sglang 0.5.3rc0__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (282) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +321 -31
  3. sglang/bench_serving.py +10 -3
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +4 -0
  11. sglang/srt/configs/dots_ocr.py +64 -0
  12. sglang/srt/configs/falcon_h1.py +360 -0
  13. sglang/srt/configs/load_config.py +8 -0
  14. sglang/srt/configs/model_config.py +160 -105
  15. sglang/srt/configs/qwen3_vl.py +586 -0
  16. sglang/srt/constrained/base_grammar_backend.py +1 -0
  17. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  18. sglang/srt/constrained/xgrammar_backend.py +6 -4
  19. sglang/srt/debug_utils/dumper.py +10 -3
  20. sglang/srt/disaggregation/ascend/conn.py +2 -2
  21. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  22. sglang/srt/disaggregation/common/conn.py +266 -98
  23. sglang/srt/disaggregation/decode.py +50 -9
  24. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  25. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
  26. sglang/srt/disaggregation/mooncake/conn.py +51 -541
  27. sglang/srt/disaggregation/nixl/conn.py +148 -39
  28. sglang/srt/disaggregation/prefill.py +31 -14
  29. sglang/srt/disaggregation/utils.py +36 -5
  30. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  31. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  32. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  33. sglang/srt/distributed/parallel_state.py +135 -80
  34. sglang/srt/entrypoints/engine.py +23 -3
  35. sglang/srt/entrypoints/grpc_request_manager.py +330 -55
  36. sglang/srt/entrypoints/grpc_server.py +232 -102
  37. sglang/srt/entrypoints/http_server.py +49 -9
  38. sglang/srt/entrypoints/openai/protocol.py +110 -5
  39. sglang/srt/entrypoints/openai/serving_base.py +25 -6
  40. sglang/srt/entrypoints/openai/serving_chat.py +178 -49
  41. sglang/srt/entrypoints/openai/serving_completions.py +5 -3
  42. sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
  43. sglang/srt/entrypoints/openai/serving_responses.py +42 -0
  44. sglang/srt/environ.py +285 -0
  45. sglang/srt/eplb/expert_location.py +30 -5
  46. sglang/srt/function_call/function_call_parser.py +3 -2
  47. sglang/srt/function_call/glm4_moe_detector.py +3 -3
  48. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  49. sglang/srt/function_call/json_array_parser.py +63 -0
  50. sglang/srt/function_call/kimik2_detector.py +17 -4
  51. sglang/srt/function_call/utils.py +96 -5
  52. sglang/srt/grpc/compile_proto.py +245 -0
  53. sglang/srt/grpc/sglang_scheduler_pb2.py +73 -68
  54. sglang/srt/grpc/sglang_scheduler_pb2.pyi +60 -53
  55. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +3 -0
  56. sglang/srt/layers/activation.py +7 -6
  57. sglang/srt/layers/attention/aiter_backend.py +14 -15
  58. sglang/srt/layers/attention/ascend_backend.py +108 -9
  59. sglang/srt/layers/attention/attention_registry.py +206 -0
  60. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  61. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  62. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  63. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
  64. sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
  65. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
  66. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  67. sglang/srt/layers/attention/flashinfer_backend.py +112 -194
  68. sglang/srt/layers/attention/flashinfer_mla_backend.py +11 -15
  69. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  70. sglang/srt/layers/attention/hybrid_attn_backend.py +11 -3
  71. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +72 -72
  72. sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -0
  73. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +15 -98
  74. sglang/srt/layers/attention/mamba/mamba.py +566 -1
  75. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  76. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  77. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  78. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  79. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  80. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  81. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  82. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  83. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  84. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  85. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  86. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  87. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  88. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  89. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  90. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  91. sglang/srt/layers/attention/nsa/utils.py +24 -0
  92. sglang/srt/layers/attention/nsa_backend.py +887 -0
  93. sglang/srt/layers/attention/tbo_backend.py +6 -6
  94. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  95. sglang/srt/layers/attention/triton_backend.py +42 -9
  96. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  97. sglang/srt/layers/attention/trtllm_mla_backend.py +178 -34
  98. sglang/srt/layers/attention/vision.py +58 -0
  99. sglang/srt/layers/attention/wave_backend.py +4 -4
  100. sglang/srt/layers/communicator.py +8 -0
  101. sglang/srt/layers/dp_attention.py +11 -1
  102. sglang/srt/layers/elementwise.py +3 -1
  103. sglang/srt/layers/layernorm.py +2 -0
  104. sglang/srt/layers/linear.py +21 -4
  105. sglang/srt/layers/logits_processor.py +15 -2
  106. sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
  107. sglang/srt/layers/moe/ep_moe/layer.py +147 -74
  108. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
  109. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  110. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  111. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  112. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +6 -2
  113. sglang/srt/layers/moe/fused_moe_triton/layer.py +11 -12
  114. sglang/srt/layers/moe/token_dispatcher/deepep.py +77 -19
  115. sglang/srt/layers/moe/utils.py +10 -0
  116. sglang/srt/layers/parameter.py +23 -6
  117. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  118. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  119. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  120. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  121. sglang/srt/layers/quantization/fp8.py +2 -2
  122. sglang/srt/layers/quantization/fp8_utils.py +1 -1
  123. sglang/srt/layers/quantization/modelopt_quant.py +44 -9
  124. sglang/srt/layers/quantization/mxfp4.py +12 -4
  125. sglang/srt/layers/quantization/quark/quark_moe.py +16 -3
  126. sglang/srt/layers/quantization/w4afp8.py +0 -4
  127. sglang/srt/layers/quantization/w8a8_int8.py +15 -3
  128. sglang/srt/layers/rotary_embedding.py +78 -31
  129. sglang/srt/layers/sampler.py +52 -4
  130. sglang/srt/layers/utils.py +23 -0
  131. sglang/srt/lora/backend/base_backend.py +3 -3
  132. sglang/srt/lora/backend/chunked_backend.py +348 -0
  133. sglang/srt/lora/backend/triton_backend.py +10 -4
  134. sglang/srt/lora/lora.py +7 -5
  135. sglang/srt/lora/lora_manager.py +17 -6
  136. sglang/srt/lora/mem_pool.py +1 -1
  137. sglang/srt/lora/triton_ops/__init__.py +4 -0
  138. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  139. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  140. sglang/srt/lora/utils.py +7 -5
  141. sglang/srt/managers/cache_controller.py +42 -142
  142. sglang/srt/managers/data_parallel_controller.py +11 -46
  143. sglang/srt/managers/detokenizer_manager.py +11 -11
  144. sglang/srt/managers/io_struct.py +162 -118
  145. sglang/srt/managers/mm_utils.py +43 -6
  146. sglang/srt/managers/multi_tokenizer_mixin.py +17 -17
  147. sglang/srt/managers/multimodal_processor.py +1 -2
  148. sglang/srt/managers/overlap_utils.py +53 -0
  149. sglang/srt/managers/schedule_batch.py +167 -86
  150. sglang/srt/managers/schedule_policy.py +143 -16
  151. sglang/srt/managers/scheduler.py +359 -214
  152. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  153. sglang/srt/managers/scheduler_metrics_mixin.py +98 -126
  154. sglang/srt/managers/scheduler_output_processor_mixin.py +21 -12
  155. sglang/srt/managers/scheduler_profiler_mixin.py +5 -5
  156. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  157. sglang/srt/managers/tokenizer_communicator_mixin.py +111 -5
  158. sglang/srt/managers/tokenizer_manager.py +84 -136
  159. sglang/srt/managers/tp_worker.py +39 -29
  160. sglang/srt/managers/tp_worker_overlap_thread.py +33 -41
  161. sglang/srt/managers/utils.py +1 -45
  162. sglang/srt/mem_cache/allocator.py +14 -20
  163. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  164. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  165. sglang/srt/mem_cache/chunk_cache.py +8 -1
  166. sglang/srt/mem_cache/evict_policy.py +23 -0
  167. sglang/srt/mem_cache/hicache_storage.py +40 -1
  168. sglang/srt/mem_cache/hiradix_cache.py +119 -32
  169. sglang/srt/mem_cache/memory_pool.py +188 -10
  170. sglang/srt/mem_cache/memory_pool_host.py +134 -182
  171. sglang/srt/mem_cache/radix_cache.py +222 -71
  172. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  173. sglang/srt/mem_cache/storage/__init__.py +10 -0
  174. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  175. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  176. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  177. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  178. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  179. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +173 -58
  180. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +10 -6
  181. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +117 -10
  182. sglang/srt/mem_cache/swa_radix_cache.py +25 -34
  183. sglang/srt/metrics/collector.py +82 -120
  184. sglang/srt/metrics/func_timer.py +2 -7
  185. sglang/srt/metrics/utils.py +8 -1
  186. sglang/srt/model_executor/cpu_graph_runner.py +2 -2
  187. sglang/srt/model_executor/cuda_graph_runner.py +39 -32
  188. sglang/srt/model_executor/forward_batch_info.py +23 -38
  189. sglang/srt/model_executor/model_runner.py +131 -183
  190. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  191. sglang/srt/model_loader/loader.py +14 -10
  192. sglang/srt/model_loader/weight_utils.py +156 -2
  193. sglang/srt/models/bailing_moe.py +27 -4
  194. sglang/srt/models/deepseek_nextn.py +6 -1
  195. sglang/srt/models/deepseek_v2.py +536 -153
  196. sglang/srt/models/dots_ocr.py +173 -0
  197. sglang/srt/models/falcon_h1.py +576 -0
  198. sglang/srt/models/gemma3_causal.py +0 -2
  199. sglang/srt/models/gemma3_mm.py +1 -1
  200. sglang/srt/models/gemma3n_mm.py +1 -1
  201. sglang/srt/models/glm4_moe.py +3 -3
  202. sglang/srt/models/glm4_moe_nextn.py +2 -2
  203. sglang/srt/models/glm4v.py +1 -1
  204. sglang/srt/models/glm4v_moe.py +1 -1
  205. sglang/srt/models/gpt_oss.py +7 -30
  206. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  207. sglang/srt/models/llama.py +4 -0
  208. sglang/srt/models/longcat_flash.py +1 -1
  209. sglang/srt/models/longcat_flash_nextn.py +1 -1
  210. sglang/srt/models/mllama4.py +15 -4
  211. sglang/srt/models/qwen2.py +0 -7
  212. sglang/srt/models/qwen2_5_vl.py +2 -2
  213. sglang/srt/models/qwen2_audio.py +1 -1
  214. sglang/srt/models/qwen2_moe.py +64 -1
  215. sglang/srt/models/qwen2_vl.py +1 -1
  216. sglang/srt/models/qwen3.py +18 -3
  217. sglang/srt/models/qwen3_moe.py +31 -3
  218. sglang/srt/models/qwen3_next.py +36 -9
  219. sglang/srt/models/qwen3_vl.py +787 -0
  220. sglang/srt/models/qwen3_vl_moe.py +471 -0
  221. sglang/srt/models/registry.py +15 -3
  222. sglang/srt/models/sarashina2_vision.py +269 -0
  223. sglang/srt/models/solar.py +505 -0
  224. sglang/srt/models/starcoder2.py +357 -0
  225. sglang/srt/models/torch_native_llama.py +9 -2
  226. sglang/srt/models/utils.py +51 -0
  227. sglang/srt/multimodal/processors/base_processor.py +15 -7
  228. sglang/srt/multimodal/processors/dots_vlm.py +2 -3
  229. sglang/srt/multimodal/processors/internvl.py +20 -8
  230. sglang/srt/multimodal/processors/qwen_vl.py +8 -1
  231. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  232. sglang/srt/parser/jinja_template_utils.py +6 -0
  233. sglang/srt/sampling/sampling_batch_info.py +20 -2
  234. sglang/srt/sampling/sampling_params.py +7 -0
  235. sglang/srt/server_args.py +753 -295
  236. sglang/srt/server_args_config_parser.py +146 -0
  237. sglang/srt/single_batch_overlap.py +151 -0
  238. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  239. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  240. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  241. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  242. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  243. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  244. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +2 -1
  245. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +3 -1
  246. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -755
  247. sglang/srt/speculative/eagle_worker.py +57 -25
  248. sglang/srt/speculative/ngram_utils.py +428 -0
  249. sglang/srt/speculative/ngram_worker.py +245 -0
  250. sglang/srt/speculative/spec_info.py +47 -0
  251. sglang/srt/speculative/spec_utils.py +606 -0
  252. sglang/srt/torch_memory_saver_adapter.py +5 -7
  253. sglang/srt/tracing/trace.py +32 -6
  254. sglang/srt/two_batch_overlap.py +8 -5
  255. sglang/srt/utils/__init__.py +2 -0
  256. sglang/srt/{utils.py → utils/common.py} +399 -74
  257. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +49 -5
  258. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  259. sglang/srt/utils/rpd_utils.py +452 -0
  260. sglang/srt/utils/slow_rank_detector.py +71 -0
  261. sglang/srt/warmup.py +8 -4
  262. sglang/srt/weight_sync/utils.py +1 -1
  263. sglang/test/get_logits_ut.py +57 -0
  264. sglang/test/run_eval.py +79 -11
  265. sglang/test/runners.py +1 -1
  266. sglang/test/simple_eval_common.py +5 -2
  267. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  268. sglang/test/test_block_fp8.py +2 -2
  269. sglang/test/test_deterministic.py +297 -0
  270. sglang/test/test_disaggregation_utils.py +12 -1
  271. sglang/test/test_programs.py +1 -1
  272. sglang/test/test_utils.py +355 -4
  273. sglang/utils.py +10 -1
  274. sglang/version.py +1 -1
  275. {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +34 -25
  276. {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +281 -210
  277. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  278. /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
  279. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  280. {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
  281. {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
  282. {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,757 @@
1
+ # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py
2
+
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
5
+
6
+ # Copyright (c) 2024, Tri Dao, Albert Gu.
7
+ # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_chunk_state.py
8
+
9
+ # ruff: noqa: E501
10
+
11
+ import math
12
+
13
+ import torch
14
+ import triton
15
+ import triton.language as tl
16
+
17
+ from .mamba_ssm import softplus
18
+
19
+
20
+ # @triton.autotune(
21
+ # configs=[
22
+ # triton.Config({"BLOCK_SIZE_H": 2}),
23
+ # triton.Config({"BLOCK_SIZE_H": 4}),
24
+ # triton.Config({"BLOCK_SIZE_H": 8}),
25
+ # triton.Config({"BLOCK_SIZE_H": 16}),
26
+ # triton.Config({"BLOCK_SIZE_H": 32}),
27
+ # triton.Config({"BLOCK_SIZE_H": 64}),
28
+ # ],
29
+ # key=["chunk_size", "nheads"],
30
+ # )
31
+ @triton.jit
32
+ def _chunk_cumsum_fwd_kernel(
33
+ # Pointers to matrices
34
+ dt_ptr,
35
+ A_ptr,
36
+ dt_bias_ptr,
37
+ dt_out_ptr,
38
+ dA_cumsum_ptr,
39
+ # Matrix dimension
40
+ batch,
41
+ seqlen,
42
+ nheads,
43
+ chunk_size,
44
+ dt_min,
45
+ dt_max,
46
+ # Strides
47
+ stride_dt_batch,
48
+ stride_dt_seqlen,
49
+ stride_dt_head,
50
+ stride_A_head,
51
+ stride_dt_bias_head,
52
+ stride_dt_out_batch,
53
+ stride_dt_out_chunk,
54
+ stride_dt_out_head,
55
+ stride_dt_out_csize,
56
+ stride_dA_cs_batch,
57
+ stride_dA_cs_chunk,
58
+ stride_dA_cs_head,
59
+ stride_dA_cs_csize,
60
+ # Meta-parameters
61
+ DT_SOFTPLUS: tl.constexpr,
62
+ HAS_DT_BIAS: tl.constexpr,
63
+ BLOCK_SIZE_CHUNK: tl.constexpr,
64
+ BLOCK_SIZE_H: tl.constexpr = 16,
65
+ ):
66
+ pid_b = tl.program_id(axis=0)
67
+
68
+ # if dt is long, may cause problems, so use 64 bit
69
+ # https://github.com/triton-lang/triton/issues/1058
70
+ pid_c = tl.program_id(axis=1).to(tl.int64)
71
+ pid_h = tl.program_id(axis=2)
72
+ dt_ptr += pid_b * stride_dt_batch + pid_c * chunk_size * stride_dt_seqlen
73
+ dt_out_ptr += pid_b * stride_dt_out_batch + pid_c * stride_dt_out_chunk
74
+ dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk
75
+
76
+ offs_h = pid_h * BLOCK_SIZE_H + tl.arange(0, BLOCK_SIZE_H)
77
+ offs_c = tl.arange(0, BLOCK_SIZE_CHUNK)
78
+ dt_ptrs = dt_ptr + (
79
+ offs_h[:, None] * stride_dt_head + offs_c[None, :] * stride_dt_seqlen
80
+ )
81
+ A_ptrs = A_ptr + offs_h * stride_A_head
82
+ dt_out_ptrs = dt_out_ptr + (
83
+ offs_h[:, None] * stride_dt_out_head + offs_c[None, :] * stride_dt_out_csize
84
+ )
85
+ dA_cs_ptrs = dA_cumsum_ptr + (
86
+ offs_h[:, None] * stride_dA_cs_head + offs_c[None, :] * stride_dA_cs_csize
87
+ )
88
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
89
+
90
+ dt = tl.load(
91
+ dt_ptrs,
92
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit),
93
+ other=0.0,
94
+ ).to(tl.float32)
95
+ if HAS_DT_BIAS:
96
+ dt_bias = tl.load(
97
+ dt_bias_ptr + offs_h * stride_dt_bias_head, mask=offs_h < nheads, other=0.0
98
+ ).to(tl.float32)
99
+ dt += dt_bias[:, None]
100
+ if DT_SOFTPLUS:
101
+ dt = tl.where(dt <= 20.0, softplus(dt), dt)
102
+ # As of Triton 2.2.0, tl.clamp is not available yet
103
+ # dt = tl.clamp(dt, dt_min, dt_max)
104
+ dt = tl.minimum(tl.maximum(dt, dt_min), dt_max)
105
+ dt = tl.where(
106
+ (offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), dt, 0.0
107
+ )
108
+ tl.store(
109
+ dt_out_ptrs,
110
+ dt,
111
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size),
112
+ )
113
+ A = tl.load(A_ptrs, mask=offs_h < nheads, other=0.0).to(tl.float32)
114
+ dA = dt * A[:, None]
115
+ dA_cs = tl.cumsum(dA, axis=1)
116
+ tl.store(
117
+ dA_cs_ptrs,
118
+ dA_cs,
119
+ mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size),
120
+ )
121
+
122
+
123
+ # @triton.autotune(
124
+ # configs=[
125
+ # triton.Config(
126
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
127
+ # num_stages=3,
128
+ # num_warps=8,
129
+ # ),
130
+ # triton.Config(
131
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
132
+ # num_stages=4,
133
+ # num_warps=4,
134
+ # ),
135
+ # triton.Config(
136
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
137
+ # num_stages=4,
138
+ # num_warps=4,
139
+ # ),
140
+ # triton.Config(
141
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
142
+ # num_stages=4,
143
+ # num_warps=4,
144
+ # ),
145
+ # triton.Config(
146
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
147
+ # num_stages=4,
148
+ # num_warps=4,
149
+ # ),
150
+ # triton.Config(
151
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
152
+ # num_stages=4,
153
+ # num_warps=4,
154
+ # ),
155
+ # triton.Config(
156
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
157
+ # num_stages=5,
158
+ # num_warps=2,
159
+ # ),
160
+ # triton.Config(
161
+ # {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
162
+ # num_stages=5,
163
+ # num_warps=2,
164
+ # ),
165
+ # triton.Config(
166
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
167
+ # num_stages=4,
168
+ # num_warps=2,
169
+ # ),
170
+ # ],
171
+ # key=["hdim", "dstate", "chunk_size"],
172
+ # )
173
+ @triton.jit
174
+ def _chunk_state_fwd_kernel(
175
+ # Pointers to matrices
176
+ x_ptr,
177
+ b_ptr,
178
+ states_ptr,
179
+ dt_ptr,
180
+ dA_cumsum_ptr,
181
+ seq_idx_ptr,
182
+ # Matrix dimensions
183
+ hdim,
184
+ dstate,
185
+ chunk_size,
186
+ batch,
187
+ seqlen,
188
+ nheads_ngroups_ratio,
189
+ # Strides
190
+ stride_x_batch,
191
+ stride_x_seqlen,
192
+ stride_x_head,
193
+ stride_x_hdim,
194
+ stride_b_batch,
195
+ stride_b_seqlen,
196
+ stride_b_head,
197
+ stride_b_dstate,
198
+ stride_states_batch,
199
+ stride_states_chunk,
200
+ stride_states_head,
201
+ stride_states_hdim,
202
+ stride_states_dstate,
203
+ stride_dt_batch,
204
+ stride_dt_chunk,
205
+ stride_dt_head,
206
+ stride_dt_csize,
207
+ stride_dA_cs_batch,
208
+ stride_dA_cs_chunk,
209
+ stride_dA_cs_head,
210
+ stride_dA_cs_csize,
211
+ stride_seq_idx_batch,
212
+ stride_seq_idx_seqlen,
213
+ # Meta-parameters
214
+ HAS_SEQ_IDX: tl.constexpr,
215
+ BLOCK_SIZE_M: tl.constexpr = 16,
216
+ BLOCK_SIZE_N: tl.constexpr = 16,
217
+ BLOCK_SIZE_K: tl.constexpr = 16,
218
+ ):
219
+ pid_bc = tl.program_id(axis=1).to(tl.int64)
220
+ pid_c = pid_bc // batch
221
+ pid_b = pid_bc - pid_c * batch
222
+ pid_h = tl.program_id(axis=2)
223
+ num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
224
+ pid_m = tl.program_id(axis=0) // num_pid_n
225
+ pid_n = tl.program_id(axis=0) % num_pid_n
226
+ b_ptr += (
227
+ pid_b * stride_b_batch
228
+ + pid_c * chunk_size * stride_b_seqlen
229
+ + (pid_h // nheads_ngroups_ratio) * stride_b_head
230
+ )
231
+ x_ptr += (
232
+ pid_b * stride_x_batch
233
+ + pid_c * chunk_size * stride_x_seqlen
234
+ + pid_h * stride_x_head
235
+ )
236
+ dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
237
+ dA_cumsum_ptr += (
238
+ pid_b * stride_dA_cs_batch
239
+ + pid_c * stride_dA_cs_chunk
240
+ + pid_h * stride_dA_cs_head
241
+ )
242
+ if HAS_SEQ_IDX:
243
+ seq_idx_ptr += (
244
+ pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
245
+ )
246
+
247
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
248
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
249
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
250
+ x_ptrs = x_ptr + (
251
+ offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen
252
+ )
253
+ b_ptrs = b_ptr + (
254
+ offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen
255
+ )
256
+ dt_ptrs = dt_ptr + offs_k * stride_dt_csize
257
+ dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(
258
+ tl.float32
259
+ )
260
+ dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
261
+ if HAS_SEQ_IDX:
262
+ seq_idx_ptrs = seq_idx_ptr + offs_k * stride_seq_idx_seqlen
263
+
264
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
265
+ if HAS_SEQ_IDX:
266
+ seq_idx_last = tl.load(
267
+ seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen
268
+ )
269
+
270
+ acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
271
+ for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
272
+ x = tl.load(
273
+ x_ptrs,
274
+ mask=(offs_m[:, None] < hdim) & (offs_k[None, :] < chunk_size_limit - k),
275
+ other=0.0,
276
+ )
277
+ b = tl.load(
278
+ b_ptrs,
279
+ mask=(offs_k[:, None] < chunk_size_limit - k) & (offs_n[None, :] < dstate),
280
+ other=0.0,
281
+ ).to(tl.float32)
282
+ dA_cs_k = tl.load(
283
+ dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0
284
+ ).to(tl.float32)
285
+ if HAS_SEQ_IDX:
286
+ seq_idx_k = tl.load(
287
+ seq_idx_ptrs, mask=offs_k < chunk_size_limit - k, other=-1
288
+ )
289
+ dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(
290
+ tl.float32
291
+ )
292
+ if not HAS_SEQ_IDX:
293
+ scale = tl.exp(dA_cs_last - dA_cs_k) * dt_k
294
+ else:
295
+ scale = tl.where(
296
+ seq_idx_k == seq_idx_last, tl.exp(dA_cs_last - dA_cs_k) * dt_k, 0.0
297
+ )
298
+ b *= scale[:, None]
299
+ b = b.to(x_ptr.dtype.element_ty)
300
+ acc += tl.dot(x, b)
301
+ x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
302
+ b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
303
+ dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
304
+ dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
305
+ if HAS_SEQ_IDX:
306
+ seq_idx_ptrs += BLOCK_SIZE_K * stride_seq_idx_seqlen
307
+ states = acc.to(states_ptr.dtype.element_ty)
308
+
309
+ states_ptr += (
310
+ pid_b * stride_states_batch
311
+ + pid_c * stride_states_chunk
312
+ + pid_h * stride_states_head
313
+ )
314
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
315
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
316
+ states_ptrs = states_ptr + (
317
+ offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate
318
+ )
319
+ c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
320
+ tl.store(states_ptrs, states, mask=c_mask)
321
+
322
+
323
+ # @triton.autotune(
324
+ # configs=[
325
+ # triton.Config(
326
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
327
+ # num_stages=3,
328
+ # num_warps=8,
329
+ # ),
330
+ # triton.Config(
331
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
332
+ # num_stages=4,
333
+ # num_warps=4,
334
+ # ),
335
+ # triton.Config(
336
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
337
+ # num_stages=4,
338
+ # num_warps=4,
339
+ # ),
340
+ # triton.Config(
341
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
342
+ # num_stages=4,
343
+ # num_warps=4,
344
+ # ),
345
+ # triton.Config(
346
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
347
+ # num_stages=4,
348
+ # num_warps=4,
349
+ # ),
350
+ # triton.Config(
351
+ # {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
352
+ # num_stages=4,
353
+ # num_warps=4,
354
+ # ),
355
+ # triton.Config(
356
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
357
+ # num_stages=5,
358
+ # num_warps=2,
359
+ # ),
360
+ # triton.Config(
361
+ # {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
362
+ # num_stages=5,
363
+ # num_warps=2,
364
+ # ),
365
+ # triton.Config(
366
+ # {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
367
+ # num_stages=4,
368
+ # num_warps=2,
369
+ # ),
370
+ # ],
371
+ # key=["hdim", "dstate", "chunk_size"],
372
+ # )
373
+ @triton.jit
374
+ def _chunk_state_varlen_kernel(
375
+ # Pointers to matrices
376
+ x_ptr,
377
+ b_ptr,
378
+ dt_ptr,
379
+ dA_cumsum_ptr,
380
+ chunk_states_ptr,
381
+ cu_seqlens_ptr,
382
+ states_ptr,
383
+ initstates_ptr,
384
+ # Matrix dimensions
385
+ hdim,
386
+ dstate,
387
+ chunk_size,
388
+ seqlen,
389
+ nheads_ngroups_ratio,
390
+ # Strides
391
+ stride_x_seqlen,
392
+ stride_x_head,
393
+ stride_x_hdim,
394
+ stride_b_seqlen,
395
+ stride_b_head,
396
+ stride_b_dstate,
397
+ stride_dt_chunk,
398
+ stride_dt_head,
399
+ stride_dt_csize,
400
+ stride_dA_cs_chunk,
401
+ stride_dA_cs_head,
402
+ stride_dA_cs_csize,
403
+ stride_chunk_states_chunk,
404
+ stride_chunk_states_head,
405
+ stride_chunk_states_hdim,
406
+ stride_chunk_states_dstate,
407
+ stride_states_batch,
408
+ stride_states_head,
409
+ stride_states_hdim,
410
+ stride_states_dstate,
411
+ stride_init_states_batch,
412
+ stride_init_states_head,
413
+ stride_init_states_hdim,
414
+ stride_init_states_dstate,
415
+ # Meta-parameters
416
+ HAS_INITSTATES: tl.constexpr,
417
+ BLOCK_SIZE_M: tl.constexpr = 16,
418
+ BLOCK_SIZE_N: tl.constexpr = 16,
419
+ BLOCK_SIZE_K: tl.constexpr = 16,
420
+ ):
421
+ pid_b = tl.program_id(axis=1)
422
+ pid_h = tl.program_id(axis=2)
423
+ num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
424
+ pid_m = tl.program_id(axis=0) // num_pid_n
425
+ pid_n = tl.program_id(axis=0) % num_pid_n
426
+ end_idx = tl.load(cu_seqlens_ptr + pid_b + 1)
427
+ pid_c = (end_idx - 1) // chunk_size
428
+ b_ptr += (
429
+ pid_c * chunk_size * stride_b_seqlen
430
+ + (pid_h // nheads_ngroups_ratio) * stride_b_head
431
+ )
432
+ x_ptr += pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
433
+ dt_ptr += pid_c * stride_dt_chunk + pid_h * stride_dt_head
434
+ dA_cumsum_ptr += pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
435
+ chunk_states_ptr += (
436
+ pid_c * stride_chunk_states_chunk + pid_h * stride_chunk_states_head
437
+ )
438
+
439
+ if HAS_INITSTATES:
440
+ # if there are init states provided, we differentiate between states (which
441
+ # are boundary conditions at a chunk boundary) and initstates (which are boundary
442
+ # conditions when a new example in a cont batch starts)
443
+ initstates_ptr += pid_h * stride_init_states_head
444
+
445
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
446
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
447
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
448
+ x_ptrs = x_ptr + (
449
+ offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen
450
+ )
451
+ b_ptrs = b_ptr + (
452
+ offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen
453
+ )
454
+ dt_ptrs = dt_ptr + offs_k * stride_dt_csize
455
+ dA_cs_last = tl.load(
456
+ dA_cumsum_ptr + (end_idx - pid_c * chunk_size - 1) * stride_dA_cs_csize
457
+ ).to(tl.float32)
458
+ dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
459
+
460
+ chunk_size_limit = end_idx - pid_c * chunk_size
461
+ start_idx = tl.load(cu_seqlens_ptr + pid_b)
462
+ start_idx_cur = tl.maximum(start_idx - pid_c * chunk_size, 0)
463
+
464
+ acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
465
+ for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
466
+ x = tl.load(
467
+ x_ptrs,
468
+ mask=(offs_m[:, None] < hdim)
469
+ & (offs_k[None, :] < chunk_size_limit - k)
470
+ & (offs_k[None, :] >= start_idx_cur - k),
471
+ other=0.0,
472
+ )
473
+ b = tl.load(
474
+ b_ptrs,
475
+ mask=(offs_k[:, None] < chunk_size_limit - k)
476
+ & (offs_n[None, :] < dstate)
477
+ & (offs_k[:, None] >= start_idx_cur - k),
478
+ other=0.0,
479
+ ).to(tl.float32)
480
+ dA_cs_k = tl.load(
481
+ dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0
482
+ ).to(tl.float32)
483
+ dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(
484
+ tl.float32
485
+ )
486
+ scale = tl.where(
487
+ (offs_k >= start_idx_cur - k) & (offs_k < chunk_size_limit - k),
488
+ tl.exp(dA_cs_last - dA_cs_k) * dt_k,
489
+ 0.0,
490
+ )
491
+ b *= scale[:, None]
492
+ b = b.to(x_ptr.dtype.element_ty)
493
+ acc += tl.dot(x, b)
494
+ x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
495
+ b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
496
+ dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
497
+ dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
498
+
499
+ # If the sequence starts after the last chunk idx, we don't need to add the contribution from the last chunk
500
+ # If HAS_INITSTATES==True need to consider two possibilities
501
+ # - if start_idx < pid_c * chunk_size, then we need to take the past_states_ptrs
502
+ # - if state_idx >= pid * chunk_size, then we need to insert initstates
503
+ if (start_idx < pid_c * chunk_size) or (HAS_INITSTATES): # first chunk
504
+
505
+ dA_cs_boundary = 0.0 # default
506
+
507
+ if not HAS_INITSTATES:
508
+ past_states_ptrs = chunk_states_ptr + (
509
+ offs_m[:, None] * stride_chunk_states_hdim
510
+ + offs_n[None, :] * stride_chunk_states_dstate
511
+ )
512
+ else:
513
+
514
+ # - this seems repetitive, buts its to help the compiler
515
+ if start_idx < pid_c * chunk_size:
516
+ past_states_ptrs = chunk_states_ptr + (
517
+ offs_m[:, None] * stride_chunk_states_hdim
518
+ + offs_n[None, :] * stride_chunk_states_dstate
519
+ )
520
+ else:
521
+ past_states_ptrs = initstates_ptr + (
522
+ pid_b * stride_init_states_batch
523
+ + offs_m[:, None] * stride_init_states_hdim
524
+ + offs_n[None, :] * stride_init_states_dstate
525
+ )
526
+
527
+ # need to adjust the boundary
528
+ if start_idx > pid_c * chunk_size:
529
+ dA_cs_boundary = tl.load(
530
+ dA_cumsum_ptr
531
+ + (start_idx - pid_c * chunk_size - 1) * stride_dA_cs_csize
532
+ ).to(tl.float32)
533
+
534
+ past_states = tl.load(
535
+ past_states_ptrs,
536
+ mask=(offs_m[:, None] < hdim) & (offs_n[None, :] < dstate),
537
+ other=0.0,
538
+ ).to(tl.float32)
539
+
540
+ scale = tl.exp(dA_cs_last - dA_cs_boundary)
541
+ acc += past_states * scale
542
+
543
+ states = acc.to(states_ptr.dtype.element_ty)
544
+
545
+ states_ptr += pid_b * stride_states_batch + pid_h * stride_states_head
546
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
547
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
548
+ states_ptrs = states_ptr + (
549
+ offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate
550
+ )
551
+ c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
552
+ tl.store(states_ptrs, states, mask=c_mask)
553
+
554
+
555
+ def _chunk_cumsum_fwd(
556
+ dt, A, chunk_size, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf"))
557
+ ):
558
+ batch, seqlen, nheads = dt.shape
559
+ assert A.shape == (nheads,)
560
+ if dt_bias is not None:
561
+ assert dt_bias.shape == (nheads,)
562
+ nchunks = math.ceil(seqlen / chunk_size)
563
+ dt_out = torch.empty(
564
+ batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32
565
+ )
566
+ dA_cumsum = torch.empty(
567
+ batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32
568
+ )
569
+ grid_chunk_cs = lambda META: (
570
+ batch,
571
+ nchunks,
572
+ triton.cdiv(nheads, META["BLOCK_SIZE_H"]),
573
+ )
574
+ with torch.cuda.device(dt.device.index):
575
+ _chunk_cumsum_fwd_kernel[grid_chunk_cs](
576
+ dt,
577
+ A,
578
+ dt_bias,
579
+ dt_out,
580
+ dA_cumsum,
581
+ batch,
582
+ seqlen,
583
+ nheads,
584
+ chunk_size,
585
+ dt_limit[0],
586
+ dt_limit[1],
587
+ dt.stride(0),
588
+ dt.stride(1),
589
+ dt.stride(2),
590
+ A.stride(0),
591
+ dt_bias.stride(0) if dt_bias is not None else 0,
592
+ dt_out.stride(0),
593
+ dt_out.stride(2),
594
+ dt_out.stride(1),
595
+ dt_out.stride(3),
596
+ dA_cumsum.stride(0),
597
+ dA_cumsum.stride(2),
598
+ dA_cumsum.stride(1),
599
+ dA_cumsum.stride(3),
600
+ dt_softplus,
601
+ HAS_DT_BIAS=dt_bias is not None,
602
+ BLOCK_SIZE_CHUNK=triton.next_power_of_2(chunk_size),
603
+ )
604
+ return dA_cumsum, dt_out
605
+
606
+
607
+ def _chunk_state_fwd(
608
+ B, x, dt, dA_cumsum, seq_idx=None, states=None, states_in_fp32=True
609
+ ):
610
+ batch, seqlen, nheads, headdim = x.shape
611
+ _, _, nchunks, chunk_size = dt.shape
612
+ _, _, ngroups, dstate = B.shape
613
+ assert nheads % ngroups == 0
614
+ assert B.shape == (batch, seqlen, ngroups, dstate)
615
+ assert dt.shape == (batch, nheads, nchunks, chunk_size)
616
+ assert dA_cumsum.shape == dt.shape
617
+ if seq_idx is not None:
618
+ assert seq_idx.shape == (batch, seqlen)
619
+ if states is not None:
620
+ assert states.shape == (batch, nchunks, nheads, headdim, dstate)
621
+ else:
622
+ states_dtype = torch.float32 if states_in_fp32 else B.dtype
623
+ states = torch.empty(
624
+ (batch, nchunks, nheads, headdim, dstate),
625
+ device=x.device,
626
+ dtype=states_dtype,
627
+ )
628
+ grid = lambda META: (
629
+ triton.cdiv(headdim, META["BLOCK_SIZE_M"])
630
+ * triton.cdiv(dstate, META["BLOCK_SIZE_N"]),
631
+ batch * nchunks,
632
+ nheads,
633
+ )
634
+ with torch.cuda.device(x.device.index):
635
+ _chunk_state_fwd_kernel[grid](
636
+ x,
637
+ B,
638
+ states,
639
+ dt,
640
+ dA_cumsum,
641
+ seq_idx,
642
+ headdim,
643
+ dstate,
644
+ chunk_size,
645
+ batch,
646
+ seqlen,
647
+ nheads // ngroups,
648
+ x.stride(0),
649
+ x.stride(1),
650
+ x.stride(2),
651
+ x.stride(3),
652
+ B.stride(0),
653
+ B.stride(1),
654
+ B.stride(2),
655
+ B.stride(-1),
656
+ states.stride(0),
657
+ states.stride(1),
658
+ states.stride(2),
659
+ states.stride(3),
660
+ states.stride(4),
661
+ dt.stride(0),
662
+ dt.stride(2),
663
+ dt.stride(1),
664
+ dt.stride(3),
665
+ dA_cumsum.stride(0),
666
+ dA_cumsum.stride(2),
667
+ dA_cumsum.stride(1),
668
+ dA_cumsum.stride(3),
669
+ *(
670
+ (seq_idx.stride(0), seq_idx.stride(1))
671
+ if seq_idx is not None
672
+ else (0, 0)
673
+ ),
674
+ HAS_SEQ_IDX=seq_idx is not None,
675
+ )
676
+ return states
677
+
678
+
679
+ def chunk_state_varlen(
680
+ B, x, dt, dA_cumsum, cu_seqlens, chunk_states, initial_states=None
681
+ ):
682
+ total_seqlen, nheads, headdim = x.shape
683
+ _, nchunks, chunk_size = dt.shape
684
+ _, ngroups, dstate = B.shape
685
+ batch = cu_seqlens.shape[0] - 1
686
+ cu_seqlens = cu_seqlens.contiguous()
687
+ assert nheads % ngroups == 0
688
+ assert B.shape == (total_seqlen, ngroups, dstate)
689
+ assert dt.shape == (nheads, nchunks, chunk_size)
690
+ assert dA_cumsum.shape == dt.shape
691
+ assert chunk_states.shape == (nchunks, nheads, headdim, dstate)
692
+
693
+ if initial_states is not None:
694
+ assert initial_states.shape == (batch, nheads, headdim, dstate)
695
+
696
+ states = torch.empty(
697
+ batch,
698
+ nheads,
699
+ headdim,
700
+ dstate,
701
+ dtype=chunk_states.dtype,
702
+ device=chunk_states.device,
703
+ )
704
+ grid = lambda META: (
705
+ triton.cdiv(headdim, META["BLOCK_SIZE_M"])
706
+ * triton.cdiv(dstate, META["BLOCK_SIZE_N"]),
707
+ batch,
708
+ nheads,
709
+ )
710
+ with torch.cuda.device(x.device.index):
711
+ _chunk_state_varlen_kernel[grid](
712
+ x,
713
+ B,
714
+ dt,
715
+ dA_cumsum,
716
+ chunk_states,
717
+ cu_seqlens,
718
+ states,
719
+ initial_states,
720
+ headdim,
721
+ dstate,
722
+ chunk_size,
723
+ total_seqlen,
724
+ nheads // ngroups,
725
+ x.stride(0),
726
+ x.stride(1),
727
+ x.stride(2),
728
+ B.stride(0),
729
+ B.stride(1),
730
+ B.stride(2),
731
+ dt.stride(1),
732
+ dt.stride(0),
733
+ dt.stride(2),
734
+ dA_cumsum.stride(1),
735
+ dA_cumsum.stride(0),
736
+ dA_cumsum.stride(2),
737
+ chunk_states.stride(0),
738
+ chunk_states.stride(1),
739
+ chunk_states.stride(2),
740
+ chunk_states.stride(3),
741
+ states.stride(0),
742
+ states.stride(1),
743
+ states.stride(2),
744
+ states.stride(3),
745
+ *(
746
+ (
747
+ initial_states.stride(0),
748
+ initial_states.stride(1),
749
+ initial_states.stride(2),
750
+ initial_states.stride(3),
751
+ )
752
+ if initial_states is not None
753
+ else (0, 0, 0, 0)
754
+ ),
755
+ HAS_INITSTATES=initial_states is not None,
756
+ )
757
+ return states