47
-
48
- Returns:
49
- Total token count across all messages
50
-
51
- Raises:
52
- RuntimeError: If token counting fails
53
- """
54
-
55
-
56
- class OpenAITokenCounter(TokenCounter):
57
- """Token counter for OpenAI models using tiktoken."""
58
-
59
- # Official encoding mappings for OpenAI models
60
- ENCODING_MAP = {
61
- "gpt-5": "o200k_base",
62
- "gpt-4o": "o200k_base",
63
- "gpt-4": "cl100k_base",
64
- "gpt-3.5-turbo": "cl100k_base",
65
- }
66
-
67
- def __init__(self, model_name: str):
68
- """Initialize OpenAI token counter.
69
-
70
- Args:
71
- model_name: OpenAI model name to get correct encoding for
72
-
73
- Raises:
74
- RuntimeError: If encoding initialization fails
75
- """
76
- self.model_name = model_name
77
-
78
- import tiktoken
79
-
80
- try:
81
- # Get the appropriate encoding for this model
82
- encoding_name = self.ENCODING_MAP.get(model_name, "o200k_base")
83
- self.encoding = tiktoken.get_encoding(encoding_name)
84
- logger.debug(
85
- f"Initialized OpenAI token counter with {encoding_name} encoding"
86
- )
87
- except Exception as e:
88
- raise RuntimeError(
89
- f"Failed to initialize tiktoken encoding for {model_name}"
90
- ) from e
91
-
92
- def count_tokens(self, text: str) -> int:
93
- """Count tokens using tiktoken.
94
-
95
- Args:
96
- text: Text to count tokens for
97
-
98
- Returns:
99
- Exact token count using tiktoken
100
-
101
- Raises:
102
- RuntimeError: If token counting fails
103
- """
104
- try:
105
- return len(self.encoding.encode(text))
106
- except Exception as e:
107
- raise RuntimeError(
108
- f"Failed to count tokens for OpenAI model {self.model_name}"
109
- ) from e
110
-
111
- def count_message_tokens(self, messages: list[ModelMessage]) -> int:
112
- """Count tokens across all messages using tiktoken.
113
-
114
- Args:
115
- messages: List of PydanticAI messages
116
-
117
- Returns:
118
- Total token count for all messages
119
-
120
- Raises:
121
- RuntimeError: If token counting fails
122
- """
123
- total_text = self._extract_text_from_messages(messages)
124
- return self.count_tokens(total_text)
125
-
126
- def _extract_text_from_messages(self, messages: list[ModelMessage]) -> str:
127
- """Extract all text content from messages for token counting."""
128
- text_parts = []
129
-
130
- for message in messages:
131
- if hasattr(message, "parts"):
132
- for part in message.parts:
133
- if hasattr(part, "content") and isinstance(part.content, str):
134
- text_parts.append(part.content)
135
- else:
136
- # Handle non-text parts (tool calls, etc.)
137
- text_parts.append(str(part))
138
- else:
139
- # Handle messages without parts
140
- text_parts.append(str(message))
141
-
142
- return "\n".join(text_parts)
143
-
144
-
145
- class AnthropicTokenCounter(TokenCounter):
146
- """Token counter for Anthropic models using official client."""
147
-
148
- def __init__(self, model_name: str, api_key: str):
149
- """Initialize Anthropic token counter.
150
-
151
- Args:
152
- model_name: Anthropic model name for token counting
153
- api_key: Anthropic API key
154
-
155
- Raises:
156
- RuntimeError: If client initialization fails
157
- """
158
- self.model_name = model_name
159
- import anthropic
160
-
161
- try:
162
- self.client = anthropic.Anthropic(api_key=api_key)
163
- logger.debug(f"Initialized Anthropic token counter for {model_name}")
164
- except Exception as e:
165
- raise RuntimeError("Failed to initialize Anthropic client") from e
166
-
167
- def count_tokens(self, text: str) -> int:
168
- """Count tokens using Anthropic's official API.
169
-
170
- Args:
171
- text: Text to count tokens for
172
-
173
- Returns:
174
- Exact token count from Anthropic API
175
-
176
- Raises:
177
- RuntimeError: If API call fails
178
- """
179
- try:
180
- # Anthropic API expects messages format and model parameter
181
- result = self.client.messages.count_tokens(
182
- messages=[{"role": "user", "content": text}], model=self.model_name
183
- )
184
- return result.input_tokens
185
- except Exception as e:
186
- raise RuntimeError(
187
- f"Anthropic token counting API failed for {self.model_name}"
188
- ) from e
189
-
190
- def count_message_tokens(self, messages: list[ModelMessage]) -> int:
191
- """Count tokens across all messages using Anthropic API.
192
-
193
- Args:
194
- messages: List of PydanticAI messages
195
-
196
- Returns:
197
- Total token count for all messages
198
-
199
- Raises:
200
- RuntimeError: If token counting fails
201
- """
202
- total_text = self._extract_text_from_messages(messages)
203
- return self.count_tokens(total_text)
204
-
205
- def _extract_text_from_messages(self, messages: list[ModelMessage]) -> str:
206
- """Extract all text content from messages for token counting."""
207
- text_parts = []
208
-
209
- for message in messages:
210
- if hasattr(message, "parts"):
211
- for part in message.parts:
212
- if hasattr(part, "content") and isinstance(part.content, str):
213
- text_parts.append(part.content)
214
- else:
215
- # Handle non-text parts (tool calls, etc.)
216
- text_parts.append(str(part))
217
- else:
218
- # Handle messages without parts
219
- text_parts.append(str(message))
220
-
221
- return "\n".join(text_parts)
222
-
223
-
224
- class GoogleTokenCounter(TokenCounter):
225
- """Token counter for Google models using genai API."""
226
-
227
- def __init__(self, model_name: str, api_key: str):
228
- """Initialize Google token counter.
229
-
230
- Args:
231
- model_name: Google model name
232
- api_key: Google API key
233
-
234
- Raises:
235
- RuntimeError: If configuration fails
236
- """
237
- self.model_name = model_name
238
-
239
- import google.generativeai as genai
240
-
241
- try:
242
- genai.configure(api_key=api_key) # type: ignore[attr-defined]
243
- self.model = genai.GenerativeModel(model_name) # type: ignore[attr-defined]
244
- logger.debug(f"Initialized Google token counter for {model_name}")
245
- except Exception as e:
246
- raise RuntimeError(
247
- f"Failed to configure Google genai client for {model_name}"
248
- ) from e
249
-
250
- def count_tokens(self, text: str) -> int:
251
- """Count tokens using Google's genai API.
252
-
253
- Args:
254
- text: Text to count tokens for
255
-
256
- Returns:
257
- Exact token count from Google API
258
-
259
- Raises:
260
- RuntimeError: If API call fails
261
- """
262
- try:
263
- result = self.model.count_tokens(text)
264
- return result.total_tokens
265
- except Exception as e:
266
- raise RuntimeError(
267
- f"Google token counting API failed for {self.model_name}"
268
- ) from e
269
-
270
- def count_message_tokens(self, messages: list[ModelMessage]) -> int:
271
- """Count tokens across all messages using Google API.
272
-
273
- Args:
274
- messages: List of PydanticAI messages
275
-
276
- Returns:
277
- Total token count for all messages
278
-
279
- Raises:
280
- RuntimeError: If token counting fails
281
- """
282
- total_text = self._extract_text_from_messages(messages)
283
- return self.count_tokens(total_text)
284
-
285
- def _extract_text_from_messages(self, messages: list[ModelMessage]) -> str:
286
- """Extract all text content from messages for token counting."""
287
- text_parts = []
288
-
289
- for message in messages:
290
- if hasattr(message, "parts"):
291
- for part in message.parts:
292
- if hasattr(part, "content") and isinstance(part.content, str):
293
- text_parts.append(part.content)
294
- else:
295
- # Handle non-text parts (tool calls, etc.)
296
- text_parts.append(str(part))
297
- else:
298
- # Handle messages without parts
299
- text_parts.append(str(message))
300
-
301
- return "\n".join(text_parts)
302
-
303
-
304
- def get_token_counter(model_config: ModelConfig) -> TokenCounter:
305
- """Get appropriate token counter for the model provider (cached singleton).
306
-
307
- This function ensures that every provider has a proper token counting
308
- implementation without any fallbacks to estimation. Token counters are
309
- cached to avoid repeated initialization overhead.
310
-
311
- Args:
312
- model_config: Model configuration with provider and credentials
313
-
314
- Returns:
315
- Cached provider-specific token counter
316
-
317
- Raises:
318
- ValueError: If provider is not supported for token counting
319
- RuntimeError: If token counter initialization fails
320
- """
321
- # Create cache key from provider, model name, and API key
322
- cache_key = (
323
- model_config.provider.value,
324
- model_config.name,
325
- model_config.api_key[:10]
326
- if model_config.api_key
327
- else "no-key", # Partial key for cache
328
- )
329
-
330
- # Return cached instance if available
331
- if cache_key in _token_counter_cache:
332
- logger.debug(
333
- f"Reusing cached token counter for {model_config.provider.value}:{model_config.name}"
334
- )
335
- return _token_counter_cache[cache_key]
336
-
337
- # Create new instance and cache it
338
- logger.debug(
339
- f"Creating new token counter for {model_config.provider.value}:{model_config.name}"
340
- )
341
-
342
- counter: TokenCounter
343
- if model_config.provider == ProviderType.OPENAI:
344
- counter = OpenAITokenCounter(model_config.name)
345
- elif model_config.provider == ProviderType.ANTHROPIC:
346
- counter = AnthropicTokenCounter(model_config.name, model_config.api_key)
347
- elif model_config.provider == ProviderType.GOOGLE:
348
- counter = GoogleTokenCounter(model_config.name, model_config.api_key)
349
- else:
350
- raise ValueError(
351
- f"Unsupported provider for token counting: {model_config.provider}. "
352
- f"Supported providers: {[p.value for p in ProviderType]}"
353
- )
354
-
355
- # Cache the instance
356
- _token_counter_cache[cache_key] = counter
357
- logger.debug(
358
- f"Cached token counter for {model_config.provider.value}:{model_config.name}"
359
- )
360
-
361
- return counter
362
-
363
-
364
- def count_tokens_from_messages(
365
- messages: list[ModelMessage], model_config: ModelConfig
366
- ) -> int:
367
- """Count actual tokens from messages using provider-specific methods.
368
-
369
- This replaces the old estimation approach with accurate token counting
370
- using each provider's official APIs and libraries.
371
-
372
- Args:
373
- messages: List of messages to count tokens for
374
- model_config: Model configuration with provider info
375
-
376
- Returns:
377
- Exact token count for the messages
378
-
379
- Raises:
380
- ValueError: If provider is not supported
381
- RuntimeError: If token counting fails
382
- """
383
- counter = get_token_counter(model_config)
384
- return counter.count_message_tokens(messages)
385
-
386
-
387
- def count_post_summary_tokens(
388
- messages: list[ModelMessage], summary_index: int, model_config: ModelConfig
389
- ) -> int:
390
- """Count actual tokens from summary onwards for incremental compaction decisions.
391
-
392
- Args:
393
- messages: Full message history
394
- summary_index: Index of the last summary message
395
- model_config: Model configuration with provider info
396
-
397
- Returns:
398
- Exact token count from summary onwards
399
-
400
- Raises:
401
- ValueError: If provider is not supported
402
- RuntimeError: If token counting fails
403
- """
404
- if summary_index >= len(messages):
405
- return 0
406
-
407
- post_summary_messages = messages[summary_index:]
408
- return count_tokens_from_messages(post_summary_messages, model_config)
409
-
410
-
411
- def count_tokens_from_message_parts(
412
- messages: list[ModelMessage], model_config: ModelConfig
413
- ) -> int:
414
- """Count actual tokens from message parts for summarization requests.
415
-
416
- Args:
417
- messages: List of messages to count tokens for
418
- model_config: Model configuration with provider info
419
-
420
- Returns:
421
- Exact token count from message parts
422
-
423
- Raises:
424
- ValueError: If provider is not supported
425
- RuntimeError: If token counting fails
426
- """
427
- # For now, use the same logic as count_tokens_from_messages
428
- # This can be optimized later if needed for different counting strategies
429
- return count_tokens_from_messages(messages, model_config)
@@ -1,37 +0,0 @@
1
- """User interaction tools for Pydantic AI agents."""
2
-
3
- from asyncio import get_running_loop
4
-
5
- from pydantic_ai import CallDeferred, RunContext
6
-
7
- from shotgun.agents.models import AgentDeps, UserQuestion
8
- from shotgun.logging_config import get_logger
9
-
10
- logger = get_logger(__name__)
11
-
12
-
13
- async def ask_user(ctx: RunContext[AgentDeps], question: str) -> str:
14
- """Ask the human a question and return the answer.
15
-
16
-
17
- Args:
18
- question: The question to ask the user with a clear CTA at the end. Needs to be is readable, clear, and easy to understand. Use Markdown formatting. Make key phrases and words stand out.
19
-
20
- Returns:
21
- The user's response as a string
22
- """
23
- tool_call_id = ctx.tool_call_id
24
- assert tool_call_id is not None # noqa: S101
25
-
26
- try:
27
- logger.debug("\nšŸ‘‰ %s\n", question)
28
- future = get_running_loop().create_future()
29
- await ctx.deps.queue.put(
30
- UserQuestion(question=question, tool_call_id=tool_call_id, result=future)
31
- )
32
- ctx.deps.tasks.append(future)
33
- raise CallDeferred(question)
34
-
35
- except (EOFError, KeyboardInterrupt):
36
- logger.warning("User input interrupted or unavailable")
37
- return "User input not available or interrupted"