sglang 0.4.6.post5__py3-none-any.whl → 0.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (318) hide show
  1. sglang/bench_offline_throughput.py +10 -4
  2. sglang/bench_one_batch_server.py +67 -11
  3. sglang/bench_serving.py +85 -74
  4. sglang/lang/backend/runtime_endpoint.py +24 -1
  5. sglang/profiler.py +167 -0
  6. sglang/srt/_custom_ops.py +34 -0
  7. sglang/srt/configs/internvl.py +8 -12
  8. sglang/srt/configs/model_config.py +27 -1
  9. sglang/srt/constrained/base_grammar_backend.py +5 -2
  10. sglang/srt/constrained/llguidance_backend.py +9 -8
  11. sglang/srt/constrained/outlines_backend.py +5 -4
  12. sglang/srt/constrained/xgrammar_backend.py +18 -18
  13. sglang/srt/conversation.py +46 -8
  14. sglang/srt/custom_op.py +38 -3
  15. sglang/srt/debug_utils.py +74 -0
  16. sglang/srt/disaggregation/common/__init__.py +1 -0
  17. sglang/srt/disaggregation/common/conn.py +407 -0
  18. sglang/srt/disaggregation/decode.py +67 -3
  19. sglang/srt/disaggregation/fake/conn.py +1 -0
  20. sglang/srt/disaggregation/kv_events.py +60 -5
  21. sglang/srt/disaggregation/launch_lb.py +140 -0
  22. sglang/srt/disaggregation/mini_lb.py +29 -48
  23. sglang/srt/disaggregation/mooncake/conn.py +432 -140
  24. sglang/srt/disaggregation/mooncake/transfer_engine.py +32 -16
  25. sglang/srt/disaggregation/nixl/conn.py +124 -432
  26. sglang/srt/disaggregation/prefill.py +2 -0
  27. sglang/srt/disaggregation/utils.py +38 -1
  28. sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
  29. sglang/srt/distributed/parallel_state.py +52 -5
  30. sglang/srt/entrypoints/EngineBase.py +6 -0
  31. sglang/srt/entrypoints/engine.py +102 -5
  32. sglang/srt/entrypoints/http_server.py +15 -2
  33. sglang/srt/function_call/base_format_detector.py +138 -86
  34. sglang/srt/function_call/deepseekv3_detector.py +54 -6
  35. sglang/srt/function_call/ebnf_composer.py +33 -19
  36. sglang/srt/function_call/function_call_parser.py +27 -0
  37. sglang/srt/function_call/llama32_detector.py +33 -14
  38. sglang/srt/function_call/mistral_detector.py +73 -26
  39. sglang/srt/function_call/pythonic_detector.py +86 -20
  40. sglang/srt/function_call/qwen25_detector.py +64 -10
  41. sglang/srt/function_call/utils.py +17 -0
  42. sglang/srt/hf_transformers_utils.py +4 -0
  43. sglang/srt/layers/attention/aiter_backend.py +488 -123
  44. sglang/srt/layers/attention/base_attn_backend.py +4 -0
  45. sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
  46. sglang/srt/layers/attention/flashattention_backend.py +103 -18
  47. sglang/srt/layers/attention/flashinfer_backend.py +45 -1
  48. sglang/srt/layers/attention/flashinfer_mla_backend.py +37 -1
  49. sglang/srt/layers/attention/intel_amx_backend.py +128 -0
  50. sglang/srt/layers/attention/tbo_backend.py +232 -0
  51. sglang/srt/layers/attention/torch_native_backend.py +3 -0
  52. sglang/srt/layers/attention/triton_backend.py +244 -5
  53. sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
  54. sglang/srt/layers/communicator.py +260 -194
  55. sglang/srt/layers/dp_attention.py +6 -5
  56. sglang/srt/layers/layernorm.py +30 -19
  57. sglang/srt/layers/moe/cutlass_moe.py +170 -7
  58. sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
  59. sglang/srt/layers/moe/ep_moe/kernels.py +27 -6
  60. sglang/srt/layers/moe/ep_moe/layer.py +94 -40
  61. sglang/srt/layers/moe/ep_moe/token_dispatcher.py +13 -8
  62. sglang/srt/layers/moe/fused_moe_native.py +4 -0
  63. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  64. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  65. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  66. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  67. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  68. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  69. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  70. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  71. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
  72. sglang/srt/layers/moe/fused_moe_triton/layer.py +34 -4
  73. sglang/srt/layers/moe/topk.py +44 -18
  74. sglang/srt/layers/multimodal.py +3 -3
  75. sglang/srt/layers/quantization/__init__.py +3 -2
  76. sglang/srt/layers/quantization/blockwise_int8.py +3 -0
  77. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
  78. sglang/srt/layers/quantization/deep_gemm.py +55 -56
  79. sglang/srt/layers/quantization/fp8.py +28 -23
  80. sglang/srt/layers/quantization/fp8_kernel.py +118 -66
  81. sglang/srt/layers/quantization/fp8_utils.py +165 -49
  82. sglang/srt/layers/quantization/modelopt_quant.py +334 -7
  83. sglang/srt/layers/quantization/moe_wna16.py +3 -0
  84. sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
  85. sglang/srt/layers/quantization/w8a8_int8.py +3 -0
  86. sglang/srt/layers/rotary_embedding.py +6 -12
  87. sglang/srt/layers/sampler.py +80 -79
  88. sglang/srt/layers/utils.py +6 -0
  89. sglang/srt/lora/layers.py +12 -15
  90. sglang/srt/lora/lora.py +49 -5
  91. sglang/srt/lora/lora_manager.py +19 -5
  92. sglang/srt/lora/mem_pool.py +24 -16
  93. sglang/srt/lora/utils.py +17 -13
  94. sglang/srt/managers/data_parallel_controller.py +13 -5
  95. sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
  96. sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
  97. sglang/srt/managers/{deepseek_eplb.py → eplb_algorithms/deepseek_vec.py} +5 -7
  98. sglang/srt/managers/eplb_manager.py +55 -14
  99. sglang/srt/managers/expert_distribution.py +220 -46
  100. sglang/srt/managers/expert_location.py +110 -56
  101. sglang/srt/managers/expert_location_dispatch.py +23 -6
  102. sglang/srt/managers/io_struct.py +15 -4
  103. sglang/srt/managers/mm_utils.py +88 -38
  104. sglang/srt/managers/multimodal_processors/base_processor.py +188 -16
  105. sglang/srt/managers/multimodal_processors/gemma3.py +4 -31
  106. sglang/srt/managers/multimodal_processors/internvl.py +4 -0
  107. sglang/srt/managers/multimodal_processors/kimi_vl.py +15 -34
  108. sglang/srt/managers/multimodal_processors/minicpm.py +2 -1
  109. sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
  110. sglang/srt/managers/multimodal_processors/qwen_vl.py +22 -64
  111. sglang/srt/managers/schedule_batch.py +140 -38
  112. sglang/srt/managers/scheduler.py +305 -112
  113. sglang/srt/managers/tokenizer_manager.py +134 -17
  114. sglang/srt/managers/utils.py +0 -4
  115. sglang/srt/metrics/collector.py +9 -0
  116. sglang/srt/model_executor/cuda_graph_runner.py +72 -61
  117. sglang/srt/model_executor/expert_location_updater.py +157 -22
  118. sglang/srt/model_executor/forward_batch_info.py +38 -17
  119. sglang/srt/model_executor/model_runner.py +96 -56
  120. sglang/srt/model_loader/utils.py +67 -1
  121. sglang/srt/models/deepseek_nextn.py +1 -1
  122. sglang/srt/models/deepseek_v2.py +609 -234
  123. sglang/srt/models/gemma3_causal.py +7 -0
  124. sglang/srt/models/gemma3_mm.py +19 -14
  125. sglang/srt/models/idefics2.py +342 -0
  126. sglang/srt/models/kimi_vl.py +4 -4
  127. sglang/srt/models/llama.py +1 -1
  128. sglang/srt/models/minicpmo.py +2 -5
  129. sglang/srt/models/minicpmv.py +3 -295
  130. sglang/srt/models/phi4mm.py +512 -0
  131. sglang/srt/models/qwen2.py +38 -9
  132. sglang/srt/models/qwen2_5_vl.py +3 -9
  133. sglang/srt/models/qwen2_eagle.py +4 -1
  134. sglang/srt/models/qwen2_moe.py +58 -191
  135. sglang/srt/models/qwen2_vl.py +3 -9
  136. sglang/srt/models/qwen3.py +41 -10
  137. sglang/srt/models/qwen3_moe.py +230 -191
  138. sglang/srt/models/registry.py +9 -1
  139. sglang/srt/models/transformers.py +291 -0
  140. sglang/srt/openai_api/adapter.py +86 -24
  141. sglang/srt/openai_api/protocol.py +31 -2
  142. sglang/srt/openai_api/utils.py +172 -0
  143. sglang/srt/operations.py +37 -2
  144. sglang/srt/operations_strategy.py +200 -24
  145. sglang/srt/sampling/sampling_batch_info.py +13 -1
  146. sglang/srt/sampling/sampling_params.py +2 -1
  147. sglang/srt/server_args.py +114 -27
  148. sglang/srt/speculative/build_eagle_tree.py +8 -8
  149. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
  150. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
  151. sglang/srt/speculative/eagle_utils.py +51 -91
  152. sglang/srt/speculative/eagle_worker.py +101 -21
  153. sglang/srt/two_batch_overlap.py +635 -0
  154. sglang/srt/utils.py +129 -7
  155. sglang/test/runners.py +16 -7
  156. sglang/test/send_one.py +4 -0
  157. sglang/test/test_cutlass_moe.py +3 -3
  158. sglang/test/test_fp4_moe.py +248 -0
  159. sglang/test/test_utils.py +79 -6
  160. sglang/version.py +1 -1
  161. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/METADATA +14 -11
  162. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/RECORD +318 -291
  163. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
  164. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  165. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  166. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  167. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  168. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  169. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  170. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  171. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  172. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  173. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  174. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  175. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  176. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  177. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
  178. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  179. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  180. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  181. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  182. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  183. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  184. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  185. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  186. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  187. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  188. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  189. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  190. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  191. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  192. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  193. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  194. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  195. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  196. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  197. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  198. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  199. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  200. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  201. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  202. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  203. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  204. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  205. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  206. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
  207. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  208. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  209. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  210. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  211. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  212. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  213. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  214. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  215. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  216. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
  217. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
  218. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  219. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  220. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  221. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  222. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  223. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  224. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
  225. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  226. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  227. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
  228. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  229. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  230. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  231. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
  232. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  233. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  234. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  235. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
  236. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  237. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  238. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  239. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
  240. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
  241. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
  242. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
  243. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  244. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  245. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
  246. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
  247. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
  248. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
  249. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  250. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  251. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  252. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  253. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
  254. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  255. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  256. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  257. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  258. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
  259. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
  260. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
  261. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
  262. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  263. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  264. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
  265. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  266. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  267. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  268. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
  269. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
  270. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
  271. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
  272. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
  273. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  274. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  275. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  276. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  277. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
  278. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
  279. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
  280. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
  281. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  282. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  283. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  284. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  285. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
  286. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
  287. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
  288. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
  289. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  290. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  291. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  292. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  293. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
  294. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
  295. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  296. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  297. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
  298. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  299. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
  300. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  301. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  302. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  303. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  304. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
  305. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  306. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
  307. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
  308. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  309. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  310. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  311. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  312. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  313. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  314. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  315. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  316. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  317. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
  318. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,11 @@ from sglang.srt.distributed import (
32
32
  tensor_model_parallel_all_reduce,
33
33
  )
34
34
  from sglang.srt.layers.activation import SiluAndMul
35
+ from sglang.srt.layers.communicator import (
36
+ LayerCommunicator,
37
+ LayerScatterModes,
38
+ ScatterMode,
39
+ )
35
40
  from sglang.srt.layers.dp_attention import (
36
41
  attn_tp_all_gather,
37
42
  attn_tp_reduce_scatter,
@@ -49,7 +54,7 @@ from sglang.srt.layers.linear import (
49
54
  RowParallelLinear,
50
55
  )
51
56
  from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
52
- from sglang.srt.layers.moe.ep_moe.layer import EPMoE
57
+ from sglang.srt.layers.moe.ep_moe.layer import EPMoE, get_moe_impl_class
53
58
  from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
54
59
  from sglang.srt.layers.quantization.base_config import QuantizationConfig
55
60
  from sglang.srt.layers.radix_attention import RadixAttention
@@ -67,6 +72,7 @@ from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
67
72
  from sglang.srt.managers.schedule_batch import global_server_args_dict
68
73
  from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
69
74
  from sglang.srt.model_loader.weight_utils import default_weight_loader
75
+ from sglang.srt.two_batch_overlap import model_forward_maybe_tbo
70
76
  from sglang.srt.utils import add_prefix, make_layers
71
77
 
72
78
  logger = logging.getLogger(__name__)
@@ -114,22 +120,22 @@ class Qwen2MoeMLP(nn.Module):
114
120
  class Qwen2MoeSparseMoeBlock(nn.Module):
115
121
  def __init__(
116
122
  self,
123
+ layer_id: int,
117
124
  config: PretrainedConfig,
118
125
  quant_config: Optional[QuantizationConfig] = None,
119
126
  prefix: str = "",
120
127
  ):
121
128
  super().__init__()
122
129
  self.tp_size = get_tensor_model_parallel_world_size()
123
-
130
+ self.layer_id = layer_id
124
131
  if self.tp_size > config.num_experts:
125
132
  raise ValueError(
126
133
  f"Tensor parallel size {self.tp_size} is greater than "
127
134
  f"the number of experts {config.num_experts}."
128
135
  )
129
136
 
130
- MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
131
-
132
- self.experts = MoEImpl(
137
+ self.experts = get_moe_impl_class()(
138
+ layer_id=self.layer_id,
133
139
  num_experts=config.num_experts,
134
140
  top_k=config.num_experts_per_tok,
135
141
  hidden_size=config.hidden_size,
@@ -159,7 +165,9 @@ class Qwen2MoeSparseMoeBlock(nn.Module):
159
165
  self.shared_expert = None
160
166
  self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)
161
167
 
162
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
168
+ def forward(
169
+ self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
170
+ ) -> torch.Tensor:
163
171
  num_tokens, hidden_dim = hidden_states.shape
164
172
  hidden_states = hidden_states.view(-1, hidden_dim)
165
173
  shared_output = None
@@ -276,19 +284,6 @@ class Qwen2MoeAttention(nn.Module):
276
284
  return output
277
285
 
278
286
 
279
- class _FFNInputMode(Enum):
280
- # The MLP sublayer requires 1/tp_size tokens as input
281
- SCATTERED = auto()
282
- # The MLP sublayer requires all tokens as input
283
- FULL = auto()
284
-
285
-
286
- @dataclass
287
- class _DecoderLayerInfo:
288
- is_sparse: bool
289
- ffn_input_mode: _FFNInputMode
290
-
291
-
292
287
  class Qwen2MoeDecoderLayer(nn.Module):
293
288
  def __init__(
294
289
  self,
@@ -298,6 +293,7 @@ class Qwen2MoeDecoderLayer(nn.Module):
298
293
  prefix: str = "",
299
294
  ) -> None:
300
295
  super().__init__()
296
+ self.config = config
301
297
  self.hidden_size = config.hidden_size
302
298
  rope_theta = getattr(config, "rope_theta", 10000)
303
299
  rope_scaling = getattr(config, "rope_scaling", None)
@@ -322,16 +318,20 @@ class Qwen2MoeDecoderLayer(nn.Module):
322
318
  self.attn_tp_rank = get_attention_tp_rank()
323
319
  self.local_dp_size = get_local_attention_dp_size()
324
320
 
325
- self.info = self._compute_info(config, layer_id=layer_id)
326
- previous_layer_info = self._compute_info(config, layer_id=layer_id - 1)
327
- self.input_is_scattered = (
328
- layer_id > 0
329
- and previous_layer_info.ffn_input_mode == _FFNInputMode.SCATTERED
321
+ # Qwen2MoE all layers are sparse and have no nextn now
322
+ self.is_layer_sparse = True
323
+ is_previous_layer_sparse = True
324
+
325
+ self.layer_scatter_modes = LayerScatterModes.init_new(
326
+ layer_id=layer_id,
327
+ num_layers=config.num_hidden_layers,
328
+ is_layer_sparse=self.is_layer_sparse,
329
+ is_previous_layer_sparse=is_previous_layer_sparse,
330
330
  )
331
- self.is_last_layer = self.layer_id == config.num_hidden_layers - 1
332
331
 
333
- if self.info.is_sparse:
332
+ if self.is_layer_sparse:
334
333
  self.mlp = Qwen2MoeSparseMoeBlock(
334
+ layer_id=layer_id,
335
335
  config=config,
336
336
  quant_config=quant_config,
337
337
  prefix=add_prefix("mlp", prefix),
@@ -348,27 +348,11 @@ class Qwen2MoeDecoderLayer(nn.Module):
348
348
  self.post_attention_layernorm = RMSNorm(
349
349
  config.hidden_size, eps=config.rms_norm_eps
350
350
  )
351
-
352
- @staticmethod
353
- def _enable_moe_dense_fully_dp():
354
- return global_server_args_dict["moe_dense_tp_size"] == 1
355
-
356
- @staticmethod
357
- def _compute_info(config: PretrainedConfig, layer_id: int):
358
- # WARN: Qwen2MOE has no dense_layer, it is only for compatibility.
359
- mlp_only_layers = (
360
- [] if not hasattr(config, "mlp_only_layers") else config.mlp_only_layers
361
- )
362
- is_sparse = (layer_id not in mlp_only_layers) and (
363
- config.num_experts > 0 and (layer_id + 1) % config.decoder_sparse_step == 0
351
+ self.layer_communicator = LayerCommunicator(
352
+ layer_scatter_modes=self.layer_scatter_modes,
353
+ input_layernorm=self.input_layernorm,
354
+ post_attention_layernorm=self.post_attention_layernorm,
364
355
  )
365
- ffn_input_mode = (
366
- _FFNInputMode.SCATTERED
367
- if (global_server_args_dict["enable_deepep_moe"] and is_sparse)
368
- or (Qwen2MoeDecoderLayer._enable_moe_dense_fully_dp() and not is_sparse)
369
- else _FFNInputMode.FULL
370
- )
371
- return _DecoderLayerInfo(is_sparse=is_sparse, ffn_input_mode=ffn_input_mode)
372
356
 
373
357
  def forward(
374
358
  self,
@@ -377,108 +361,11 @@ class Qwen2MoeDecoderLayer(nn.Module):
377
361
  forward_batch: ForwardBatch,
378
362
  residual: Optional[torch.Tensor],
379
363
  ) -> Tuple[torch.Tensor, torch.Tensor]:
380
- if self.info.ffn_input_mode == _FFNInputMode.SCATTERED:
381
- return self.forward_ffn_with_scattered_input(
382
- positions, hidden_states, forward_batch, residual
383
- )
384
- elif self.info.ffn_input_mode == _FFNInputMode.FULL:
385
- return self.forward_ffn_with_full_input(
386
- positions, hidden_states, forward_batch, residual
387
- )
388
- else:
389
- raise NotImplementedError
390
364
 
391
- def forward_ffn_with_full_input(
392
- self,
393
- positions: torch.Tensor,
394
- hidden_states: torch.Tensor,
395
- forward_batch: ForwardBatch,
396
- residual: Optional[torch.Tensor],
397
- ) -> Tuple[torch.Tensor, torch.Tensor]:
398
- if hidden_states.shape[0] == 0:
399
- residual = hidden_states
400
- else:
401
- if residual is None:
402
- residual = hidden_states
403
- hidden_states = self.input_layernorm(hidden_states)
404
- else:
405
- hidden_states, residual = self.input_layernorm(hidden_states, residual)
406
-
407
- # Self Attention
408
- hidden_states = self.self_attn(
409
- positions=positions,
410
- hidden_states=hidden_states,
411
- forward_batch=forward_batch,
412
- )
413
- # Gather
414
- if get_tensor_model_parallel_world_size() > 1:
415
- # all gather and all reduce
416
- if self.local_dp_size != 1:
417
- if self.attn_tp_rank == 0:
418
- hidden_states += residual
419
- hidden_states, local_hidden_states = (
420
- forward_batch.gathered_buffer,
421
- hidden_states,
422
- )
423
- dp_gather_partial(hidden_states, local_hidden_states, forward_batch)
424
- dp_scatter(residual, hidden_states, forward_batch)
425
- # TODO extract this bugfix
426
- if hidden_states.shape[0] != 0:
427
- hidden_states = self.post_attention_layernorm(hidden_states)
428
- else:
429
- hidden_states = tensor_model_parallel_all_reduce(hidden_states)
430
- # TODO extract this bugfix
431
- if hidden_states.shape[0] != 0:
432
- hidden_states, residual = self.post_attention_layernorm(
433
- hidden_states, residual
434
- )
435
- elif hidden_states.shape[0] != 0:
436
- hidden_states, residual = self.post_attention_layernorm(
437
- hidden_states, residual
438
- )
439
-
440
- # Fully Connected
441
- hidden_states = self.mlp(hidden_states)
442
-
443
- # TODO: use reduce-scatter in MLP to avoid this scatter
444
- # Scatter
445
- if self.local_dp_size != 1:
446
- # important: forward batch.gathered_buffer is used both after scatter and after gather.
447
- # be careful about this!
448
- hidden_states, global_hidden_states = (
449
- forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
450
- hidden_states,
451
- )
452
- dp_scatter(hidden_states, global_hidden_states, forward_batch)
453
-
454
- return hidden_states, residual
455
-
456
- def forward_ffn_with_scattered_input(
457
- self,
458
- positions: torch.Tensor,
459
- hidden_states: torch.Tensor,
460
- forward_batch: ForwardBatch,
461
- residual: Optional[torch.Tensor],
462
- ) -> Tuple[torch.Tensor, torch.Tensor]:
463
- if hidden_states.shape[0] == 0:
464
- residual = hidden_states
465
- else:
466
- if residual is None:
467
- residual = hidden_states
468
- hidden_states = self.input_layernorm(hidden_states)
469
- else:
470
- hidden_states, residual = self.input_layernorm(hidden_states, residual)
471
-
472
- if self.attn_tp_size != 1 and self.input_is_scattered:
473
- hidden_states, local_hidden_states = (
474
- forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
475
- hidden_states,
476
- )
477
- attn_tp_all_gather(
478
- list(hidden_states.tensor_split(self.attn_tp_size)), local_hidden_states
479
- )
365
+ hidden_states, residual = self.layer_communicator.prepare_attn(
366
+ hidden_states, residual, forward_batch
367
+ )
480
368
 
481
- # Self Attention
482
369
  if hidden_states.shape[0] != 0:
483
370
  hidden_states = self.self_attn(
484
371
  positions=positions,
@@ -486,47 +373,15 @@ class Qwen2MoeDecoderLayer(nn.Module):
486
373
  forward_batch=forward_batch,
487
374
  )
488
375
 
489
- if self.attn_tp_size != 1:
490
- if self.input_is_scattered:
491
- tensor_list = list(hidden_states.tensor_split(self.attn_tp_size))
492
- hidden_states = tensor_list[self.attn_tp_rank]
493
- attn_tp_reduce_scatter(hidden_states, tensor_list)
494
- if hidden_states.shape[0] != 0:
495
- hidden_states, residual = self.post_attention_layernorm(
496
- hidden_states, residual
497
- )
498
- else:
499
- if self.attn_tp_rank == 0:
500
- hidden_states += residual
501
- tensor_list = list(hidden_states.tensor_split(self.attn_tp_size))
502
- hidden_states = tensor_list[self.attn_tp_rank]
503
- attn_tp_reduce_scatter(hidden_states, tensor_list)
504
- residual = hidden_states
505
- if hidden_states.shape[0] != 0:
506
- hidden_states = self.post_attention_layernorm(hidden_states)
507
- else:
508
- if hidden_states.shape[0] != 0:
509
- hidden_states, residual = self.post_attention_layernorm(
510
- hidden_states, residual
511
- )
376
+ hidden_states, residual = self.layer_communicator.prepare_mlp(
377
+ hidden_states, residual, forward_batch
378
+ )
512
379
 
513
- if not (
514
- self._enable_moe_dense_fully_dp()
515
- and (not self.info.is_sparse)
516
- and hidden_states.shape[0] == 0
517
- ):
518
- hidden_states = self.mlp(hidden_states, forward_batch.forward_mode)
380
+ hidden_states = self.mlp(hidden_states, forward_batch)
519
381
 
520
- if self.is_last_layer and self.attn_tp_size != 1:
521
- hidden_states += residual
522
- residual = None
523
- hidden_states, local_hidden_states = (
524
- forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
525
- hidden_states,
526
- )
527
- attn_tp_all_gather(
528
- list(hidden_states.tensor_split(self.attn_tp_size)), local_hidden_states
529
- )
382
+ hidden_states, residual = self.layer_communicator.postprocess_layer(
383
+ hidden_states, residual, forward_batch
384
+ )
530
385
 
531
386
  return hidden_states, residual
532
387
 
@@ -592,12 +447,23 @@ class Qwen2MoeModel(nn.Module):
592
447
  hidden_states = pp_proxy_tensors["hidden_states"]
593
448
  residual = pp_proxy_tensors["residual"]
594
449
 
595
- for i in range(self.start_layer, self.end_layer):
596
- with get_global_expert_distribution_recorder().with_current_layer(i):
597
- layer = self.layers[i]
598
- hidden_states, residual = layer(
599
- positions, hidden_states, forward_batch, residual
600
- )
450
+ if forward_batch.can_run_tbo:
451
+ hidden_states, residual = model_forward_maybe_tbo(
452
+ layers=self.layers,
453
+ enable_tbo=True,
454
+ input_data_scatter_mode=ScatterMode.model_input_output(),
455
+ positions=positions,
456
+ forward_batch=forward_batch,
457
+ hidden_states=hidden_states,
458
+ residual=residual,
459
+ )
460
+ else:
461
+ for i in range(self.start_layer, self.end_layer):
462
+ with get_global_expert_distribution_recorder().with_current_layer(i):
463
+ layer = self.layers[i]
464
+ hidden_states, residual = layer(
465
+ positions, hidden_states, forward_batch, residual
466
+ )
601
467
  if not self.pp_group.is_last_rank:
602
468
  return PPProxyTensors(
603
469
  {
@@ -635,6 +501,7 @@ class Qwen2MoeForCausalLM(nn.Module):
635
501
  config.hidden_size,
636
502
  quant_config=quant_config,
637
503
  prefix=add_prefix("lm_head", prefix),
504
+ use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
638
505
  )
639
506
  self.logits_processor = LogitsProcessor(config)
640
507
 
@@ -486,20 +486,14 @@ class Qwen2VLForConditionalGeneration(nn.Module):
486
486
  return pattern.pad_input_tokens(input_ids, mm_inputs)
487
487
 
488
488
  def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
489
- if any(item.precomputed_features is not None for item in items):
490
- if not all(item.precomputed_features is not None for item in items):
491
- raise NotImplementedError(
492
- "MM inputs where only some items are precomputed."
493
- )
494
- return torch.concat([item.precomputed_features for item in items])
495
489
  # in qwen-vl, last dim is the same
496
490
  pixel_values = torch.cat([item.pixel_values for item in items], dim=0).type(
497
491
  self.visual.dtype
498
492
  )
499
- image_grid_thws = torch.concat([item.image_grid_thws for item in items], dim=0)
493
+ image_grid_thw = torch.concat([item.image_grid_thw for item in items], dim=0)
500
494
  assert pixel_values.dim() == 2, pixel_values.dim()
501
- assert image_grid_thws.dim() == 2, image_grid_thws.dim()
502
- image_embeds = self.visual(pixel_values, grid_thw=image_grid_thws)
495
+ assert image_grid_thw.dim() == 2, image_grid_thw.dim()
496
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
503
497
  return image_embeds
504
498
 
505
499
  def _process_video_input(self, video_input: Qwen2VLVideoInputs) -> torch.Tensor:
@@ -21,7 +21,7 @@ from sglang.srt.layers.pooler import Pooler, PoolingType
21
21
  from sglang.srt.layers.quantization.base_config import QuantizationConfig
22
22
  from sglang.srt.layers.radix_attention import RadixAttention
23
23
  from sglang.srt.layers.rotary_embedding import get_rope
24
- from sglang.srt.layers.utils import get_layer_id
24
+ from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
25
25
  from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
26
26
  from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
27
27
  from sglang.srt.model_loader.weight_utils import default_weight_loader
@@ -249,15 +249,36 @@ class Qwen3ForCausalLM(nn.Module):
249
249
  self.model = Qwen3Model(
250
250
  config, quant_config=quant_config, prefix=add_prefix("model", prefix)
251
251
  )
252
- if config.tie_word_embeddings:
253
- self.lm_head = self.model.embed_tokens
252
+
253
+ # handle the lm head on different pp ranks
254
+ if self.pp_group.is_last_rank:
255
+ if self.pp_group.world_size == 1 and config.tie_word_embeddings:
256
+ self.lm_head = self.model.embed_tokens
257
+ else:
258
+ self.lm_head = ParallelLMHead(
259
+ config.vocab_size,
260
+ config.hidden_size,
261
+ quant_config=quant_config,
262
+ prefix=add_prefix("lm_head", prefix),
263
+ )
254
264
  else:
255
- self.lm_head = ParallelLMHead(
256
- config.vocab_size,
257
- config.hidden_size,
258
- quant_config=quant_config,
259
- prefix=add_prefix("lm_head", prefix),
260
- )
265
+ # ranks other than the last rank will have a placeholder layer
266
+ self.lm_head = PPMissingLayer()
267
+
268
+ # perform weight tying for PP
269
+ if self.pp_group.world_size > 1 and config.tie_word_embeddings:
270
+ if self.pp_group.is_first_rank:
271
+ self.pp_group.send(
272
+ self.model.embed_tokens.weight, dst=self.pp_group.last_rank
273
+ )
274
+ else:
275
+ emb_token_weight = self.pp_group.recv(
276
+ size=(config.vocab_size, config.hidden_size),
277
+ dtype=next(self.model.parameters()).dtype,
278
+ src=self.pp_group.first_rank,
279
+ )
280
+ self.lm_head.weight.copy_(emb_token_weight)
281
+
261
282
  self.logits_processor = LogitsProcessor(config)
262
283
  self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
263
284
 
@@ -312,6 +333,8 @@ class Qwen3ForCausalLM(nn.Module):
312
333
 
313
334
  params_dict = dict(self.named_parameters())
314
335
  for name, loaded_weight in weights:
336
+ if "Embedding" in self.config.name_or_path:
337
+ name = add_prefix(name, "model")
315
338
  layer_id = get_layer_id(name)
316
339
  if (
317
340
  layer_id is not None
@@ -330,7 +353,15 @@ class Qwen3ForCausalLM(nn.Module):
330
353
  # the checkpoint. Skip them.
331
354
  continue
332
355
  if self.config.tie_word_embeddings and "lm_head.weight" in name:
333
- continue
356
+ if self.pp_group.world_size > 1 and self.pp_group.is_last_rank:
357
+ # Handle pp weight tying here
358
+ # find the embed_tokens.weight in the weights
359
+ embed_token_weights = next(
360
+ filter(lambda x: x[0] == "model.embed_tokens.weight", weights)
361
+ )[1]
362
+ loaded_weight = embed_token_weights
363
+ else:
364
+ continue
334
365
  if name.startswith("model.vision_tower") and name not in params_dict:
335
366
  continue
336
367