sglang 0.5.3rc0__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +321 -31
- sglang/bench_serving.py +10 -3
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +8 -0
- sglang/srt/configs/model_config.py +160 -105
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/constrained/base_grammar_backend.py +1 -0
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +6 -4
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/common/conn.py +266 -98
- sglang/srt/disaggregation/decode.py +50 -9
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/mooncake/conn.py +51 -541
- sglang/srt/disaggregation/nixl/conn.py +148 -39
- sglang/srt/disaggregation/prefill.py +31 -14
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +135 -80
- sglang/srt/entrypoints/engine.py +23 -3
- sglang/srt/entrypoints/grpc_request_manager.py +330 -55
- sglang/srt/entrypoints/grpc_server.py +232 -102
- sglang/srt/entrypoints/http_server.py +49 -9
- sglang/srt/entrypoints/openai/protocol.py +110 -5
- sglang/srt/entrypoints/openai/serving_base.py +25 -6
- sglang/srt/entrypoints/openai/serving_chat.py +178 -49
- sglang/srt/entrypoints/openai/serving_completions.py +5 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +42 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/function_call/function_call_parser.py +3 -2
- sglang/srt/function_call/glm4_moe_detector.py +3 -3
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +73 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +60 -53
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +3 -0
- sglang/srt/layers/activation.py +7 -6
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +108 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +112 -194
- sglang/srt/layers/attention/flashinfer_mla_backend.py +11 -15
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +11 -3
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +72 -72
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +15 -98
- sglang/srt/layers/attention/mamba/mamba.py +566 -1
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +42 -9
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +178 -34
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +11 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +2 -0
- sglang/srt/layers/linear.py +21 -4
- sglang/srt/layers/logits_processor.py +15 -2
- sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
- sglang/srt/layers/moe/ep_moe/layer.py +147 -74
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +6 -2
- sglang/srt/layers/moe/fused_moe_triton/layer.py +11 -12
- sglang/srt/layers/moe/token_dispatcher/deepep.py +77 -19
- sglang/srt/layers/moe/utils.py +10 -0
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/fp8.py +2 -2
- sglang/srt/layers/quantization/fp8_utils.py +1 -1
- sglang/srt/layers/quantization/modelopt_quant.py +44 -9
- sglang/srt/layers/quantization/mxfp4.py +12 -4
- sglang/srt/layers/quantization/quark/quark_moe.py +16 -3
- sglang/srt/layers/quantization/w4afp8.py +0 -4
- sglang/srt/layers/quantization/w8a8_int8.py +15 -3
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +52 -4
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +10 -4
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +17 -6
- sglang/srt/lora/mem_pool.py +1 -1
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +42 -142
- sglang/srt/managers/data_parallel_controller.py +11 -46
- sglang/srt/managers/detokenizer_manager.py +11 -11
- sglang/srt/managers/io_struct.py +162 -118
- sglang/srt/managers/mm_utils.py +43 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +17 -17
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +167 -86
- sglang/srt/managers/schedule_policy.py +143 -16
- sglang/srt/managers/scheduler.py +359 -214
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +98 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +21 -12
- sglang/srt/managers/scheduler_profiler_mixin.py +5 -5
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +111 -5
- sglang/srt/managers/tokenizer_manager.py +84 -136
- sglang/srt/managers/tp_worker.py +39 -29
- sglang/srt/managers/tp_worker_overlap_thread.py +33 -41
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +40 -1
- sglang/srt/mem_cache/hiradix_cache.py +119 -32
- sglang/srt/mem_cache/memory_pool.py +188 -10
- sglang/srt/mem_cache/memory_pool_host.py +134 -182
- sglang/srt/mem_cache/radix_cache.py +222 -71
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +173 -58
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +10 -6
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +117 -10
- sglang/srt/mem_cache/swa_radix_cache.py +25 -34
- sglang/srt/metrics/collector.py +82 -120
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +39 -32
- sglang/srt/model_executor/forward_batch_info.py +23 -38
- sglang/srt/model_executor/model_runner.py +131 -183
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/loader.py +14 -10
- sglang/srt/model_loader/weight_utils.py +156 -2
- sglang/srt/models/bailing_moe.py +27 -4
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +536 -153
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +3 -3
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +1 -1
- sglang/srt/models/glm4v_moe.py +1 -1
- sglang/srt/models/gpt_oss.py +7 -30
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/longcat_flash.py +1 -1
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +15 -4
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +2 -2
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +64 -1
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +31 -3
- sglang/srt/models/qwen3_next.py +36 -9
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +2 -3
- sglang/srt/multimodal/processors/internvl.py +20 -8
- sglang/srt/multimodal/processors/qwen_vl.py +8 -1
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +20 -2
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +753 -295
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +2 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +3 -1
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -755
- sglang/srt/speculative/eagle_worker.py +57 -25
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +47 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +399 -74
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +49 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +1 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +12 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +355 -4
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +34 -25
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +281 -210
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,172 @@
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
3
|
+
# Copyright (c) 2024, Tri Dao.
|
4
|
+
# Adapted from https://github.com/state-spaces/mamba/blob/60dadf2e0ee730ac337035d5533de10bc26e4847/mamba_ssm/ops/triton/layernorm_gated.py
|
5
|
+
|
6
|
+
import torch
|
7
|
+
import triton
|
8
|
+
import triton.language as tl
|
9
|
+
|
10
|
+
|
11
|
+
@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
12
|
+
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
|
13
|
+
@triton.jit
|
14
|
+
def _layer_norm_fwd_1pass_kernel(
|
15
|
+
X, # pointer to the input
|
16
|
+
Y, # pointer to the output
|
17
|
+
W, # pointer to the weights
|
18
|
+
B, # pointer to the biases
|
19
|
+
Z, # pointer to the other branch
|
20
|
+
Mean, # pointer to the mean
|
21
|
+
Rstd, # pointer to the 1/std
|
22
|
+
stride_x_row: tl.int64,
|
23
|
+
stride_y_row: tl.int64,
|
24
|
+
stride_z_row: tl.int64,
|
25
|
+
M: tl.int64, # number of rows in X
|
26
|
+
N: tl.int64, # number of columns in X
|
27
|
+
eps, # epsilon to avoid division by zero
|
28
|
+
BLOCK_N: tl.constexpr,
|
29
|
+
HAS_BIAS: tl.constexpr,
|
30
|
+
HAS_Z: tl.constexpr,
|
31
|
+
NORM_BEFORE_GATE: tl.constexpr,
|
32
|
+
IS_RMS_NORM: tl.constexpr,
|
33
|
+
):
|
34
|
+
# Map the program id to the row of X and Y it should compute.
|
35
|
+
row = tl.program_id(0)
|
36
|
+
group = tl.program_id(1)
|
37
|
+
X += row * stride_x_row + group * N
|
38
|
+
Y += row * stride_y_row + group * N
|
39
|
+
if HAS_Z:
|
40
|
+
Z += row * stride_z_row + group * N
|
41
|
+
if not IS_RMS_NORM:
|
42
|
+
Mean += group * M
|
43
|
+
Rstd += group * M
|
44
|
+
W += group * N
|
45
|
+
if HAS_BIAS:
|
46
|
+
B += group * N
|
47
|
+
# Compute mean and variance
|
48
|
+
cols = tl.arange(0, BLOCK_N)
|
49
|
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
50
|
+
if HAS_Z and not NORM_BEFORE_GATE:
|
51
|
+
z = tl.load(Z + cols, mask=cols < N).to(tl.float32)
|
52
|
+
x *= z * tl.sigmoid(z)
|
53
|
+
if not IS_RMS_NORM:
|
54
|
+
mean = tl.sum(x, axis=0) / N
|
55
|
+
tl.store(Mean + row, mean)
|
56
|
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
57
|
+
var = tl.sum(xbar * xbar, axis=0) / N
|
58
|
+
else:
|
59
|
+
xbar = tl.where(cols < N, x, 0.0)
|
60
|
+
var = tl.sum(xbar * xbar, axis=0) / N
|
61
|
+
rstd = 1 / tl.sqrt(var + eps)
|
62
|
+
tl.store(Rstd + row, rstd)
|
63
|
+
# Normalize and apply linear transformation
|
64
|
+
mask = cols < N
|
65
|
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
66
|
+
if HAS_BIAS:
|
67
|
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
68
|
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
69
|
+
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
70
|
+
if HAS_Z and NORM_BEFORE_GATE:
|
71
|
+
z = tl.load(Z + cols, mask=mask).to(tl.float32)
|
72
|
+
y *= z * tl.sigmoid(z)
|
73
|
+
# Write output
|
74
|
+
tl.store(Y + cols, y, mask=mask)
|
75
|
+
|
76
|
+
|
77
|
+
def _layer_norm_fwd(
|
78
|
+
x,
|
79
|
+
weight,
|
80
|
+
bias,
|
81
|
+
eps,
|
82
|
+
z=None,
|
83
|
+
out=None,
|
84
|
+
group_size=None,
|
85
|
+
norm_before_gate=True,
|
86
|
+
is_rms_norm=False,
|
87
|
+
):
|
88
|
+
M, N = x.shape
|
89
|
+
if group_size is None:
|
90
|
+
group_size = N
|
91
|
+
assert N % group_size == 0
|
92
|
+
ngroups = N // group_size
|
93
|
+
assert x.stride(-1) == 1
|
94
|
+
if z is not None:
|
95
|
+
assert z.stride(-1) == 1
|
96
|
+
assert z.shape == (M, N)
|
97
|
+
assert weight.shape == (N,)
|
98
|
+
assert weight.stride(-1) == 1
|
99
|
+
if bias is not None:
|
100
|
+
assert bias.stride(-1) == 1
|
101
|
+
assert bias.shape == (N,)
|
102
|
+
# allocate output
|
103
|
+
if out is not None:
|
104
|
+
assert out.shape == x.shape
|
105
|
+
else:
|
106
|
+
out = torch.empty_like(x)
|
107
|
+
assert out.stride(-1) == 1
|
108
|
+
mean = (
|
109
|
+
torch.empty((ngroups * M,), dtype=torch.float32, device=x.device)
|
110
|
+
if not is_rms_norm
|
111
|
+
else None
|
112
|
+
)
|
113
|
+
rstd = torch.empty((ngroups * M,), dtype=torch.float32, device=x.device)
|
114
|
+
# Less than 64KB per feature: enqueue fused kernel
|
115
|
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
116
|
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
|
117
|
+
if group_size > BLOCK_N:
|
118
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
119
|
+
# heuristics for number of warps
|
120
|
+
num_warps = min(max(BLOCK_N // 256, 1), 8)
|
121
|
+
grid = (M, ngroups)
|
122
|
+
with torch.cuda.device(x.device.index):
|
123
|
+
_layer_norm_fwd_1pass_kernel[grid](
|
124
|
+
x,
|
125
|
+
out,
|
126
|
+
weight,
|
127
|
+
bias,
|
128
|
+
z,
|
129
|
+
mean,
|
130
|
+
rstd,
|
131
|
+
x.stride(0),
|
132
|
+
out.stride(0),
|
133
|
+
z.stride(0) if z is not None else 0,
|
134
|
+
M,
|
135
|
+
group_size,
|
136
|
+
eps,
|
137
|
+
BLOCK_N=BLOCK_N,
|
138
|
+
NORM_BEFORE_GATE=norm_before_gate,
|
139
|
+
IS_RMS_NORM=is_rms_norm,
|
140
|
+
num_warps=num_warps,
|
141
|
+
)
|
142
|
+
return out, mean, rstd
|
143
|
+
|
144
|
+
|
145
|
+
def rms_norm_gated(
|
146
|
+
x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True
|
147
|
+
):
|
148
|
+
x_shape_og = x.shape
|
149
|
+
# reshape input data into 2D tensor
|
150
|
+
x = x.reshape(-1, x.shape[-1])
|
151
|
+
if x.stride(-1) != 1:
|
152
|
+
x = x.contiguous()
|
153
|
+
if z is not None:
|
154
|
+
assert z.shape == x_shape_og
|
155
|
+
z = z.reshape(-1, z.shape[-1])
|
156
|
+
if z.stride(-1) != 1:
|
157
|
+
z = z.contiguous()
|
158
|
+
weight = weight.contiguous()
|
159
|
+
if bias is not None:
|
160
|
+
bias = bias.contiguous()
|
161
|
+
y, _, _ = _layer_norm_fwd(
|
162
|
+
x,
|
163
|
+
weight,
|
164
|
+
bias,
|
165
|
+
eps,
|
166
|
+
z=z,
|
167
|
+
group_size=group_size,
|
168
|
+
norm_before_gate=norm_before_gate,
|
169
|
+
is_rms_norm=True,
|
170
|
+
)
|
171
|
+
|
172
|
+
return y.reshape(x_shape_og)
|
@@ -0,0 +1,442 @@
|
|
1
|
+
# Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/mamba_ssm.py
|
2
|
+
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
4
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
5
|
+
|
6
|
+
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
7
|
+
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/selective_state_update.py
|
8
|
+
|
9
|
+
import torch
|
10
|
+
import triton
|
11
|
+
import triton.language as tl
|
12
|
+
from packaging import version
|
13
|
+
|
14
|
+
from sglang.srt import _custom_ops as ops
|
15
|
+
|
16
|
+
PAD_SLOT_ID = -1
|
17
|
+
|
18
|
+
TRITON3 = version.parse(triton.__version__) >= version.parse("3.0.0")
|
19
|
+
|
20
|
+
if TRITON3:
|
21
|
+
|
22
|
+
@triton.jit
|
23
|
+
def softplus(dt):
|
24
|
+
dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt)
|
25
|
+
return dt
|
26
|
+
|
27
|
+
else:
|
28
|
+
|
29
|
+
@triton.jit
|
30
|
+
def softplus(dt):
|
31
|
+
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
|
32
|
+
return dt
|
33
|
+
|
34
|
+
|
35
|
+
@triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
|
36
|
+
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
|
37
|
+
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
|
38
|
+
@triton.heuristics(
|
39
|
+
{
|
40
|
+
"HAS_STATE_BATCH_INDICES": lambda args: args["state_batch_indices_ptr"]
|
41
|
+
is not None
|
42
|
+
}
|
43
|
+
)
|
44
|
+
@triton.heuristics(
|
45
|
+
{"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])}
|
46
|
+
)
|
47
|
+
@triton.jit
|
48
|
+
def _selective_scan_update_kernel(
|
49
|
+
# Pointers to matrices
|
50
|
+
state_ptr,
|
51
|
+
x_ptr,
|
52
|
+
dt_ptr,
|
53
|
+
dt_bias_ptr,
|
54
|
+
A_ptr,
|
55
|
+
B_ptr,
|
56
|
+
C_ptr,
|
57
|
+
D_ptr,
|
58
|
+
z_ptr,
|
59
|
+
out_ptr,
|
60
|
+
state_batch_indices_ptr,
|
61
|
+
pad_slot_id,
|
62
|
+
# Matrix dimensions
|
63
|
+
batch,
|
64
|
+
nheads,
|
65
|
+
dim,
|
66
|
+
dstate,
|
67
|
+
nheads_ngroups_ratio,
|
68
|
+
# Strides
|
69
|
+
stride_state_batch,
|
70
|
+
stride_state_head,
|
71
|
+
stride_state_dim,
|
72
|
+
stride_state_dstate,
|
73
|
+
stride_x_batch,
|
74
|
+
stride_x_head,
|
75
|
+
stride_x_dim,
|
76
|
+
stride_dt_batch,
|
77
|
+
stride_dt_head,
|
78
|
+
stride_dt_dim,
|
79
|
+
stride_dt_bias_head,
|
80
|
+
stride_dt_bias_dim,
|
81
|
+
stride_A_head,
|
82
|
+
stride_A_dim,
|
83
|
+
stride_A_dstate,
|
84
|
+
stride_B_batch,
|
85
|
+
stride_B_group,
|
86
|
+
stride_B_dstate,
|
87
|
+
stride_C_batch,
|
88
|
+
stride_C_group,
|
89
|
+
stride_C_dstate,
|
90
|
+
stride_D_head,
|
91
|
+
stride_D_dim,
|
92
|
+
stride_z_batch,
|
93
|
+
stride_z_head,
|
94
|
+
stride_z_dim,
|
95
|
+
stride_out_batch,
|
96
|
+
stride_out_head,
|
97
|
+
stride_out_dim,
|
98
|
+
# Meta-parameters
|
99
|
+
DT_SOFTPLUS: tl.constexpr,
|
100
|
+
TIE_HDIM: tl.constexpr,
|
101
|
+
BLOCK_SIZE_M: tl.constexpr,
|
102
|
+
HAS_DT_BIAS: tl.constexpr,
|
103
|
+
HAS_D: tl.constexpr,
|
104
|
+
HAS_Z: tl.constexpr,
|
105
|
+
HAS_STATE_BATCH_INDICES: tl.constexpr,
|
106
|
+
BLOCK_SIZE_DSTATE: tl.constexpr,
|
107
|
+
):
|
108
|
+
pid_m = tl.program_id(axis=0)
|
109
|
+
pid_b = tl.program_id(axis=1)
|
110
|
+
pid_h = tl.program_id(axis=2)
|
111
|
+
|
112
|
+
# If HAS_STATE_BATCH_INDICES is true, then the ssm state's batch coordinate
|
113
|
+
# is taken from the state_batch_indices_ptr Otherwise, the state coordinate
|
114
|
+
# is the same as the batch id.
|
115
|
+
if HAS_STATE_BATCH_INDICES:
|
116
|
+
state_batch_indices_ptr += pid_b
|
117
|
+
state_batch_idx = tl.load(state_batch_indices_ptr).to(tl.int64)
|
118
|
+
state_ptr += state_batch_idx * stride_state_batch + pid_h * stride_state_head
|
119
|
+
else:
|
120
|
+
state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
|
121
|
+
|
122
|
+
x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
|
123
|
+
dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
|
124
|
+
if HAS_DT_BIAS:
|
125
|
+
dt_bias_ptr += pid_h * stride_dt_bias_head
|
126
|
+
A_ptr += pid_h * stride_A_head
|
127
|
+
B_ptr += pid_b * stride_B_batch + (pid_h // nheads_ngroups_ratio) * stride_B_group
|
128
|
+
C_ptr += pid_b * stride_C_batch + (pid_h // nheads_ngroups_ratio) * stride_C_group
|
129
|
+
if HAS_Z:
|
130
|
+
z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
|
131
|
+
out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
|
132
|
+
|
133
|
+
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
134
|
+
offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
|
135
|
+
state_ptrs = state_ptr + (
|
136
|
+
offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate
|
137
|
+
)
|
138
|
+
x_ptrs = x_ptr + offs_m * stride_x_dim
|
139
|
+
dt_ptrs = dt_ptr + offs_m * stride_dt_dim
|
140
|
+
if HAS_DT_BIAS:
|
141
|
+
dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
|
142
|
+
if HAS_D:
|
143
|
+
D_ptr += pid_h * stride_D_head
|
144
|
+
A_ptrs = A_ptr + (
|
145
|
+
offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate
|
146
|
+
)
|
147
|
+
B_ptrs = B_ptr + offs_n * stride_B_dstate
|
148
|
+
C_ptrs = C_ptr + offs_n * stride_C_dstate
|
149
|
+
if HAS_D:
|
150
|
+
D_ptrs = D_ptr + offs_m * stride_D_dim
|
151
|
+
if HAS_Z:
|
152
|
+
z_ptrs = z_ptr + offs_m * stride_z_dim
|
153
|
+
out_ptrs = out_ptr + offs_m * stride_out_dim
|
154
|
+
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
|
155
|
+
if HAS_STATE_BATCH_INDICES:
|
156
|
+
mask &= state_batch_idx != pad_slot_id
|
157
|
+
state = tl.load(state_ptrs, mask=mask, other=0.0)
|
158
|
+
|
159
|
+
x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
160
|
+
if not TIE_HDIM:
|
161
|
+
dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
162
|
+
if HAS_DT_BIAS:
|
163
|
+
dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
164
|
+
if DT_SOFTPLUS:
|
165
|
+
dt = softplus(dt)
|
166
|
+
A = tl.load(
|
167
|
+
A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0
|
168
|
+
).to(tl.float32)
|
169
|
+
dA = tl.exp(A * dt[:, None])
|
170
|
+
else:
|
171
|
+
dt = tl.load(dt_ptr).to(tl.float32)
|
172
|
+
if HAS_DT_BIAS:
|
173
|
+
dt += tl.load(dt_bias_ptr).to(tl.float32)
|
174
|
+
if DT_SOFTPLUS:
|
175
|
+
dt = softplus(dt)
|
176
|
+
A = tl.load(A_ptr).to(tl.float32)
|
177
|
+
dA = tl.exp(A * dt) # scalar, not a matrix
|
178
|
+
|
179
|
+
B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
180
|
+
C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
181
|
+
if HAS_D:
|
182
|
+
D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
183
|
+
if HAS_Z:
|
184
|
+
z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
185
|
+
|
186
|
+
dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt
|
187
|
+
state = state * dA + dB * x[:, None]
|
188
|
+
|
189
|
+
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
|
190
|
+
if HAS_STATE_BATCH_INDICES:
|
191
|
+
mask &= state_batch_idx != pad_slot_id
|
192
|
+
tl.store(state_ptrs, state, mask=mask)
|
193
|
+
out = tl.sum(state * C[None, :], axis=1)
|
194
|
+
if HAS_D:
|
195
|
+
out += x * D
|
196
|
+
if HAS_Z:
|
197
|
+
out *= z * tl.sigmoid(z)
|
198
|
+
tl.store(out_ptrs, out, mask=offs_m < dim)
|
199
|
+
|
200
|
+
|
201
|
+
def selective_state_update(
|
202
|
+
state,
|
203
|
+
x,
|
204
|
+
dt,
|
205
|
+
A,
|
206
|
+
B,
|
207
|
+
C,
|
208
|
+
D=None,
|
209
|
+
z=None,
|
210
|
+
dt_bias=None,
|
211
|
+
dt_softplus=False,
|
212
|
+
state_batch_indices=None,
|
213
|
+
pad_slot_id=PAD_SLOT_ID,
|
214
|
+
out=None,
|
215
|
+
):
|
216
|
+
"""
|
217
|
+
Argument:
|
218
|
+
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
219
|
+
x: (batch, dim) or (batch, nheads, dim)
|
220
|
+
dt: (batch, dim) or (batch, nheads, dim)
|
221
|
+
A: (dim, dstate) or (nheads, dim, dstate)
|
222
|
+
B: (batch, dstate) or (batch, ngroups, dstate)
|
223
|
+
C: (batch, dstate) or (batch, ngroups, dstate)
|
224
|
+
D: (dim,) or (nheads, dim)
|
225
|
+
z: (batch, dim) or (batch, nheads, dim)
|
226
|
+
dt_bias: (dim,) or (nheads, dim)
|
227
|
+
pad_slot_id: int
|
228
|
+
if cache_indices is passed, lets the kernel identify padded
|
229
|
+
entries that will not be processed,
|
230
|
+
for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id]
|
231
|
+
in this case, the kernel will not process entries at
|
232
|
+
indices 0 and 3
|
233
|
+
out: Preallocated ssm output tensor. Assume same shape as x.
|
234
|
+
In-place updated.
|
235
|
+
"""
|
236
|
+
if state.dim() == 3:
|
237
|
+
state = state.unsqueeze(1)
|
238
|
+
if x.dim() == 2:
|
239
|
+
x = x.unsqueeze(1)
|
240
|
+
if dt.dim() == 2:
|
241
|
+
dt = dt.unsqueeze(1)
|
242
|
+
if A.dim() == 2:
|
243
|
+
A = A.unsqueeze(0)
|
244
|
+
if B.dim() == 2:
|
245
|
+
B = B.unsqueeze(1)
|
246
|
+
if C.dim() == 2:
|
247
|
+
C = C.unsqueeze(1)
|
248
|
+
if D is not None and D.dim() == 1:
|
249
|
+
D = D.unsqueeze(0)
|
250
|
+
if z is not None and z.dim() == 2:
|
251
|
+
z = z.unsqueeze(1)
|
252
|
+
if dt_bias is not None and dt_bias.dim() == 1:
|
253
|
+
dt_bias = dt_bias.unsqueeze(0)
|
254
|
+
if out.dim() == 2:
|
255
|
+
out = out.unsqueeze(1)
|
256
|
+
|
257
|
+
_, nheads, dim, dstate = state.shape
|
258
|
+
batch = x.shape[0]
|
259
|
+
|
260
|
+
assert x.shape == (batch, nheads, dim)
|
261
|
+
assert dt.shape == x.shape
|
262
|
+
assert A.shape == (nheads, dim, dstate)
|
263
|
+
ngroups = B.shape[1]
|
264
|
+
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
|
265
|
+
assert B.shape == (batch, ngroups, dstate)
|
266
|
+
assert C.shape == B.shape
|
267
|
+
if D is not None:
|
268
|
+
assert D.shape == (nheads, dim)
|
269
|
+
if z is not None:
|
270
|
+
assert z.shape == x.shape
|
271
|
+
if dt_bias is not None:
|
272
|
+
assert dt_bias.shape == (nheads, dim)
|
273
|
+
if state_batch_indices is not None:
|
274
|
+
assert state_batch_indices.shape == (batch,)
|
275
|
+
assert out.shape == x.shape
|
276
|
+
|
277
|
+
grid = lambda META: (triton.cdiv(dim, META["BLOCK_SIZE_M"]), batch, nheads)
|
278
|
+
z_strides = (z.stride(0), z.stride(1), z.stride(2)) if z is not None else (0, 0, 0)
|
279
|
+
# We don't want autotune since it will overwrite the state
|
280
|
+
# We instead tune by hand.
|
281
|
+
BLOCK_SIZE_M, num_warps = (
|
282
|
+
(32, 4)
|
283
|
+
if dstate <= 16
|
284
|
+
else (
|
285
|
+
(16, 4)
|
286
|
+
if dstate <= 32
|
287
|
+
else ((8, 4) if dstate <= 64 else ((4, 4) if dstate <= 128 else ((4, 8))))
|
288
|
+
)
|
289
|
+
)
|
290
|
+
tie_hdim = (
|
291
|
+
A.stride(-1) == 0
|
292
|
+
and A.stride(-2) == 0
|
293
|
+
and dt.stride(-1) == 0
|
294
|
+
and dt_bias.stride(-1) == 0
|
295
|
+
)
|
296
|
+
with torch.cuda.device(x.device.index):
|
297
|
+
_selective_scan_update_kernel[grid](
|
298
|
+
state,
|
299
|
+
x,
|
300
|
+
dt,
|
301
|
+
dt_bias,
|
302
|
+
A,
|
303
|
+
B,
|
304
|
+
C,
|
305
|
+
D,
|
306
|
+
z,
|
307
|
+
out,
|
308
|
+
state_batch_indices,
|
309
|
+
pad_slot_id,
|
310
|
+
batch,
|
311
|
+
nheads,
|
312
|
+
dim,
|
313
|
+
dstate,
|
314
|
+
nheads // ngroups,
|
315
|
+
state.stride(0),
|
316
|
+
state.stride(1),
|
317
|
+
state.stride(2),
|
318
|
+
state.stride(3),
|
319
|
+
x.stride(0),
|
320
|
+
x.stride(1),
|
321
|
+
x.stride(2),
|
322
|
+
dt.stride(0),
|
323
|
+
dt.stride(1),
|
324
|
+
dt.stride(2),
|
325
|
+
*(dt_bias.stride(0), dt_bias.stride(1)) if dt_bias is not None else 0,
|
326
|
+
A.stride(0),
|
327
|
+
A.stride(1),
|
328
|
+
A.stride(2),
|
329
|
+
B.stride(0),
|
330
|
+
B.stride(1),
|
331
|
+
B.stride(2),
|
332
|
+
C.stride(0),
|
333
|
+
C.stride(1),
|
334
|
+
C.stride(2),
|
335
|
+
*(D.stride(0), D.stride(1)) if D is not None else 0,
|
336
|
+
z_strides[0],
|
337
|
+
z_strides[1],
|
338
|
+
z_strides[2],
|
339
|
+
out.stride(0),
|
340
|
+
out.stride(1),
|
341
|
+
out.stride(2),
|
342
|
+
dt_softplus,
|
343
|
+
tie_hdim,
|
344
|
+
BLOCK_SIZE_M,
|
345
|
+
num_warps=num_warps,
|
346
|
+
)
|
347
|
+
|
348
|
+
|
349
|
+
def selective_scan_fn(
|
350
|
+
u,
|
351
|
+
ssm_states,
|
352
|
+
delta,
|
353
|
+
A,
|
354
|
+
B,
|
355
|
+
C,
|
356
|
+
D=None,
|
357
|
+
z=None,
|
358
|
+
delta_bias=None,
|
359
|
+
delta_softplus=False,
|
360
|
+
query_start_loc=None,
|
361
|
+
cache_indices=None,
|
362
|
+
has_initial_state=None,
|
363
|
+
pad_slot_id=PAD_SLOT_ID,
|
364
|
+
) -> torch.Tensor:
|
365
|
+
"""
|
366
|
+
u: (dim, total_length) for varlen or (batch, dim, seqlen)
|
367
|
+
applies changes in place.
|
368
|
+
ssm_states: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
369
|
+
applies changes in place.
|
370
|
+
delta: (dim, total_length) for varlen or (batch, dim, seqlen)
|
371
|
+
A: (dim, dstate)
|
372
|
+
B: (ngroups, dstate, total_length) for varlen or
|
373
|
+
(batch,ngroups,dstate,seqlen)
|
374
|
+
C: (ngroups, dstate, total_length) for varlen or
|
375
|
+
(batch,ngroups,dstate,seqlen)
|
376
|
+
D: (dim,)
|
377
|
+
z: (dim, total_length) for varlen or (batch, dim, seqlen)
|
378
|
+
dt_bias: (dim,) or (dim)
|
379
|
+
query_start_loc: (batch + 1) int32
|
380
|
+
The cumulative sequence lengths of the sequences in
|
381
|
+
the batch, used to index into sequence. prepended with 0.
|
382
|
+
for example: query_start_loc = torch.Tensor([0,10,16,17]),
|
383
|
+
x.shape=(dim,17)
|
384
|
+
cache_indices: (batch) int32
|
385
|
+
A tensor with each cell is a correspondent
|
386
|
+
input and output ssm_state index
|
387
|
+
has_initial_state: (batch) bool
|
388
|
+
A tensor populated with ones and zeros,
|
389
|
+
indicate if the ssm_state at the corresponding index should be
|
390
|
+
used as initial state. Not providing argument assumes
|
391
|
+
there's no initial state
|
392
|
+
pad_slot_id: int
|
393
|
+
if cache_indices is passed, lets the kernel identify padding entries
|
394
|
+
that will not be processed,
|
395
|
+
for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id]
|
396
|
+
in this case, the kernel will not process entries at indices 0 and 3
|
397
|
+
returns
|
398
|
+
output: (dim, total_length) for varlen or (batch, dim, seqlen)
|
399
|
+
supports inplace replacement
|
400
|
+
"""
|
401
|
+
if u.stride(-1) != 1:
|
402
|
+
u = u.contiguous()
|
403
|
+
if delta.stride(-1) != 1:
|
404
|
+
delta = delta.contiguous()
|
405
|
+
if D is not None:
|
406
|
+
D = D.contiguous()
|
407
|
+
if B.stride(-1) != 1:
|
408
|
+
B = B.contiguous()
|
409
|
+
if C.stride(-1) != 1:
|
410
|
+
C = C.contiguous()
|
411
|
+
if z is not None and z.stride(-1) != 1:
|
412
|
+
z = z.contiguous()
|
413
|
+
if B.dim() == 3 and query_start_loc is None:
|
414
|
+
B = B.unsqueeze(1)
|
415
|
+
if B.dim() == 2 and query_start_loc is not None:
|
416
|
+
B = B.unsqueeze(0)
|
417
|
+
if C.dim() == 3 and query_start_loc is None:
|
418
|
+
C = C.unsqueeze(1)
|
419
|
+
if C.dim() == 2 and query_start_loc is not None:
|
420
|
+
C = C.unsqueeze(0)
|
421
|
+
|
422
|
+
ops.selective_scan_fwd(
|
423
|
+
u,
|
424
|
+
delta,
|
425
|
+
A,
|
426
|
+
B,
|
427
|
+
C,
|
428
|
+
D,
|
429
|
+
z,
|
430
|
+
delta_bias,
|
431
|
+
delta_softplus,
|
432
|
+
query_start_loc,
|
433
|
+
cache_indices,
|
434
|
+
has_initial_state,
|
435
|
+
ssm_states,
|
436
|
+
pad_slot_id,
|
437
|
+
)
|
438
|
+
|
439
|
+
if z is None:
|
440
|
+
return delta # output written inplace to delta
|
441
|
+
else:
|
442
|
+
return z # output written inplace to z
|