sglang 0.5.3rc0__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +321 -31
- sglang/bench_serving.py +10 -3
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +8 -0
- sglang/srt/configs/model_config.py +160 -105
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/constrained/base_grammar_backend.py +1 -0
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +6 -4
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/common/conn.py +266 -98
- sglang/srt/disaggregation/decode.py +50 -9
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/mooncake/conn.py +51 -541
- sglang/srt/disaggregation/nixl/conn.py +148 -39
- sglang/srt/disaggregation/prefill.py +31 -14
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +135 -80
- sglang/srt/entrypoints/engine.py +23 -3
- sglang/srt/entrypoints/grpc_request_manager.py +330 -55
- sglang/srt/entrypoints/grpc_server.py +232 -102
- sglang/srt/entrypoints/http_server.py +49 -9
- sglang/srt/entrypoints/openai/protocol.py +110 -5
- sglang/srt/entrypoints/openai/serving_base.py +25 -6
- sglang/srt/entrypoints/openai/serving_chat.py +178 -49
- sglang/srt/entrypoints/openai/serving_completions.py +5 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +42 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/function_call/function_call_parser.py +3 -2
- sglang/srt/function_call/glm4_moe_detector.py +3 -3
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +73 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +60 -53
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +3 -0
- sglang/srt/layers/activation.py +7 -6
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +108 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +112 -194
- sglang/srt/layers/attention/flashinfer_mla_backend.py +11 -15
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +11 -3
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +72 -72
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +15 -98
- sglang/srt/layers/attention/mamba/mamba.py +566 -1
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +42 -9
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +178 -34
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +11 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +2 -0
- sglang/srt/layers/linear.py +21 -4
- sglang/srt/layers/logits_processor.py +15 -2
- sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
- sglang/srt/layers/moe/ep_moe/layer.py +147 -74
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +6 -2
- sglang/srt/layers/moe/fused_moe_triton/layer.py +11 -12
- sglang/srt/layers/moe/token_dispatcher/deepep.py +77 -19
- sglang/srt/layers/moe/utils.py +10 -0
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/fp8.py +2 -2
- sglang/srt/layers/quantization/fp8_utils.py +1 -1
- sglang/srt/layers/quantization/modelopt_quant.py +44 -9
- sglang/srt/layers/quantization/mxfp4.py +12 -4
- sglang/srt/layers/quantization/quark/quark_moe.py +16 -3
- sglang/srt/layers/quantization/w4afp8.py +0 -4
- sglang/srt/layers/quantization/w8a8_int8.py +15 -3
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +52 -4
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +10 -4
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +17 -6
- sglang/srt/lora/mem_pool.py +1 -1
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +42 -142
- sglang/srt/managers/data_parallel_controller.py +11 -46
- sglang/srt/managers/detokenizer_manager.py +11 -11
- sglang/srt/managers/io_struct.py +162 -118
- sglang/srt/managers/mm_utils.py +43 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +17 -17
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +167 -86
- sglang/srt/managers/schedule_policy.py +143 -16
- sglang/srt/managers/scheduler.py +359 -214
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +98 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +21 -12
- sglang/srt/managers/scheduler_profiler_mixin.py +5 -5
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +111 -5
- sglang/srt/managers/tokenizer_manager.py +84 -136
- sglang/srt/managers/tp_worker.py +39 -29
- sglang/srt/managers/tp_worker_overlap_thread.py +33 -41
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +40 -1
- sglang/srt/mem_cache/hiradix_cache.py +119 -32
- sglang/srt/mem_cache/memory_pool.py +188 -10
- sglang/srt/mem_cache/memory_pool_host.py +134 -182
- sglang/srt/mem_cache/radix_cache.py +222 -71
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +173 -58
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +10 -6
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +117 -10
- sglang/srt/mem_cache/swa_radix_cache.py +25 -34
- sglang/srt/metrics/collector.py +82 -120
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +39 -32
- sglang/srt/model_executor/forward_batch_info.py +23 -38
- sglang/srt/model_executor/model_runner.py +131 -183
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/loader.py +14 -10
- sglang/srt/model_loader/weight_utils.py +156 -2
- sglang/srt/models/bailing_moe.py +27 -4
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +536 -153
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +3 -3
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +1 -1
- sglang/srt/models/glm4v_moe.py +1 -1
- sglang/srt/models/gpt_oss.py +7 -30
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/longcat_flash.py +1 -1
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +15 -4
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +2 -2
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +64 -1
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +31 -3
- sglang/srt/models/qwen3_next.py +36 -9
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +2 -3
- sglang/srt/multimodal/processors/internvl.py +20 -8
- sglang/srt/multimodal/processors/qwen_vl.py +8 -1
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +20 -2
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +753 -295
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +2 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +3 -1
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -755
- sglang/srt/speculative/eagle_worker.py +57 -25
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +47 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +399 -74
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +49 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +1 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +12 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +355 -4
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +34 -25
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +281 -210
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,622 @@
|
|
1
|
+
# Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py
|
2
|
+
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
4
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
5
|
+
|
6
|
+
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
7
|
+
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_chunk_scan.py
|
8
|
+
|
9
|
+
# ruff: noqa: E501,SIM102
|
10
|
+
|
11
|
+
import torch
|
12
|
+
import triton
|
13
|
+
import triton.language as tl
|
14
|
+
from packaging import version
|
15
|
+
|
16
|
+
TRITON_22 = version.parse(triton.__version__) >= version.parse("2.2.0")
|
17
|
+
|
18
|
+
|
19
|
+
# @triton.autotune(
|
20
|
+
# configs=[
|
21
|
+
# triton.Config(
|
22
|
+
# {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
|
23
|
+
# num_stages=3,
|
24
|
+
# num_warps=8,
|
25
|
+
# ),
|
26
|
+
# triton.Config(
|
27
|
+
# {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
|
28
|
+
# num_stages=4,
|
29
|
+
# num_warps=4,
|
30
|
+
# ),
|
31
|
+
# triton.Config(
|
32
|
+
# {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
|
33
|
+
# num_stages=4,
|
34
|
+
# num_warps=4,
|
35
|
+
# ),
|
36
|
+
# triton.Config(
|
37
|
+
# {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
|
38
|
+
# num_stages=4,
|
39
|
+
# num_warps=4,
|
40
|
+
# ),
|
41
|
+
# triton.Config(
|
42
|
+
# {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
|
43
|
+
# num_stages=4,
|
44
|
+
# num_warps=4,
|
45
|
+
# ),
|
46
|
+
# triton.Config(
|
47
|
+
# {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64},
|
48
|
+
# num_stages=4,
|
49
|
+
# num_warps=4,
|
50
|
+
# ),
|
51
|
+
# triton.Config(
|
52
|
+
# {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64},
|
53
|
+
# num_stages=4,
|
54
|
+
# num_warps=4,
|
55
|
+
# ),
|
56
|
+
# triton.Config(
|
57
|
+
# {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
|
58
|
+
# num_stages=4,
|
59
|
+
# num_warps=4,
|
60
|
+
# ),
|
61
|
+
# triton.Config(
|
62
|
+
# {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
|
63
|
+
# num_stages=5,
|
64
|
+
# num_warps=2,
|
65
|
+
# ),
|
66
|
+
# triton.Config(
|
67
|
+
# {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
|
68
|
+
# num_stages=5,
|
69
|
+
# num_warps=2,
|
70
|
+
# ),
|
71
|
+
# triton.Config(
|
72
|
+
# {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
|
73
|
+
# num_stages=4,
|
74
|
+
# num_warps=2,
|
75
|
+
# ),
|
76
|
+
# ],
|
77
|
+
# key=["chunk_size", "hdim", "dstate", "IS_CAUSAL"],
|
78
|
+
# )
|
79
|
+
@triton.jit
|
80
|
+
def _chunk_scan_fwd_kernel(
|
81
|
+
# Pointers to matrices
|
82
|
+
cb_ptr,
|
83
|
+
x_ptr,
|
84
|
+
z_ptr,
|
85
|
+
out_ptr,
|
86
|
+
out_x_ptr,
|
87
|
+
dt_ptr,
|
88
|
+
dA_cumsum_ptr,
|
89
|
+
seq_idx_ptr,
|
90
|
+
C_ptr,
|
91
|
+
states_ptr,
|
92
|
+
D_ptr,
|
93
|
+
initstates_ptr,
|
94
|
+
chunk_indices_ptr,
|
95
|
+
chunk_offsets_ptr,
|
96
|
+
chunk_meta_num,
|
97
|
+
# Matrix dimensions
|
98
|
+
chunk_size,
|
99
|
+
hdim,
|
100
|
+
dstate,
|
101
|
+
batch,
|
102
|
+
seqlen,
|
103
|
+
nheads_ngroups_ratio,
|
104
|
+
# Strides
|
105
|
+
stride_cb_batch,
|
106
|
+
stride_cb_chunk,
|
107
|
+
stride_cb_head,
|
108
|
+
stride_cb_csize_m,
|
109
|
+
stride_cb_csize_k,
|
110
|
+
stride_x_batch,
|
111
|
+
stride_x_seqlen,
|
112
|
+
stride_x_head,
|
113
|
+
stride_x_hdim,
|
114
|
+
stride_z_batch,
|
115
|
+
stride_z_seqlen,
|
116
|
+
stride_z_head,
|
117
|
+
stride_z_hdim,
|
118
|
+
stride_out_batch,
|
119
|
+
stride_out_seqlen,
|
120
|
+
stride_out_head,
|
121
|
+
stride_out_hdim,
|
122
|
+
stride_dt_batch,
|
123
|
+
stride_dt_chunk,
|
124
|
+
stride_dt_head,
|
125
|
+
stride_dt_csize,
|
126
|
+
stride_dA_cs_batch,
|
127
|
+
stride_dA_cs_chunk,
|
128
|
+
stride_dA_cs_head,
|
129
|
+
stride_dA_cs_csize,
|
130
|
+
stride_seq_idx_batch,
|
131
|
+
stride_seq_idx_seqlen,
|
132
|
+
stride_C_batch,
|
133
|
+
stride_C_seqlen,
|
134
|
+
stride_C_head,
|
135
|
+
stride_C_dstate,
|
136
|
+
stride_states_batch,
|
137
|
+
stride_states_chunk,
|
138
|
+
stride_states_head,
|
139
|
+
stride_states_hdim,
|
140
|
+
stride_states_dstate,
|
141
|
+
stride_init_states_batch,
|
142
|
+
stride_init_states_head,
|
143
|
+
stride_init_states_hdim,
|
144
|
+
stride_init_states_dstate,
|
145
|
+
stride_D_head,
|
146
|
+
# Meta-parameters
|
147
|
+
IS_CAUSAL: tl.constexpr,
|
148
|
+
HAS_D: tl.constexpr,
|
149
|
+
D_HAS_HDIM: tl.constexpr,
|
150
|
+
HAS_Z: tl.constexpr,
|
151
|
+
HAS_SEQ_IDX: tl.constexpr,
|
152
|
+
BLOCK_SIZE_DSTATE: tl.constexpr,
|
153
|
+
IS_TRITON_22: tl.constexpr,
|
154
|
+
HAS_INITSTATES: tl.constexpr,
|
155
|
+
BLOCK_SIZE_M: tl.constexpr = 16,
|
156
|
+
BLOCK_SIZE_N: tl.constexpr = 16,
|
157
|
+
BLOCK_SIZE_K: tl.constexpr = 16,
|
158
|
+
):
|
159
|
+
pid_bc = tl.program_id(axis=1).to(tl.int64)
|
160
|
+
pid_c = pid_bc // batch
|
161
|
+
pid_b = pid_bc - pid_c * batch
|
162
|
+
if not HAS_INITSTATES:
|
163
|
+
c_idx = pid_c
|
164
|
+
c_off = 0
|
165
|
+
else:
|
166
|
+
c_idx = tl.load(chunk_indices_ptr + pid_c, mask=pid_c > -1, other=0)
|
167
|
+
c_off = tl.load(chunk_offsets_ptr + pid_c, mask=pid_c > -1, other=0)
|
168
|
+
|
169
|
+
pid_h = tl.program_id(axis=2)
|
170
|
+
num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
|
171
|
+
pid_m = tl.program_id(axis=0) // num_pid_n
|
172
|
+
pid_n = tl.program_id(axis=0) % num_pid_n
|
173
|
+
cb_ptr += (
|
174
|
+
pid_b * stride_cb_batch
|
175
|
+
+ c_idx * stride_cb_chunk
|
176
|
+
+ (pid_h // nheads_ngroups_ratio) * stride_cb_head
|
177
|
+
)
|
178
|
+
x_ptr += (
|
179
|
+
pid_b * stride_x_batch
|
180
|
+
+ c_idx * chunk_size * stride_x_seqlen
|
181
|
+
+ pid_h * stride_x_head
|
182
|
+
)
|
183
|
+
dt_ptr += pid_b * stride_dt_batch + c_idx * stride_dt_chunk + pid_h * stride_dt_head
|
184
|
+
dA_cumsum_ptr += (
|
185
|
+
pid_b * stride_dA_cs_batch
|
186
|
+
+ c_idx * stride_dA_cs_chunk
|
187
|
+
+ pid_h * stride_dA_cs_head
|
188
|
+
)
|
189
|
+
C_ptr += (
|
190
|
+
pid_b * stride_C_batch
|
191
|
+
+ c_idx * chunk_size * stride_C_seqlen
|
192
|
+
+ (pid_h // nheads_ngroups_ratio) * stride_C_head
|
193
|
+
)
|
194
|
+
|
195
|
+
# M-block offsets and prev states
|
196
|
+
# - logic in next block may override these if there is an active offset
|
197
|
+
offs_m = pid_m * BLOCK_SIZE_M + c_off + tl.arange(0, BLOCK_SIZE_M)
|
198
|
+
prev_states_ptr = (
|
199
|
+
states_ptr
|
200
|
+
+ pid_b * stride_states_batch
|
201
|
+
+ c_idx * stride_states_chunk
|
202
|
+
+ pid_h * stride_states_head
|
203
|
+
)
|
204
|
+
prev_states_hdim = stride_states_hdim
|
205
|
+
prev_states_dstate = stride_states_dstate
|
206
|
+
|
207
|
+
chunk_size_limit = min(chunk_size, seqlen - c_idx * chunk_size)
|
208
|
+
if HAS_SEQ_IDX:
|
209
|
+
seq_idx_ptr += (
|
210
|
+
pid_b * stride_seq_idx_batch + c_idx * chunk_size * stride_seq_idx_seqlen
|
211
|
+
)
|
212
|
+
|
213
|
+
# - we only need seq_idx_prev to be aligned to chunk boundary
|
214
|
+
seq_idx_prev = tl.load(
|
215
|
+
seq_idx_ptr - stride_seq_idx_seqlen, mask=c_idx >= 1, other=0
|
216
|
+
)
|
217
|
+
|
218
|
+
if HAS_INITSTATES:
|
219
|
+
# if there are init states, we only need seq_idx_m to point
|
220
|
+
# what is the current seq_idx
|
221
|
+
|
222
|
+
# get current seq idx
|
223
|
+
if (pid_m * BLOCK_SIZE_M + c_off) < chunk_size_limit:
|
224
|
+
seq_idx_m = tl.load(
|
225
|
+
seq_idx_ptr
|
226
|
+
+ (pid_m * BLOCK_SIZE_M + c_off) * stride_seq_idx_seqlen,
|
227
|
+
)
|
228
|
+
|
229
|
+
# - recall that in ssd_state_passing, for the case c_off == 0
|
230
|
+
# i.e., the very first sequence, we made states_ptr hold its initial state
|
231
|
+
# so this edge case is taken care of
|
232
|
+
if (
|
233
|
+
(c_off == 0)
|
234
|
+
and (
|
235
|
+
seq_idx_prev != seq_idx_m
|
236
|
+
) # if a seq is changed exactly on boundary
|
237
|
+
or (c_off > 0) # implies a new example (pseudo chunk)
|
238
|
+
):
|
239
|
+
|
240
|
+
# - replace prev_states_ptr with init_states
|
241
|
+
prev_states_ptr = (
|
242
|
+
initstates_ptr
|
243
|
+
+ seq_idx_m * stride_init_states_batch
|
244
|
+
+ pid_h * stride_init_states_head
|
245
|
+
)
|
246
|
+
prev_states_hdim = stride_init_states_hdim # override strides
|
247
|
+
prev_states_dstate = stride_init_states_dstate
|
248
|
+
|
249
|
+
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
250
|
+
dA_cs_m = tl.load(
|
251
|
+
dA_cumsum_ptr + offs_m * stride_dA_cs_csize, mask=offs_m < chunk_size, other=0.0
|
252
|
+
).to(tl.float32)
|
253
|
+
|
254
|
+
# - handle chunk state limit
|
255
|
+
if HAS_INITSTATES:
|
256
|
+
|
257
|
+
# have to split this if otherwise compilation will have problems
|
258
|
+
dA_cs_m_boundary = 0.0
|
259
|
+
|
260
|
+
# get the c_idx for the next (logica) chunk
|
261
|
+
c_idx_n = tl.load(
|
262
|
+
chunk_indices_ptr + (pid_c + 1),
|
263
|
+
mask=pid_c > -1 and (pid_c + 1) < chunk_meta_num,
|
264
|
+
other=-1, # to trigger different chunk
|
265
|
+
)
|
266
|
+
|
267
|
+
# - there are things to consider
|
268
|
+
# A. if c_off > 0 then we need to move the dA_cs boundary to ensure correct
|
269
|
+
# contribution of past states
|
270
|
+
# B. if c_off_n < chunk_size_limit, then we need to adjust this so as not to
|
271
|
+
# encroach into the next sequence, where c_off_n is the offset of the next
|
272
|
+
# (logical) chunk.
|
273
|
+
# An equivalent check for B is c_idx == c_idx_n, where there is repetition in
|
274
|
+
# (logical) chunk indices.
|
275
|
+
|
276
|
+
if (c_idx == c_idx_n) or c_off > 0:
|
277
|
+
|
278
|
+
# get the next offset
|
279
|
+
c_off_n = tl.load(
|
280
|
+
chunk_offsets_ptr + (pid_c + 1),
|
281
|
+
mask=pid_c > -1 and (pid_c + 1) < chunk_meta_num,
|
282
|
+
other=chunk_size,
|
283
|
+
)
|
284
|
+
|
285
|
+
# in this case, adjust down the chunk_size_limit
|
286
|
+
if c_idx == c_idx_n:
|
287
|
+
chunk_size_limit = min(c_off_n, chunk_size_limit)
|
288
|
+
|
289
|
+
# get the cs at the offset boundary
|
290
|
+
# - c_off == 0 is a passthrough
|
291
|
+
# - We need dA_cs at the boundary, defined by c_off - no need
|
292
|
+
# to increase pointer by pid_m (it is a constant offset,
|
293
|
+
# i.e. the same for all blocks)
|
294
|
+
dA_cs_m_boundary = tl.load(
|
295
|
+
dA_cumsum_ptr + (c_off - 1) * stride_dA_cs_csize,
|
296
|
+
mask=(((c_off - 1) > -1) and ((c_off) < chunk_size)),
|
297
|
+
other=0.0,
|
298
|
+
).to(tl.float32)
|
299
|
+
|
300
|
+
if HAS_SEQ_IDX:
|
301
|
+
# - handle seq idx when HAS_INITSTATES==False
|
302
|
+
if not HAS_INITSTATES:
|
303
|
+
seq_idx_m = tl.load(
|
304
|
+
seq_idx_ptr + offs_m * stride_seq_idx_seqlen,
|
305
|
+
mask=offs_m < chunk_size_limit,
|
306
|
+
other=-1,
|
307
|
+
)
|
308
|
+
|
309
|
+
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
310
|
+
|
311
|
+
# Without the if (pid_c > -1), with Triton 2.1.0, I get
|
312
|
+
# Assertion `!(srcMmaLayout && dstMmaLayout) && "Unexpected mma -> mm a layout conversion"' failed.
|
313
|
+
# With Triton 2.2.0, this works
|
314
|
+
if IS_TRITON_22 or c_idx > -1:
|
315
|
+
# Faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
|
316
|
+
offs_k_dstate = tl.arange(
|
317
|
+
0, BLOCK_SIZE_DSTATE if BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K
|
318
|
+
)
|
319
|
+
C_ptrs = C_ptr + (
|
320
|
+
offs_m[:, None] * stride_C_seqlen + offs_k_dstate[None, :] * stride_C_dstate
|
321
|
+
)
|
322
|
+
|
323
|
+
prev_states_ptrs = prev_states_ptr + (
|
324
|
+
offs_n[None, :] * prev_states_hdim
|
325
|
+
+ offs_k_dstate[:, None] * prev_states_dstate
|
326
|
+
)
|
327
|
+
if HAS_SEQ_IDX:
|
328
|
+
|
329
|
+
if not HAS_INITSTATES:
|
330
|
+
# - this is for continuous batching where there is no init states
|
331
|
+
scale_m = tl.where(seq_idx_m == seq_idx_prev, tl.exp(dA_cs_m), 0.0)
|
332
|
+
else:
|
333
|
+
# - if there is initstates, we will rely on prev_states, no zeroing
|
334
|
+
# required.
|
335
|
+
scale_m = tl.exp(dA_cs_m - dA_cs_m_boundary)
|
336
|
+
else:
|
337
|
+
scale_m = tl.exp(dA_cs_m)
|
338
|
+
if BLOCK_SIZE_DSTATE <= 128:
|
339
|
+
C = tl.load(
|
340
|
+
C_ptrs,
|
341
|
+
mask=(offs_m[:, None] < chunk_size_limit)
|
342
|
+
& (offs_k_dstate[None, :] < dstate),
|
343
|
+
other=0.0,
|
344
|
+
)
|
345
|
+
|
346
|
+
prev_states = tl.load(
|
347
|
+
prev_states_ptrs,
|
348
|
+
mask=(offs_k_dstate[:, None] < dstate) & (offs_n[None, :] < hdim),
|
349
|
+
other=0.0,
|
350
|
+
)
|
351
|
+
prev_states = prev_states.to(C_ptr.dtype.element_ty)
|
352
|
+
acc = tl.dot(C, prev_states) * scale_m[:, None]
|
353
|
+
else:
|
354
|
+
for k in range(0, dstate, BLOCK_SIZE_K):
|
355
|
+
C = tl.load(
|
356
|
+
C_ptrs,
|
357
|
+
mask=(offs_m[:, None] < chunk_size_limit)
|
358
|
+
& (offs_k_dstate[None, :] < dstate - k),
|
359
|
+
other=0.0,
|
360
|
+
)
|
361
|
+
# C = (C * scale_m[:, None]).to(C_ptr.dtype.element_ty)
|
362
|
+
prev_states = tl.load(
|
363
|
+
prev_states_ptrs,
|
364
|
+
mask=(offs_k_dstate[:, None] < dstate - k)
|
365
|
+
& (offs_n[None, :] < hdim),
|
366
|
+
other=0.0,
|
367
|
+
)
|
368
|
+
prev_states = prev_states.to(C_ptr.dtype.element_ty)
|
369
|
+
acc += tl.dot(C, prev_states)
|
370
|
+
C_ptrs += BLOCK_SIZE_K
|
371
|
+
prev_states_ptrs += BLOCK_SIZE_K
|
372
|
+
acc *= scale_m[:, None]
|
373
|
+
|
374
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K) + c_off
|
375
|
+
cb_ptrs = cb_ptr + (
|
376
|
+
offs_m[:, None] * stride_cb_csize_m + offs_k[None, :] * stride_cb_csize_k
|
377
|
+
)
|
378
|
+
x_ptrs = x_ptr + (
|
379
|
+
offs_k[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim
|
380
|
+
)
|
381
|
+
dt_ptrs = dt_ptr + offs_k * stride_dt_csize
|
382
|
+
dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
|
383
|
+
K_MAX = (
|
384
|
+
chunk_size_limit
|
385
|
+
if not IS_CAUSAL
|
386
|
+
else min((pid_m + 1) * BLOCK_SIZE_M, chunk_size_limit)
|
387
|
+
)
|
388
|
+
for k in range(0, K_MAX, BLOCK_SIZE_K):
|
389
|
+
cb = tl.load(
|
390
|
+
cb_ptrs,
|
391
|
+
mask=(offs_m[:, None] < chunk_size) & (offs_k[None, :] < chunk_size - k),
|
392
|
+
other=0.0,
|
393
|
+
).to(tl.float32)
|
394
|
+
dA_cs_k = tl.load(dA_cumsum_ptrs, mask=offs_k < chunk_size - k, other=0.0).to(
|
395
|
+
tl.float32
|
396
|
+
)
|
397
|
+
# If there's seq_idx, we already set cb[i, j] = 0 for seq_idx[i] != seq_idx[j].
|
398
|
+
# So we don't need masking wrt seq_idx here.
|
399
|
+
cb *= tl.exp(dA_cs_m[:, None] - dA_cs_k[None, :])
|
400
|
+
dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size - k, other=0.0).to(tl.float32)
|
401
|
+
cb *= dt_k
|
402
|
+
if IS_CAUSAL:
|
403
|
+
mask = offs_m[:, None] >= k + offs_k[None, :]
|
404
|
+
cb = tl.where(mask, cb, 0.0)
|
405
|
+
cb = cb.to(x_ptr.dtype.element_ty)
|
406
|
+
x = tl.load(
|
407
|
+
x_ptrs,
|
408
|
+
mask=(offs_k[:, None] < chunk_size_limit - k) & (offs_n[None, :] < hdim),
|
409
|
+
other=0.0,
|
410
|
+
)
|
411
|
+
acc += tl.dot(cb, x)
|
412
|
+
cb_ptrs += BLOCK_SIZE_K * stride_cb_csize_k
|
413
|
+
x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
|
414
|
+
dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
|
415
|
+
dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
|
416
|
+
|
417
|
+
offs_out_m = pid_m * BLOCK_SIZE_M + c_off + tl.arange(0, BLOCK_SIZE_M)
|
418
|
+
offs_out_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
419
|
+
|
420
|
+
if HAS_D:
|
421
|
+
if D_HAS_HDIM:
|
422
|
+
D = tl.load(
|
423
|
+
D_ptr + pid_h * stride_D_head + offs_n, mask=offs_n < hdim, other=0.0
|
424
|
+
).to(tl.float32)
|
425
|
+
else:
|
426
|
+
D = tl.load(D_ptr + pid_h * stride_D_head).to(tl.float32)
|
427
|
+
x_residual = tl.load(
|
428
|
+
x_ptr
|
429
|
+
+ (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim),
|
430
|
+
mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim),
|
431
|
+
other=0.0,
|
432
|
+
).to(tl.float32)
|
433
|
+
acc += x_residual * D
|
434
|
+
|
435
|
+
if HAS_Z:
|
436
|
+
out_x_ptr += (
|
437
|
+
pid_b * stride_out_batch
|
438
|
+
+ c_idx * chunk_size * stride_out_seqlen
|
439
|
+
+ pid_h * stride_out_head
|
440
|
+
)
|
441
|
+
out_x_ptrs = out_x_ptr + (
|
442
|
+
stride_out_seqlen * offs_out_m[:, None] + offs_out_n[None, :]
|
443
|
+
)
|
444
|
+
tl.store(
|
445
|
+
out_x_ptrs,
|
446
|
+
acc,
|
447
|
+
mask=(offs_out_m[:, None] < chunk_size_limit)
|
448
|
+
& (offs_out_n[None, :] < hdim),
|
449
|
+
)
|
450
|
+
|
451
|
+
z_ptr += (
|
452
|
+
pid_b * stride_z_batch
|
453
|
+
+ c_idx * chunk_size * stride_z_seqlen
|
454
|
+
+ pid_h * stride_z_head
|
455
|
+
)
|
456
|
+
z_ptrs = z_ptr + (
|
457
|
+
stride_z_seqlen * offs_out_m[:, None] + stride_z_hdim * offs_out_n[None, :]
|
458
|
+
)
|
459
|
+
z = tl.load(
|
460
|
+
z_ptrs,
|
461
|
+
mask=(offs_out_m[:, None] < chunk_size_limit)
|
462
|
+
& (offs_out_n[None, :] < hdim),
|
463
|
+
other=0.0,
|
464
|
+
).to(tl.float32)
|
465
|
+
acc *= z * tl.sigmoid(z)
|
466
|
+
|
467
|
+
out_ptr += (
|
468
|
+
pid_b * stride_out_batch
|
469
|
+
+ c_idx * chunk_size * stride_out_seqlen
|
470
|
+
+ pid_h * stride_out_head
|
471
|
+
)
|
472
|
+
out_ptrs = out_ptr + (
|
473
|
+
stride_out_seqlen * offs_out_m[:, None] + offs_out_n[None, :] * stride_out_hdim
|
474
|
+
)
|
475
|
+
tl.store(
|
476
|
+
out_ptrs,
|
477
|
+
acc,
|
478
|
+
mask=(offs_out_m[:, None] < chunk_size_limit) & (offs_out_n[None, :] < hdim),
|
479
|
+
)
|
480
|
+
|
481
|
+
|
482
|
+
def _chunk_scan_fwd(
|
483
|
+
cb,
|
484
|
+
x,
|
485
|
+
dt,
|
486
|
+
dA_cumsum,
|
487
|
+
C,
|
488
|
+
states,
|
489
|
+
D=None,
|
490
|
+
z=None,
|
491
|
+
seq_idx=None,
|
492
|
+
chunk_indices=None,
|
493
|
+
chunk_offsets=None,
|
494
|
+
initial_states=None,
|
495
|
+
out=None,
|
496
|
+
):
|
497
|
+
batch, seqlen, nheads, headdim = x.shape
|
498
|
+
_, _, nchunks, chunk_size = dt.shape
|
499
|
+
_, _, ngroups, dstate = C.shape
|
500
|
+
assert nheads % ngroups == 0
|
501
|
+
assert C.shape == (batch, seqlen, ngroups, dstate)
|
502
|
+
assert cb.shape == (batch, nchunks, ngroups, chunk_size, chunk_size)
|
503
|
+
if z is not None:
|
504
|
+
assert z.shape == x.shape
|
505
|
+
if D is not None:
|
506
|
+
assert D.shape == (nheads, headdim) or D.shape == (nheads,)
|
507
|
+
assert dt.shape == (batch, nheads, nchunks, chunk_size)
|
508
|
+
assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
|
509
|
+
assert states.shape == (batch, nchunks, nheads, headdim, dstate)
|
510
|
+
|
511
|
+
if seq_idx is not None:
|
512
|
+
assert seq_idx.shape == (batch, seqlen)
|
513
|
+
|
514
|
+
if initial_states is not None:
|
515
|
+
# with initial states, we need to take care of how
|
516
|
+
# seq_idx crosses the boundaries
|
517
|
+
assert batch == 1, "chunk scan only supports initial states with batch 1"
|
518
|
+
assert (
|
519
|
+
chunk_indices is not None and chunk_offsets is not None
|
520
|
+
), "chunk_indices and chunk_offsets should have been set"
|
521
|
+
else:
|
522
|
+
chunk_indices, chunk_offsets = None, None
|
523
|
+
else:
|
524
|
+
chunk_indices, chunk_offsets = None, None
|
525
|
+
|
526
|
+
assert out.shape == x.shape
|
527
|
+
|
528
|
+
if z is not None:
|
529
|
+
out_x = torch.empty_like(x)
|
530
|
+
assert out_x.stride() == out.stride()
|
531
|
+
else:
|
532
|
+
out_x = None
|
533
|
+
|
534
|
+
grid = lambda META: (
|
535
|
+
triton.cdiv(chunk_size, META["BLOCK_SIZE_M"])
|
536
|
+
* triton.cdiv(headdim, META["BLOCK_SIZE_N"]),
|
537
|
+
batch * nchunks if chunk_offsets is None else len(chunk_offsets),
|
538
|
+
nheads,
|
539
|
+
)
|
540
|
+
z_strides = (
|
541
|
+
(z.stride(0), z.stride(1), z.stride(2), z.stride(3))
|
542
|
+
if z is not None
|
543
|
+
else (0, 0, 0, 0)
|
544
|
+
)
|
545
|
+
_chunk_scan_fwd_kernel[grid](
|
546
|
+
cb,
|
547
|
+
x,
|
548
|
+
z,
|
549
|
+
out,
|
550
|
+
out_x,
|
551
|
+
dt,
|
552
|
+
dA_cumsum,
|
553
|
+
seq_idx,
|
554
|
+
C,
|
555
|
+
states,
|
556
|
+
D,
|
557
|
+
initial_states,
|
558
|
+
chunk_indices,
|
559
|
+
chunk_offsets,
|
560
|
+
len(chunk_indices) if chunk_indices is not None else 0,
|
561
|
+
chunk_size,
|
562
|
+
headdim,
|
563
|
+
dstate,
|
564
|
+
batch,
|
565
|
+
seqlen,
|
566
|
+
nheads // ngroups,
|
567
|
+
cb.stride(0),
|
568
|
+
cb.stride(1),
|
569
|
+
cb.stride(2),
|
570
|
+
cb.stride(3),
|
571
|
+
cb.stride(4),
|
572
|
+
x.stride(0),
|
573
|
+
x.stride(1),
|
574
|
+
x.stride(2),
|
575
|
+
x.stride(3),
|
576
|
+
z_strides[0],
|
577
|
+
z_strides[1],
|
578
|
+
z_strides[2],
|
579
|
+
z_strides[3],
|
580
|
+
out.stride(0),
|
581
|
+
out.stride(1),
|
582
|
+
out.stride(2),
|
583
|
+
out.stride(3),
|
584
|
+
dt.stride(0),
|
585
|
+
dt.stride(2),
|
586
|
+
dt.stride(1),
|
587
|
+
dt.stride(3),
|
588
|
+
dA_cumsum.stride(0),
|
589
|
+
dA_cumsum.stride(2),
|
590
|
+
dA_cumsum.stride(1),
|
591
|
+
dA_cumsum.stride(3),
|
592
|
+
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
|
593
|
+
C.stride(0),
|
594
|
+
C.stride(1),
|
595
|
+
C.stride(2),
|
596
|
+
C.stride(3),
|
597
|
+
states.stride(0),
|
598
|
+
states.stride(1),
|
599
|
+
states.stride(2),
|
600
|
+
states.stride(3),
|
601
|
+
states.stride(4),
|
602
|
+
*(
|
603
|
+
(
|
604
|
+
initial_states.stride(0),
|
605
|
+
initial_states.stride(1),
|
606
|
+
initial_states.stride(2),
|
607
|
+
initial_states.stride(3),
|
608
|
+
)
|
609
|
+
if initial_states is not None
|
610
|
+
else (0, 0, 0, 0)
|
611
|
+
),
|
612
|
+
D.stride(0) if D is not None else 0,
|
613
|
+
True,
|
614
|
+
D is not None,
|
615
|
+
D.dim() == 2 if D is not None else True,
|
616
|
+
BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
|
617
|
+
HAS_Z=z is not None,
|
618
|
+
HAS_SEQ_IDX=seq_idx is not None,
|
619
|
+
IS_TRITON_22=TRITON_22,
|
620
|
+
HAS_INITSTATES=initial_states is not None,
|
621
|
+
)
|
622
|
+
return out_x
|