shotgun-sh 0.1.14__py3-none-any.whl → 0.2.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of shotgun-sh might be problematic. Click here for more details.
- shotgun/agents/agent_manager.py +715 -75
- shotgun/agents/common.py +80 -75
- shotgun/agents/config/constants.py +21 -10
- shotgun/agents/config/manager.py +322 -97
- shotgun/agents/config/models.py +114 -84
- shotgun/agents/config/provider.py +232 -88
- shotgun/agents/context_analyzer/__init__.py +28 -0
- shotgun/agents/context_analyzer/analyzer.py +471 -0
- shotgun/agents/context_analyzer/constants.py +9 -0
- shotgun/agents/context_analyzer/formatter.py +115 -0
- shotgun/agents/context_analyzer/models.py +212 -0
- shotgun/agents/conversation_history.py +125 -2
- shotgun/agents/conversation_manager.py +57 -19
- shotgun/agents/export.py +6 -7
- shotgun/agents/history/compaction.py +10 -5
- shotgun/agents/history/context_extraction.py +93 -6
- shotgun/agents/history/history_processors.py +129 -12
- shotgun/agents/history/token_counting/__init__.py +31 -0
- shotgun/agents/history/token_counting/anthropic.py +127 -0
- shotgun/agents/history/token_counting/base.py +78 -0
- shotgun/agents/history/token_counting/openai.py +90 -0
- shotgun/agents/history/token_counting/sentencepiece_counter.py +127 -0
- shotgun/agents/history/token_counting/tokenizer_cache.py +92 -0
- shotgun/agents/history/token_counting/utils.py +144 -0
- shotgun/agents/history/token_estimation.py +12 -12
- shotgun/agents/llm.py +62 -0
- shotgun/agents/models.py +59 -4
- shotgun/agents/plan.py +6 -7
- shotgun/agents/research.py +7 -8
- shotgun/agents/specify.py +6 -7
- shotgun/agents/tasks.py +6 -7
- shotgun/agents/tools/__init__.py +0 -2
- shotgun/agents/tools/codebase/codebase_shell.py +6 -0
- shotgun/agents/tools/codebase/directory_lister.py +6 -0
- shotgun/agents/tools/codebase/file_read.py +11 -2
- shotgun/agents/tools/codebase/query_graph.py +6 -0
- shotgun/agents/tools/codebase/retrieve_code.py +6 -0
- shotgun/agents/tools/file_management.py +82 -16
- shotgun/agents/tools/registry.py +217 -0
- shotgun/agents/tools/web_search/__init__.py +55 -16
- shotgun/agents/tools/web_search/anthropic.py +76 -51
- shotgun/agents/tools/web_search/gemini.py +50 -27
- shotgun/agents/tools/web_search/openai.py +26 -17
- shotgun/agents/tools/web_search/utils.py +2 -2
- shotgun/agents/usage_manager.py +164 -0
- shotgun/api_endpoints.py +15 -0
- shotgun/cli/clear.py +53 -0
- shotgun/cli/compact.py +186 -0
- shotgun/cli/config.py +41 -67
- shotgun/cli/context.py +111 -0
- shotgun/cli/export.py +1 -1
- shotgun/cli/feedback.py +50 -0
- shotgun/cli/models.py +3 -2
- shotgun/cli/plan.py +1 -1
- shotgun/cli/research.py +1 -1
- shotgun/cli/specify.py +1 -1
- shotgun/cli/tasks.py +1 -1
- shotgun/cli/update.py +16 -2
- shotgun/codebase/core/change_detector.py +5 -3
- shotgun/codebase/core/code_retrieval.py +4 -2
- shotgun/codebase/core/ingestor.py +57 -16
- shotgun/codebase/core/manager.py +20 -7
- shotgun/codebase/core/nl_query.py +1 -1
- shotgun/codebase/models.py +4 -4
- shotgun/exceptions.py +32 -0
- shotgun/llm_proxy/__init__.py +19 -0
- shotgun/llm_proxy/clients.py +44 -0
- shotgun/llm_proxy/constants.py +15 -0
- shotgun/logging_config.py +18 -27
- shotgun/main.py +91 -12
- shotgun/posthog_telemetry.py +81 -10
- shotgun/prompts/agents/export.j2 +18 -1
- shotgun/prompts/agents/partials/common_agent_system_prompt.j2 +5 -1
- shotgun/prompts/agents/partials/interactive_mode.j2 +24 -7
- shotgun/prompts/agents/plan.j2 +1 -1
- shotgun/prompts/agents/research.j2 +1 -1
- shotgun/prompts/agents/specify.j2 +270 -3
- shotgun/prompts/agents/state/system_state.j2 +4 -0
- shotgun/prompts/agents/tasks.j2 +1 -1
- shotgun/prompts/loader.py +2 -2
- shotgun/prompts/tools/web_search.j2 +14 -0
- shotgun/sentry_telemetry.py +27 -18
- shotgun/settings.py +238 -0
- shotgun/shotgun_web/__init__.py +19 -0
- shotgun/shotgun_web/client.py +138 -0
- shotgun/shotgun_web/constants.py +21 -0
- shotgun/shotgun_web/models.py +47 -0
- shotgun/telemetry.py +24 -36
- shotgun/tui/app.py +251 -23
- shotgun/tui/commands/__init__.py +1 -1
- shotgun/tui/components/context_indicator.py +179 -0
- shotgun/tui/components/mode_indicator.py +70 -0
- shotgun/tui/components/status_bar.py +48 -0
- shotgun/tui/containers.py +91 -0
- shotgun/tui/dependencies.py +39 -0
- shotgun/tui/protocols.py +45 -0
- shotgun/tui/screens/chat/__init__.py +5 -0
- shotgun/tui/screens/chat/chat.tcss +54 -0
- shotgun/tui/screens/chat/chat_screen.py +1234 -0
- shotgun/tui/screens/chat/codebase_index_prompt_screen.py +64 -0
- shotgun/tui/screens/chat/codebase_index_selection.py +12 -0
- shotgun/tui/screens/chat/help_text.py +40 -0
- shotgun/tui/screens/chat/prompt_history.py +48 -0
- shotgun/tui/screens/chat.tcss +11 -0
- shotgun/tui/screens/chat_screen/command_providers.py +226 -11
- shotgun/tui/screens/chat_screen/history/__init__.py +22 -0
- shotgun/tui/screens/chat_screen/history/agent_response.py +66 -0
- shotgun/tui/screens/chat_screen/history/chat_history.py +116 -0
- shotgun/tui/screens/chat_screen/history/formatters.py +115 -0
- shotgun/tui/screens/chat_screen/history/partial_response.py +43 -0
- shotgun/tui/screens/chat_screen/history/user_question.py +42 -0
- shotgun/tui/screens/confirmation_dialog.py +151 -0
- shotgun/tui/screens/feedback.py +193 -0
- shotgun/tui/screens/github_issue.py +102 -0
- shotgun/tui/screens/model_picker.py +352 -0
- shotgun/tui/screens/onboarding.py +431 -0
- shotgun/tui/screens/pipx_migration.py +153 -0
- shotgun/tui/screens/provider_config.py +156 -39
- shotgun/tui/screens/shotgun_auth.py +295 -0
- shotgun/tui/screens/welcome.py +198 -0
- shotgun/tui/services/__init__.py +5 -0
- shotgun/tui/services/conversation_service.py +184 -0
- shotgun/tui/state/__init__.py +7 -0
- shotgun/tui/state/processing_state.py +185 -0
- shotgun/tui/utils/mode_progress.py +14 -7
- shotgun/tui/widgets/__init__.py +5 -0
- shotgun/tui/widgets/widget_coordinator.py +262 -0
- shotgun/utils/datetime_utils.py +77 -0
- shotgun/utils/env_utils.py +13 -0
- shotgun/utils/file_system_utils.py +22 -2
- shotgun/utils/marketing.py +110 -0
- shotgun/utils/update_checker.py +69 -14
- shotgun_sh-0.2.11.dist-info/METADATA +130 -0
- shotgun_sh-0.2.11.dist-info/RECORD +194 -0
- {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/entry_points.txt +1 -0
- {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/licenses/LICENSE +1 -1
- shotgun/agents/history/token_counting.py +0 -429
- shotgun/agents/tools/user_interaction.py +0 -37
- shotgun/tui/screens/chat.py +0 -797
- shotgun/tui/screens/chat_screen/history.py +0 -350
- shotgun_sh-0.1.14.dist-info/METADATA +0 -466
- shotgun_sh-0.1.14.dist-info/RECORD +0 -133
- {shotgun_sh-0.1.14.dist-info → shotgun_sh-0.2.11.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,471 @@
|
|
|
1
|
+
"""Core context analysis logic."""
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
from collections.abc import Sequence
|
|
5
|
+
|
|
6
|
+
from pydantic_ai.messages import (
|
|
7
|
+
ModelMessage,
|
|
8
|
+
ModelRequest,
|
|
9
|
+
ModelResponse,
|
|
10
|
+
SystemPromptPart,
|
|
11
|
+
TextPart,
|
|
12
|
+
ToolCallPart,
|
|
13
|
+
ToolReturnPart,
|
|
14
|
+
UserPromptPart,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
from shotgun.agents.config.models import ModelConfig
|
|
18
|
+
from shotgun.agents.history.token_counting.utils import count_tokens_from_messages
|
|
19
|
+
from shotgun.agents.history.token_estimation import estimate_tokens_from_messages
|
|
20
|
+
from shotgun.agents.messages import AgentSystemPrompt, SystemStatusPrompt
|
|
21
|
+
from shotgun.logging_config import get_logger
|
|
22
|
+
from shotgun.tui.screens.chat_screen.hint_message import HintMessage
|
|
23
|
+
|
|
24
|
+
from .constants import ToolCategory, get_tool_category
|
|
25
|
+
from .models import ContextAnalysis, MessageTypeStats, TokenAllocation
|
|
26
|
+
|
|
27
|
+
logger = get_logger(__name__)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class ContextAnalyzer:
|
|
31
|
+
"""Analyzes conversation message history for context composition."""
|
|
32
|
+
|
|
33
|
+
def __init__(self, model_config: ModelConfig):
|
|
34
|
+
"""Initialize the analyzer with model configuration for token counting.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
model_config: Model configuration for accurate token counting
|
|
38
|
+
"""
|
|
39
|
+
self.model_config = model_config
|
|
40
|
+
|
|
41
|
+
async def _allocate_tokens_from_usage(
|
|
42
|
+
self,
|
|
43
|
+
message_history: list[ModelMessage],
|
|
44
|
+
) -> TokenAllocation:
|
|
45
|
+
"""Allocate tokens from actual API usage data proportionally to parts.
|
|
46
|
+
|
|
47
|
+
This uses the ground truth token counts from ModelResponse.usage instead of
|
|
48
|
+
creating synthetic messages, which avoids inflating counts with message framing overhead.
|
|
49
|
+
|
|
50
|
+
IMPORTANT: usage.input_tokens is cumulative (includes all conversation history), so we:
|
|
51
|
+
1. Use the LAST response's input_tokens as the ground truth total
|
|
52
|
+
2. Calculate proportions based on content size across ALL requests
|
|
53
|
+
3. Allocate the ground truth total proportionally
|
|
54
|
+
|
|
55
|
+
If usage data is missing or zero (e.g., after compaction), falls back to token estimation.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
message_history: List of actual messages from conversation
|
|
59
|
+
|
|
60
|
+
Returns:
|
|
61
|
+
TokenAllocation with token counts by message/tool type
|
|
62
|
+
"""
|
|
63
|
+
# Step 1: Find the last response's usage data (ground truth for input tokens)
|
|
64
|
+
last_input_tokens = 0
|
|
65
|
+
total_output_tokens = 0
|
|
66
|
+
|
|
67
|
+
for msg in reversed(message_history):
|
|
68
|
+
if isinstance(msg, ModelResponse) and msg.usage:
|
|
69
|
+
last_input_tokens = msg.usage.input_tokens + msg.usage.cache_read_tokens
|
|
70
|
+
break
|
|
71
|
+
|
|
72
|
+
if last_input_tokens == 0:
|
|
73
|
+
# Fallback to token estimation (no logging to reduce verbosity)
|
|
74
|
+
last_input_tokens = await estimate_tokens_from_messages(
|
|
75
|
+
message_history, self.model_config
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
# Step 2: Calculate total output tokens (sum across all responses)
|
|
79
|
+
for msg in message_history:
|
|
80
|
+
if isinstance(msg, ModelResponse) and msg.usage:
|
|
81
|
+
total_output_tokens += msg.usage.output_tokens
|
|
82
|
+
|
|
83
|
+
# Step 3: Calculate content size proportions for each part type across ALL requests
|
|
84
|
+
# Initialize size accumulators
|
|
85
|
+
user_size = 0
|
|
86
|
+
system_prompts_size = 0
|
|
87
|
+
system_status_size = 0
|
|
88
|
+
codebase_understanding_input_size = 0
|
|
89
|
+
artifact_management_input_size = 0
|
|
90
|
+
web_research_input_size = 0
|
|
91
|
+
unknown_input_size = 0
|
|
92
|
+
|
|
93
|
+
for msg in message_history:
|
|
94
|
+
if isinstance(msg, ModelRequest):
|
|
95
|
+
for part in msg.parts:
|
|
96
|
+
if isinstance(part, (SystemPromptPart, UserPromptPart)):
|
|
97
|
+
size = len(part.content)
|
|
98
|
+
elif isinstance(part, ToolReturnPart):
|
|
99
|
+
# ToolReturnPart.content can be Any type
|
|
100
|
+
try:
|
|
101
|
+
content_str = (
|
|
102
|
+
json.dumps(part.content)
|
|
103
|
+
if part.content is not None
|
|
104
|
+
else ""
|
|
105
|
+
)
|
|
106
|
+
except (TypeError, ValueError):
|
|
107
|
+
content_str = (
|
|
108
|
+
str(part.content) if part.content is not None else ""
|
|
109
|
+
)
|
|
110
|
+
size = len(content_str)
|
|
111
|
+
else:
|
|
112
|
+
size = 0
|
|
113
|
+
|
|
114
|
+
# Categorize by part type
|
|
115
|
+
# Note: Check subclasses first (AgentSystemPrompt, SystemStatusPrompt)
|
|
116
|
+
# before checking base class (SystemPromptPart)
|
|
117
|
+
if isinstance(part, SystemStatusPrompt):
|
|
118
|
+
system_status_size += size
|
|
119
|
+
elif isinstance(part, AgentSystemPrompt):
|
|
120
|
+
system_prompts_size += size
|
|
121
|
+
elif isinstance(part, SystemPromptPart):
|
|
122
|
+
# Generic system prompt (not AgentSystemPrompt or SystemStatusPrompt)
|
|
123
|
+
system_prompts_size += size
|
|
124
|
+
elif isinstance(part, UserPromptPart):
|
|
125
|
+
user_size += size
|
|
126
|
+
elif isinstance(part, ToolReturnPart):
|
|
127
|
+
# Categorize tool results by tool category
|
|
128
|
+
category = get_tool_category(part.tool_name)
|
|
129
|
+
if category == ToolCategory.CODEBASE_UNDERSTANDING:
|
|
130
|
+
codebase_understanding_input_size += size
|
|
131
|
+
elif category == ToolCategory.ARTIFACT_MANAGEMENT:
|
|
132
|
+
artifact_management_input_size += size
|
|
133
|
+
elif category == ToolCategory.WEB_RESEARCH:
|
|
134
|
+
web_research_input_size += size
|
|
135
|
+
elif category == ToolCategory.UNKNOWN:
|
|
136
|
+
unknown_input_size += size
|
|
137
|
+
|
|
138
|
+
# Step 4: Calculate output proportions by tool category
|
|
139
|
+
codebase_understanding_size = 0
|
|
140
|
+
artifact_management_size = 0
|
|
141
|
+
web_research_size = 0
|
|
142
|
+
unknown_size = 0
|
|
143
|
+
agent_response_size = 0
|
|
144
|
+
|
|
145
|
+
for msg in message_history:
|
|
146
|
+
if isinstance(msg, ModelResponse):
|
|
147
|
+
for part in msg.parts: # type: ignore[assignment]
|
|
148
|
+
if isinstance(part, ToolCallPart):
|
|
149
|
+
category = get_tool_category(part.tool_name)
|
|
150
|
+
size = len(str(part.args))
|
|
151
|
+
|
|
152
|
+
if category == ToolCategory.AGENT_RESPONSE:
|
|
153
|
+
agent_response_size += size
|
|
154
|
+
elif category == ToolCategory.CODEBASE_UNDERSTANDING:
|
|
155
|
+
codebase_understanding_size += size
|
|
156
|
+
elif category == ToolCategory.ARTIFACT_MANAGEMENT:
|
|
157
|
+
artifact_management_size += size
|
|
158
|
+
elif category == ToolCategory.WEB_RESEARCH:
|
|
159
|
+
web_research_size += size
|
|
160
|
+
elif category == ToolCategory.UNKNOWN:
|
|
161
|
+
unknown_size += size
|
|
162
|
+
elif isinstance(part, TextPart):
|
|
163
|
+
agent_response_size += len(part.content)
|
|
164
|
+
|
|
165
|
+
# Step 5: Allocate input tokens proportionally
|
|
166
|
+
# Initialize TokenAllocation fields
|
|
167
|
+
user_tokens = 0
|
|
168
|
+
agent_response_tokens = 0
|
|
169
|
+
system_prompt_tokens = 0
|
|
170
|
+
system_status_tokens = 0
|
|
171
|
+
codebase_understanding_tokens = 0
|
|
172
|
+
artifact_management_tokens = 0
|
|
173
|
+
web_research_tokens = 0
|
|
174
|
+
unknown_tokens = 0
|
|
175
|
+
|
|
176
|
+
total_input_size = (
|
|
177
|
+
user_size
|
|
178
|
+
+ system_prompts_size
|
|
179
|
+
+ system_status_size
|
|
180
|
+
+ codebase_understanding_input_size
|
|
181
|
+
+ artifact_management_input_size
|
|
182
|
+
+ web_research_input_size
|
|
183
|
+
+ unknown_input_size
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
if total_input_size > 0 and last_input_tokens > 0:
|
|
187
|
+
user_tokens = int(last_input_tokens * (user_size / total_input_size))
|
|
188
|
+
system_prompt_tokens = int(
|
|
189
|
+
last_input_tokens * (system_prompts_size / total_input_size)
|
|
190
|
+
)
|
|
191
|
+
system_status_tokens = int(
|
|
192
|
+
last_input_tokens * (system_status_size / total_input_size)
|
|
193
|
+
)
|
|
194
|
+
codebase_understanding_tokens = int(
|
|
195
|
+
last_input_tokens
|
|
196
|
+
* (codebase_understanding_input_size / total_input_size)
|
|
197
|
+
)
|
|
198
|
+
artifact_management_tokens = int(
|
|
199
|
+
last_input_tokens * (artifact_management_input_size / total_input_size)
|
|
200
|
+
)
|
|
201
|
+
web_research_tokens = int(
|
|
202
|
+
last_input_tokens * (web_research_input_size / total_input_size)
|
|
203
|
+
)
|
|
204
|
+
unknown_tokens = int(
|
|
205
|
+
last_input_tokens * (unknown_input_size / total_input_size)
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
# Step 6: Allocate output tokens proportionally
|
|
209
|
+
total_output_size = (
|
|
210
|
+
codebase_understanding_size
|
|
211
|
+
+ artifact_management_size
|
|
212
|
+
+ web_research_size
|
|
213
|
+
+ unknown_size
|
|
214
|
+
+ agent_response_size
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
if total_output_size > 0 and total_output_tokens > 0:
|
|
218
|
+
codebase_understanding_tokens += int(
|
|
219
|
+
total_output_tokens * (codebase_understanding_size / total_output_size)
|
|
220
|
+
)
|
|
221
|
+
artifact_management_tokens += int(
|
|
222
|
+
total_output_tokens * (artifact_management_size / total_output_size)
|
|
223
|
+
)
|
|
224
|
+
web_research_tokens += int(
|
|
225
|
+
total_output_tokens * (web_research_size / total_output_size)
|
|
226
|
+
)
|
|
227
|
+
unknown_tokens += int(
|
|
228
|
+
total_output_tokens * (unknown_size / total_output_size)
|
|
229
|
+
)
|
|
230
|
+
agent_response_tokens += int(
|
|
231
|
+
total_output_tokens * (agent_response_size / total_output_size)
|
|
232
|
+
)
|
|
233
|
+
elif total_output_tokens > 0:
|
|
234
|
+
# If no content, put all in agent responses
|
|
235
|
+
agent_response_tokens = total_output_tokens
|
|
236
|
+
|
|
237
|
+
# Token allocation complete (no logging to reduce verbosity)
|
|
238
|
+
|
|
239
|
+
# Create TokenAllocation model
|
|
240
|
+
return TokenAllocation(
|
|
241
|
+
user=user_tokens,
|
|
242
|
+
agent_responses=agent_response_tokens,
|
|
243
|
+
system_prompts=system_prompt_tokens,
|
|
244
|
+
system_status=system_status_tokens,
|
|
245
|
+
codebase_understanding=codebase_understanding_tokens,
|
|
246
|
+
artifact_management=artifact_management_tokens,
|
|
247
|
+
web_research=web_research_tokens,
|
|
248
|
+
unknown=unknown_tokens,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
async def analyze_conversation(
|
|
252
|
+
self,
|
|
253
|
+
message_history: list[ModelMessage],
|
|
254
|
+
ui_message_history: list[ModelMessage | HintMessage],
|
|
255
|
+
) -> ContextAnalysis:
|
|
256
|
+
"""Analyze the conversation to determine message type composition.
|
|
257
|
+
|
|
258
|
+
Args:
|
|
259
|
+
message_history: The agent message history (for token counting)
|
|
260
|
+
ui_message_history: The UI message history (includes hints)
|
|
261
|
+
|
|
262
|
+
Returns:
|
|
263
|
+
ContextAnalysis with statistics for each message type
|
|
264
|
+
"""
|
|
265
|
+
# Track counts for each message type
|
|
266
|
+
user_count = 0
|
|
267
|
+
agent_responses_count = 0
|
|
268
|
+
system_prompts_count = 0
|
|
269
|
+
system_status_count = 0
|
|
270
|
+
codebase_understanding_count = 0
|
|
271
|
+
artifact_management_count = 0
|
|
272
|
+
web_research_count = 0
|
|
273
|
+
unknown_count = 0
|
|
274
|
+
|
|
275
|
+
# Analyze message_history to count message types
|
|
276
|
+
for msg in message_history:
|
|
277
|
+
if isinstance(msg, ModelRequest):
|
|
278
|
+
# Track what types are in this message for counting
|
|
279
|
+
has_user_prompt = False
|
|
280
|
+
has_system_prompt = False
|
|
281
|
+
has_system_status = False
|
|
282
|
+
|
|
283
|
+
# Check what part types this message contains
|
|
284
|
+
for part in msg.parts:
|
|
285
|
+
if isinstance(part, AgentSystemPrompt):
|
|
286
|
+
has_system_prompt = True
|
|
287
|
+
elif isinstance(part, SystemStatusPrompt):
|
|
288
|
+
has_system_status = True
|
|
289
|
+
elif isinstance(part, SystemPromptPart):
|
|
290
|
+
# Generic system prompt
|
|
291
|
+
has_system_prompt = True
|
|
292
|
+
elif isinstance(part, UserPromptPart):
|
|
293
|
+
has_user_prompt = True
|
|
294
|
+
elif isinstance(part, ToolReturnPart):
|
|
295
|
+
# Categorize tool results by category
|
|
296
|
+
category = get_tool_category(part.tool_name)
|
|
297
|
+
if category == ToolCategory.CODEBASE_UNDERSTANDING:
|
|
298
|
+
codebase_understanding_count += 1
|
|
299
|
+
elif category == ToolCategory.ARTIFACT_MANAGEMENT:
|
|
300
|
+
artifact_management_count += 1
|
|
301
|
+
elif category == ToolCategory.WEB_RESEARCH:
|
|
302
|
+
web_research_count += 1
|
|
303
|
+
elif category == ToolCategory.UNKNOWN:
|
|
304
|
+
unknown_count += 1
|
|
305
|
+
|
|
306
|
+
# Count the message types (only count once per message)
|
|
307
|
+
if has_system_prompt:
|
|
308
|
+
system_prompts_count += 1
|
|
309
|
+
if has_system_status:
|
|
310
|
+
system_status_count += 1
|
|
311
|
+
if has_user_prompt:
|
|
312
|
+
user_count += 1
|
|
313
|
+
|
|
314
|
+
elif isinstance(msg, ModelResponse):
|
|
315
|
+
# Agent responses - count entire response as one
|
|
316
|
+
agent_responses_count += 1
|
|
317
|
+
|
|
318
|
+
# Check for tool calls in the response
|
|
319
|
+
for part in msg.parts: # type: ignore[assignment]
|
|
320
|
+
if isinstance(part, ToolCallPart):
|
|
321
|
+
category = get_tool_category(part.tool_name)
|
|
322
|
+
if category == ToolCategory.CODEBASE_UNDERSTANDING:
|
|
323
|
+
codebase_understanding_count += 1
|
|
324
|
+
elif category == ToolCategory.ARTIFACT_MANAGEMENT:
|
|
325
|
+
artifact_management_count += 1
|
|
326
|
+
elif category == ToolCategory.WEB_RESEARCH:
|
|
327
|
+
web_research_count += 1
|
|
328
|
+
elif category == ToolCategory.UNKNOWN:
|
|
329
|
+
unknown_count += 1
|
|
330
|
+
|
|
331
|
+
# Count hints from ui_message_history
|
|
332
|
+
hint_count = sum(
|
|
333
|
+
1 for msg in ui_message_history if isinstance(msg, HintMessage)
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
# Use actual API usage data for accurate token counting (avoids synthetic message overhead)
|
|
337
|
+
usage_tokens = await self._allocate_tokens_from_usage(message_history)
|
|
338
|
+
|
|
339
|
+
user_tokens = usage_tokens.user
|
|
340
|
+
agent_response_tokens = usage_tokens.agent_responses
|
|
341
|
+
system_prompt_tokens = usage_tokens.system_prompts
|
|
342
|
+
system_status_tokens = usage_tokens.system_status
|
|
343
|
+
codebase_understanding_tokens = usage_tokens.codebase_understanding
|
|
344
|
+
artifact_management_tokens = usage_tokens.artifact_management
|
|
345
|
+
web_research_tokens = usage_tokens.web_research
|
|
346
|
+
unknown_tokens = usage_tokens.unknown
|
|
347
|
+
|
|
348
|
+
# Estimate hint tokens (rough estimate based on character count)
|
|
349
|
+
hint_tokens = 0
|
|
350
|
+
for msg in ui_message_history: # type: ignore[assignment]
|
|
351
|
+
if isinstance(msg, HintMessage):
|
|
352
|
+
# Rough estimate: ~4 chars per token
|
|
353
|
+
hint_tokens += len(msg.message) // 4
|
|
354
|
+
|
|
355
|
+
# Calculate agent context tokens (excluding UI-only hints)
|
|
356
|
+
agent_context_tokens = (
|
|
357
|
+
user_tokens
|
|
358
|
+
+ agent_response_tokens
|
|
359
|
+
+ system_prompt_tokens
|
|
360
|
+
+ system_status_tokens
|
|
361
|
+
+ codebase_understanding_tokens
|
|
362
|
+
+ artifact_management_tokens
|
|
363
|
+
+ web_research_tokens
|
|
364
|
+
+ unknown_tokens
|
|
365
|
+
)
|
|
366
|
+
|
|
367
|
+
# Total tokens includes hints for display purposes, but agent_context_tokens does not
|
|
368
|
+
total_tokens = agent_context_tokens + hint_tokens
|
|
369
|
+
total_messages = (
|
|
370
|
+
user_count
|
|
371
|
+
+ agent_responses_count
|
|
372
|
+
+ system_prompts_count
|
|
373
|
+
+ system_status_count
|
|
374
|
+
+ codebase_understanding_count
|
|
375
|
+
+ artifact_management_count
|
|
376
|
+
+ web_research_count
|
|
377
|
+
+ unknown_count
|
|
378
|
+
+ hint_count
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
# Calculate usable context limit (80% of max_input_tokens) and free space
|
|
382
|
+
# This matches the TOKEN_LIMIT_RATIO = 0.8 from history/constants.py
|
|
383
|
+
max_usable_tokens = int(self.model_config.max_input_tokens * 0.8)
|
|
384
|
+
free_space_tokens = max_usable_tokens - agent_context_tokens
|
|
385
|
+
|
|
386
|
+
return ContextAnalysis(
|
|
387
|
+
user_messages=MessageTypeStats(count=user_count, tokens=user_tokens),
|
|
388
|
+
agent_responses=MessageTypeStats(
|
|
389
|
+
count=agent_responses_count, tokens=agent_response_tokens
|
|
390
|
+
),
|
|
391
|
+
system_prompts=MessageTypeStats(
|
|
392
|
+
count=system_prompts_count, tokens=system_prompt_tokens
|
|
393
|
+
),
|
|
394
|
+
system_status=MessageTypeStats(
|
|
395
|
+
count=system_status_count, tokens=system_status_tokens
|
|
396
|
+
),
|
|
397
|
+
codebase_understanding=MessageTypeStats(
|
|
398
|
+
count=codebase_understanding_count,
|
|
399
|
+
tokens=codebase_understanding_tokens,
|
|
400
|
+
),
|
|
401
|
+
artifact_management=MessageTypeStats(
|
|
402
|
+
count=artifact_management_count, tokens=artifact_management_tokens
|
|
403
|
+
),
|
|
404
|
+
web_research=MessageTypeStats(
|
|
405
|
+
count=web_research_count, tokens=web_research_tokens
|
|
406
|
+
),
|
|
407
|
+
unknown=MessageTypeStats(count=unknown_count, tokens=unknown_tokens),
|
|
408
|
+
hint_messages=MessageTypeStats(count=hint_count, tokens=hint_tokens),
|
|
409
|
+
total_tokens=total_tokens,
|
|
410
|
+
total_messages=total_messages,
|
|
411
|
+
context_window=self.model_config.max_input_tokens,
|
|
412
|
+
agent_context_tokens=agent_context_tokens,
|
|
413
|
+
model_name=self.model_config.name.value,
|
|
414
|
+
max_usable_tokens=max_usable_tokens,
|
|
415
|
+
free_space_tokens=free_space_tokens,
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
async def _count_tokens_for_parts(
|
|
419
|
+
self,
|
|
420
|
+
parts: Sequence[
|
|
421
|
+
UserPromptPart | SystemPromptPart | ToolReturnPart | ToolCallPart
|
|
422
|
+
],
|
|
423
|
+
part_type: str,
|
|
424
|
+
) -> int:
|
|
425
|
+
"""Count tokens for a list of parts by creating synthetic single-part messages.
|
|
426
|
+
|
|
427
|
+
This avoids double-counting when a message contains multiple part types.
|
|
428
|
+
|
|
429
|
+
Args:
|
|
430
|
+
parts: List of parts to count tokens for
|
|
431
|
+
part_type: Type of parts ("user", "system", "tool_return", "tool_call")
|
|
432
|
+
|
|
433
|
+
Returns:
|
|
434
|
+
Total token count for all parts
|
|
435
|
+
"""
|
|
436
|
+
if not parts:
|
|
437
|
+
return 0
|
|
438
|
+
|
|
439
|
+
# Create synthetic messages with single parts for accurate token counting
|
|
440
|
+
synthetic_messages: list[ModelMessage] = []
|
|
441
|
+
|
|
442
|
+
for part in parts:
|
|
443
|
+
if part_type in ("user", "system", "tool_return"):
|
|
444
|
+
# These are request parts - wrap in ModelRequest
|
|
445
|
+
synthetic_messages.append(ModelRequest(parts=[part])) # type: ignore[list-item]
|
|
446
|
+
elif part_type == "tool_call":
|
|
447
|
+
# Tool calls are in responses - wrap in ModelResponse
|
|
448
|
+
synthetic_messages.append(ModelResponse(parts=[part])) # type: ignore[list-item]
|
|
449
|
+
|
|
450
|
+
# Count tokens for the synthetic messages
|
|
451
|
+
return await self._count_tokens_safe(synthetic_messages)
|
|
452
|
+
|
|
453
|
+
async def _count_tokens_safe(self, messages: Sequence[ModelMessage]) -> int:
|
|
454
|
+
"""Count tokens for a list of messages, returning 0 on error.
|
|
455
|
+
|
|
456
|
+
Args:
|
|
457
|
+
messages: List of messages to count tokens for
|
|
458
|
+
|
|
459
|
+
Returns:
|
|
460
|
+
Token count or 0 if counting fails
|
|
461
|
+
"""
|
|
462
|
+
if not messages:
|
|
463
|
+
return 0
|
|
464
|
+
|
|
465
|
+
try:
|
|
466
|
+
return await count_tokens_from_messages(list(messages), self.model_config)
|
|
467
|
+
except Exception as e:
|
|
468
|
+
logger.warning(f"Failed to count tokens: {e}")
|
|
469
|
+
# Fallback to rough estimate
|
|
470
|
+
total_chars = sum(len(str(msg)) for msg in messages)
|
|
471
|
+
return total_chars // 4 # Rough estimate: 4 chars per token
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
"""Tool category registry for context analysis.
|
|
2
|
+
|
|
3
|
+
This module re-exports the tool registry functionality for backward compatibility.
|
|
4
|
+
The actual implementation is in shotgun.agents.tools.registry.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from shotgun.agents.tools.registry import ToolCategory, get_tool_category
|
|
8
|
+
|
|
9
|
+
__all__ = ["ToolCategory", "get_tool_category"]
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
"""Format context analysis for various output types."""
|
|
2
|
+
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
from .models import ContextAnalysis
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class ContextFormatter:
|
|
9
|
+
"""Formats context analysis for various output types."""
|
|
10
|
+
|
|
11
|
+
@staticmethod
|
|
12
|
+
def format_markdown(analysis: ContextAnalysis) -> str:
|
|
13
|
+
"""Format the analysis as markdown for display.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
analysis: Context analysis to format
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
Markdown-formatted string
|
|
20
|
+
"""
|
|
21
|
+
lines = ["# Conversation Context Analysis", ""]
|
|
22
|
+
|
|
23
|
+
# Top-level summary with model and usage info
|
|
24
|
+
usage_percent = (
|
|
25
|
+
(analysis.agent_context_tokens / analysis.max_usable_tokens * 100)
|
|
26
|
+
if analysis.max_usable_tokens > 0
|
|
27
|
+
else 0
|
|
28
|
+
)
|
|
29
|
+
free_percent = (
|
|
30
|
+
(analysis.free_space_tokens / analysis.max_usable_tokens * 100)
|
|
31
|
+
if analysis.max_usable_tokens > 0
|
|
32
|
+
else 0
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
lines.extend(
|
|
36
|
+
[
|
|
37
|
+
f"Model: {analysis.model_name}",
|
|
38
|
+
"",
|
|
39
|
+
f"Total Context: {analysis.agent_context_tokens:,} / {analysis.max_usable_tokens:,} tokens ({usage_percent:.1f}%)",
|
|
40
|
+
"",
|
|
41
|
+
f"Free Space: {analysis.free_space_tokens:,} tokens ({free_percent:.1f}%)",
|
|
42
|
+
"",
|
|
43
|
+
"Autocompact Buffer: 500 tokens",
|
|
44
|
+
"",
|
|
45
|
+
]
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
# Create 25-character visual bar showing proportional usage
|
|
49
|
+
# Each character represents 4% of total context
|
|
50
|
+
filled_chars = int(usage_percent / 4)
|
|
51
|
+
empty_chars = 25 - filled_chars
|
|
52
|
+
visual_bar = "●" * filled_chars + "○" * empty_chars
|
|
53
|
+
|
|
54
|
+
lines.extend(
|
|
55
|
+
[
|
|
56
|
+
"## Context Composition",
|
|
57
|
+
visual_bar,
|
|
58
|
+
"",
|
|
59
|
+
]
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
# Add agent context categories only (hints are not part of agent context)
|
|
63
|
+
agent_categories = [
|
|
64
|
+
("🧑 User Messages", analysis.user_messages),
|
|
65
|
+
("🤖 Agent Responses", analysis.agent_responses),
|
|
66
|
+
("📋 System Prompts", analysis.system_prompts),
|
|
67
|
+
("📊 System Status", analysis.system_status),
|
|
68
|
+
("🔍 Codebase Understanding", analysis.codebase_understanding),
|
|
69
|
+
("📦 Artifact Management", analysis.artifact_management),
|
|
70
|
+
("🌐 Web Research", analysis.web_research),
|
|
71
|
+
]
|
|
72
|
+
|
|
73
|
+
# Only add unknown if it has content
|
|
74
|
+
if analysis.unknown.count > 0:
|
|
75
|
+
agent_categories.append(("⚠️ Unknown Tools", analysis.unknown))
|
|
76
|
+
|
|
77
|
+
for label, stats in agent_categories:
|
|
78
|
+
if stats.count > 0:
|
|
79
|
+
percentage = analysis.get_percentage(stats)
|
|
80
|
+
# Align labels to 30 characters for clean visual layout
|
|
81
|
+
lines.append(
|
|
82
|
+
f"{label:<30} {percentage:>5.1f}% ({stats.count} messages, ~{stats.tokens:,} tokens)"
|
|
83
|
+
)
|
|
84
|
+
# Add blank line to prevent Textual's Markdown widget from reflowing
|
|
85
|
+
lines.append("")
|
|
86
|
+
|
|
87
|
+
return "\n".join(lines)
|
|
88
|
+
|
|
89
|
+
@staticmethod
|
|
90
|
+
def format_json(analysis: ContextAnalysis) -> dict[str, Any]:
|
|
91
|
+
"""Format the analysis as a JSON-serializable dictionary.
|
|
92
|
+
|
|
93
|
+
Args:
|
|
94
|
+
analysis: Context analysis to format
|
|
95
|
+
|
|
96
|
+
Returns:
|
|
97
|
+
Dictionary with context analysis data
|
|
98
|
+
"""
|
|
99
|
+
# Use Pydantic's model_dump() to serialize the model
|
|
100
|
+
data = analysis.model_dump()
|
|
101
|
+
|
|
102
|
+
# Add computed summary field
|
|
103
|
+
data["summary"] = {
|
|
104
|
+
"total_messages": analysis.total_messages - analysis.hint_messages.count,
|
|
105
|
+
"agent_context_tokens": analysis.agent_context_tokens,
|
|
106
|
+
"context_window": analysis.context_window,
|
|
107
|
+
"usage_percentage": round(
|
|
108
|
+
(analysis.agent_context_tokens / analysis.context_window * 100)
|
|
109
|
+
if analysis.context_window > 0
|
|
110
|
+
else 0,
|
|
111
|
+
1,
|
|
112
|
+
),
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
return data
|