sglang 0.4.6.post5__py3-none-any.whl → 0.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (318) hide show
  1. sglang/bench_offline_throughput.py +10 -4
  2. sglang/bench_one_batch_server.py +67 -11
  3. sglang/bench_serving.py +85 -74
  4. sglang/lang/backend/runtime_endpoint.py +24 -1
  5. sglang/profiler.py +167 -0
  6. sglang/srt/_custom_ops.py +34 -0
  7. sglang/srt/configs/internvl.py +8 -12
  8. sglang/srt/configs/model_config.py +27 -1
  9. sglang/srt/constrained/base_grammar_backend.py +5 -2
  10. sglang/srt/constrained/llguidance_backend.py +9 -8
  11. sglang/srt/constrained/outlines_backend.py +5 -4
  12. sglang/srt/constrained/xgrammar_backend.py +18 -18
  13. sglang/srt/conversation.py +46 -8
  14. sglang/srt/custom_op.py +38 -3
  15. sglang/srt/debug_utils.py +74 -0
  16. sglang/srt/disaggregation/common/__init__.py +1 -0
  17. sglang/srt/disaggregation/common/conn.py +407 -0
  18. sglang/srt/disaggregation/decode.py +67 -3
  19. sglang/srt/disaggregation/fake/conn.py +1 -0
  20. sglang/srt/disaggregation/kv_events.py +60 -5
  21. sglang/srt/disaggregation/launch_lb.py +140 -0
  22. sglang/srt/disaggregation/mini_lb.py +29 -48
  23. sglang/srt/disaggregation/mooncake/conn.py +432 -140
  24. sglang/srt/disaggregation/mooncake/transfer_engine.py +32 -16
  25. sglang/srt/disaggregation/nixl/conn.py +124 -432
  26. sglang/srt/disaggregation/prefill.py +2 -0
  27. sglang/srt/disaggregation/utils.py +38 -1
  28. sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
  29. sglang/srt/distributed/parallel_state.py +52 -5
  30. sglang/srt/entrypoints/EngineBase.py +6 -0
  31. sglang/srt/entrypoints/engine.py +102 -5
  32. sglang/srt/entrypoints/http_server.py +15 -2
  33. sglang/srt/function_call/base_format_detector.py +138 -86
  34. sglang/srt/function_call/deepseekv3_detector.py +54 -6
  35. sglang/srt/function_call/ebnf_composer.py +33 -19
  36. sglang/srt/function_call/function_call_parser.py +27 -0
  37. sglang/srt/function_call/llama32_detector.py +33 -14
  38. sglang/srt/function_call/mistral_detector.py +73 -26
  39. sglang/srt/function_call/pythonic_detector.py +86 -20
  40. sglang/srt/function_call/qwen25_detector.py +64 -10
  41. sglang/srt/function_call/utils.py +17 -0
  42. sglang/srt/hf_transformers_utils.py +4 -0
  43. sglang/srt/layers/attention/aiter_backend.py +488 -123
  44. sglang/srt/layers/attention/base_attn_backend.py +4 -0
  45. sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
  46. sglang/srt/layers/attention/flashattention_backend.py +103 -18
  47. sglang/srt/layers/attention/flashinfer_backend.py +45 -1
  48. sglang/srt/layers/attention/flashinfer_mla_backend.py +37 -1
  49. sglang/srt/layers/attention/intel_amx_backend.py +128 -0
  50. sglang/srt/layers/attention/tbo_backend.py +232 -0
  51. sglang/srt/layers/attention/torch_native_backend.py +3 -0
  52. sglang/srt/layers/attention/triton_backend.py +244 -5
  53. sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
  54. sglang/srt/layers/communicator.py +260 -194
  55. sglang/srt/layers/dp_attention.py +6 -5
  56. sglang/srt/layers/layernorm.py +30 -19
  57. sglang/srt/layers/moe/cutlass_moe.py +170 -7
  58. sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
  59. sglang/srt/layers/moe/ep_moe/kernels.py +27 -6
  60. sglang/srt/layers/moe/ep_moe/layer.py +94 -40
  61. sglang/srt/layers/moe/ep_moe/token_dispatcher.py +13 -8
  62. sglang/srt/layers/moe/fused_moe_native.py +4 -0
  63. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  64. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  65. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  66. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  67. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  68. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  69. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  70. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  71. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
  72. sglang/srt/layers/moe/fused_moe_triton/layer.py +34 -4
  73. sglang/srt/layers/moe/topk.py +44 -18
  74. sglang/srt/layers/multimodal.py +3 -3
  75. sglang/srt/layers/quantization/__init__.py +3 -2
  76. sglang/srt/layers/quantization/blockwise_int8.py +3 -0
  77. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
  78. sglang/srt/layers/quantization/deep_gemm.py +55 -56
  79. sglang/srt/layers/quantization/fp8.py +28 -23
  80. sglang/srt/layers/quantization/fp8_kernel.py +118 -66
  81. sglang/srt/layers/quantization/fp8_utils.py +165 -49
  82. sglang/srt/layers/quantization/modelopt_quant.py +334 -7
  83. sglang/srt/layers/quantization/moe_wna16.py +3 -0
  84. sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
  85. sglang/srt/layers/quantization/w8a8_int8.py +3 -0
  86. sglang/srt/layers/rotary_embedding.py +6 -12
  87. sglang/srt/layers/sampler.py +80 -79
  88. sglang/srt/layers/utils.py +6 -0
  89. sglang/srt/lora/layers.py +12 -15
  90. sglang/srt/lora/lora.py +49 -5
  91. sglang/srt/lora/lora_manager.py +19 -5
  92. sglang/srt/lora/mem_pool.py +24 -16
  93. sglang/srt/lora/utils.py +17 -13
  94. sglang/srt/managers/data_parallel_controller.py +13 -5
  95. sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
  96. sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
  97. sglang/srt/managers/{deepseek_eplb.py → eplb_algorithms/deepseek_vec.py} +5 -7
  98. sglang/srt/managers/eplb_manager.py +55 -14
  99. sglang/srt/managers/expert_distribution.py +220 -46
  100. sglang/srt/managers/expert_location.py +110 -56
  101. sglang/srt/managers/expert_location_dispatch.py +23 -6
  102. sglang/srt/managers/io_struct.py +15 -4
  103. sglang/srt/managers/mm_utils.py +88 -38
  104. sglang/srt/managers/multimodal_processors/base_processor.py +188 -16
  105. sglang/srt/managers/multimodal_processors/gemma3.py +4 -31
  106. sglang/srt/managers/multimodal_processors/internvl.py +4 -0
  107. sglang/srt/managers/multimodal_processors/kimi_vl.py +15 -34
  108. sglang/srt/managers/multimodal_processors/minicpm.py +2 -1
  109. sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
  110. sglang/srt/managers/multimodal_processors/qwen_vl.py +22 -64
  111. sglang/srt/managers/schedule_batch.py +140 -38
  112. sglang/srt/managers/scheduler.py +305 -112
  113. sglang/srt/managers/tokenizer_manager.py +134 -17
  114. sglang/srt/managers/utils.py +0 -4
  115. sglang/srt/metrics/collector.py +9 -0
  116. sglang/srt/model_executor/cuda_graph_runner.py +72 -61
  117. sglang/srt/model_executor/expert_location_updater.py +157 -22
  118. sglang/srt/model_executor/forward_batch_info.py +38 -17
  119. sglang/srt/model_executor/model_runner.py +96 -56
  120. sglang/srt/model_loader/utils.py +67 -1
  121. sglang/srt/models/deepseek_nextn.py +1 -1
  122. sglang/srt/models/deepseek_v2.py +609 -234
  123. sglang/srt/models/gemma3_causal.py +7 -0
  124. sglang/srt/models/gemma3_mm.py +19 -14
  125. sglang/srt/models/idefics2.py +342 -0
  126. sglang/srt/models/kimi_vl.py +4 -4
  127. sglang/srt/models/llama.py +1 -1
  128. sglang/srt/models/minicpmo.py +2 -5
  129. sglang/srt/models/minicpmv.py +3 -295
  130. sglang/srt/models/phi4mm.py +512 -0
  131. sglang/srt/models/qwen2.py +38 -9
  132. sglang/srt/models/qwen2_5_vl.py +3 -9
  133. sglang/srt/models/qwen2_eagle.py +4 -1
  134. sglang/srt/models/qwen2_moe.py +58 -191
  135. sglang/srt/models/qwen2_vl.py +3 -9
  136. sglang/srt/models/qwen3.py +41 -10
  137. sglang/srt/models/qwen3_moe.py +230 -191
  138. sglang/srt/models/registry.py +9 -1
  139. sglang/srt/models/transformers.py +291 -0
  140. sglang/srt/openai_api/adapter.py +86 -24
  141. sglang/srt/openai_api/protocol.py +31 -2
  142. sglang/srt/openai_api/utils.py +172 -0
  143. sglang/srt/operations.py +37 -2
  144. sglang/srt/operations_strategy.py +200 -24
  145. sglang/srt/sampling/sampling_batch_info.py +13 -1
  146. sglang/srt/sampling/sampling_params.py +2 -1
  147. sglang/srt/server_args.py +114 -27
  148. sglang/srt/speculative/build_eagle_tree.py +8 -8
  149. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
  150. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
  151. sglang/srt/speculative/eagle_utils.py +51 -91
  152. sglang/srt/speculative/eagle_worker.py +101 -21
  153. sglang/srt/two_batch_overlap.py +635 -0
  154. sglang/srt/utils.py +129 -7
  155. sglang/test/runners.py +16 -7
  156. sglang/test/send_one.py +4 -0
  157. sglang/test/test_cutlass_moe.py +3 -3
  158. sglang/test/test_fp4_moe.py +248 -0
  159. sglang/test/test_utils.py +79 -6
  160. sglang/version.py +1 -1
  161. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/METADATA +14 -11
  162. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/RECORD +318 -291
  163. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
  164. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  165. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  166. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  167. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  168. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  169. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  170. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  171. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  172. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  173. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  174. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  175. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  176. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  177. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
  178. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  179. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  180. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  181. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  182. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  183. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  184. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  185. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  186. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  187. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  188. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  189. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  190. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  191. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  192. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  193. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  194. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
  195. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  196. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
  197. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  198. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  199. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  200. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  201. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  202. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  203. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  204. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  205. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  206. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
  207. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  208. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  209. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  210. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  211. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  212. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  213. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
  214. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  215. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  216. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
  217. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
  218. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  219. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  220. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  221. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  222. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  223. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  224. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
  225. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  226. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  227. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
  228. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  229. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  230. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  231. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
  232. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  233. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  234. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  235. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
  236. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  237. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  238. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  239. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
  240. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
  241. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
  242. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
  243. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  244. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  245. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
  246. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
  247. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
  248. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
  249. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  250. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  251. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  252. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  253. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
  254. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  255. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  256. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  257. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  258. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
  259. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
  260. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
  261. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
  262. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
  263. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  264. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
  265. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  266. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  267. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  268. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
  269. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
  270. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
  271. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
  272. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
  273. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  274. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  275. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  276. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  277. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
  278. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
  279. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
  280. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
  281. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
  282. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  283. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  284. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  285. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
  286. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
  287. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
  288. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
  289. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
  290. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
  291. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  292. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  293. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
  294. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
  295. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  296. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  297. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
  298. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  299. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
  300. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  301. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  302. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
  303. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  304. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
  305. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  306. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
  307. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
  308. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  309. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  310. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  311. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  312. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
  313. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  314. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
  315. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  316. /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
  317. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
  318. {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
@@ -20,10 +20,11 @@ import torch
20
20
  import torch.nn as nn
21
21
 
22
22
  from sglang.srt.custom_op import CustomOp
23
- from sglang.srt.utils import is_cuda, is_hip
23
+ from sglang.srt.utils import get_bool_env_var, is_cuda, is_hip
24
24
 
25
25
  _is_cuda = is_cuda()
26
26
  _is_hip = is_hip()
27
+ _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
27
28
 
28
29
  if _is_cuda:
29
30
  from sgl_kernel import (
@@ -33,7 +34,10 @@ if _is_cuda:
33
34
  rmsnorm,
34
35
  )
35
36
 
36
- if _is_hip:
37
+ if _use_aiter:
38
+ from aiter import rmsnorm2d_fwd as rms_norm
39
+ from aiter import rmsnorm2d_fwd_with_add as fused_add_rms_norm
40
+ elif _is_hip:
37
41
  from vllm._custom_ops import fused_add_rms_norm, rms_norm
38
42
 
39
43
  logger = logging.getLogger(__name__)
@@ -48,16 +52,8 @@ class RMSNorm(CustomOp):
48
52
  super().__init__()
49
53
  self.weight = nn.Parameter(torch.ones(hidden_size))
50
54
  self.variance_epsilon = eps
51
-
52
- def forward(self, *args, **kwargs):
53
- if torch.compiler.is_compiling():
54
- return self.forward_native(*args, **kwargs)
55
- if _is_cuda:
56
- return self.forward_cuda(*args, **kwargs)
57
- elif _is_hip:
58
- return self.forward_hip(*args, **kwargs)
59
- else:
60
- return self.forward_native(*args, **kwargs)
55
+ if _use_aiter:
56
+ self._forward_method = self.forward_aiter
61
57
 
62
58
  def forward_cuda(
63
59
  self,
@@ -70,6 +66,25 @@ class RMSNorm(CustomOp):
70
66
  out = rmsnorm(x, self.weight.data, self.variance_epsilon)
71
67
  return out
72
68
 
69
+ def forward_aiter(
70
+ self,
71
+ x: torch.Tensor,
72
+ residual: Optional[torch.Tensor] = None,
73
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
74
+ if residual is not None:
75
+ residual_out = torch.empty_like(x)
76
+ output = torch.empty_like(x)
77
+ fused_add_rms_norm(
78
+ output,
79
+ x,
80
+ residual,
81
+ residual_out,
82
+ self.weight.data,
83
+ self.variance_epsilon,
84
+ )
85
+ return output, residual_out
86
+ return rms_norm(x, self.weight.data, self.variance_epsilon)
87
+
73
88
  def forward_hip(
74
89
  self,
75
90
  x: torch.Tensor,
@@ -117,13 +132,9 @@ class GemmaRMSNorm(CustomOp):
117
132
  self.weight = nn.Parameter(torch.zeros(hidden_size))
118
133
  self.variance_epsilon = eps
119
134
 
120
- def forward(self, *args, **kwargs):
121
- if torch.compiler.is_compiling():
122
- return self.forward_native(*args, **kwargs)
123
- if _is_cuda:
124
- return self.forward_cuda(*args, **kwargs)
125
- else:
126
- return self.forward_native(*args, **kwargs)
135
+ # Re-dispatch
136
+ if _is_hip:
137
+ self._forward_method = self.forward_native
127
138
 
128
139
  def forward_native(
129
140
  self,
@@ -1,4 +1,4 @@
1
- """Cutlass MoE kernel."""
1
+ """CUTLASS based Fused MoE kernels."""
2
2
 
3
3
  import functools
4
4
  import json
@@ -8,19 +8,24 @@ from typing import Any, Callable, Dict, List, Optional, Tuple
8
8
 
9
9
  import torch
10
10
 
11
+ from sglang.srt.layers.moe.cutlass_moe_params import CutlassMoEParams
11
12
  from sglang.srt.utils import is_cuda
12
13
 
13
14
  _is_cuda = is_cuda()
14
15
  if _is_cuda:
15
16
  import sgl_kernel
16
17
  from sgl_kernel import (
18
+ apply_shuffle_mul_sum,
19
+ cutlass_fp4_group_mm,
17
20
  fp8_blockwise_scaled_grouped_mm,
18
21
  prepare_moe_input,
22
+ scaled_fp4_experts_quant,
23
+ shuffle_rows,
19
24
  silu_and_mul,
20
25
  )
21
26
 
22
27
 
23
- def cutlass_fused_experts(
28
+ def cutlass_fused_experts_fp8(
24
29
  a: torch.Tensor,
25
30
  w1_q: torch.Tensor,
26
31
  w2_q: torch.Tensor,
@@ -147,8 +152,8 @@ def cutlass_fused_experts(
147
152
  k,
148
153
  )
149
154
 
150
- rep_a_q = a_q.view(dtype=torch.uint8)[a_map].view(dtype=a_q.dtype)
151
- rep_a1_scales = a1_scale[a_map]
155
+ rep_a_q = shuffle_rows(a_q, a_map, (m * topk, k))
156
+ rep_a1_scales = shuffle_rows(a1_scale, a_map, (m * topk, int(k / 128)))
152
157
 
153
158
  c1 = torch.empty((m * topk, n * 2), device=device, dtype=out_dtype)
154
159
  c2 = torch.empty((m * topk, k), device=device, dtype=out_dtype)
@@ -202,6 +207,164 @@ def cutlass_fused_experts(
202
207
  expert_offsets[:-1],
203
208
  workspace,
204
209
  )
205
- return (
206
- c2[c_map].view(m, topk, k) * topk_weights.view(m, topk, 1).to(out_dtype)
207
- ).sum(dim=1)
210
+
211
+ result = torch.empty((m, k), device=device, dtype=out_dtype)
212
+ return apply_shuffle_mul_sum(c2, result, c_map, topk_weights)
213
+
214
+
215
+ FLOAT4_E2M1_MAX = 6.0
216
+ FLOAT8_E4M3_MAX = 448.0
217
+
218
+
219
+ def cutlass_moe_fp4(
220
+ a: torch.Tensor,
221
+ a1_gscale: torch.Tensor,
222
+ w1_fp4: torch.Tensor,
223
+ w1_blockscale: torch.Tensor,
224
+ w1_alphas: torch.Tensor,
225
+ a2_gscale: torch.Tensor,
226
+ w2_fp4: torch.Tensor,
227
+ w2_blockscale: torch.Tensor,
228
+ w2_alphas: torch.Tensor,
229
+ topk_weights: torch.Tensor,
230
+ topk_ids: torch.Tensor,
231
+ params: CutlassMoEParams,
232
+ apply_router_weight_on_input: bool = False,
233
+ ):
234
+ """
235
+ MoE implementation for FP4 Inputs
236
+
237
+ # Gemm 1
238
+ a: Input tensor: [m, k] (half/bfloat16)
239
+ a1_gscale: Activation scale per expert: [e] (float32)
240
+ w1(gate up) (not an argument to cutlass_moe_fp4): [e, 2 * n, k]
241
+ w1_fp4: [e, 2 * n, k // 2], dtype: torch.uint8 (stacked fp4: E2M1)
242
+ (Note: `n` is the up projection output dim, `k` is the input dim in
243
+ full precision)
244
+ w1_blockscale: [e, 2 * n, k // block_size] (float8_e4m3)
245
+ (Block size = 16 for NVFP4)
246
+
247
+ # Gemm 2
248
+ a2_gscale: Activation scale per expert: [e]
249
+ w2(down projection) (not an argument to cutlass_moe_fp4): [e, k, n]
250
+ w2_fp4: [e, k, n // 2], dtype: torch.uint8 (stacked E2M1)
251
+ w2_blockscale: [e, k, n // block_size], dtype: float8_e4m3
252
+
253
+ Strides for activations, weights and output in logical number of elements.
254
+ The activations & output stride is the number of elements to the next row.
255
+ The weights stride is the number of elements to the next row per expert.
256
+ For example, if the weight is [e, n, k], then the b_stride is a tensor of
257
+ shape [e] with each element being k. Similarly for activations, if the
258
+ shape is [m, k], then the a_stride has shape [e] with each value k.
259
+ Similarly for output, if the output is [m, n], then the c_stride is a
260
+ tensor of shape [e] with each element being k.
261
+
262
+ Note: cutlass_fp4_group_mm is designed to accept the strides of
263
+ activations and weights to be the same, so it is passed in as a single
264
+ tensor.
265
+ ab_strides_13: [e] dtype: int64 [Gemm 1: Activation / Weight strides]
266
+ ab_strides_2: [e] dtype: int64 [Gemm 2: Activation / Weight strides]
267
+ c_strides_13: [e] dtype: int64 [Gemm 1: Output Strides]
268
+ c_strides_2: [e] dtype: int64 [Gemm 1: Output Strides]
269
+
270
+ topk_weights: [m, topk] dtype: float8
271
+ topk_ids: [m, topk] dtype: float8
272
+
273
+ m, n, k: Unquantized weight shapes, dtype: int
274
+ e: number of experts for the current rank, dtype: int
275
+ assumes that topk < k < n to satisfy - up/down projection expectations.
276
+ """
277
+ assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
278
+ assert w1_fp4.dtype == torch.uint8, "weight 1 must be uint8"
279
+ assert w2_fp4.dtype == torch.uint8, "weight 2 must be uint8"
280
+ assert (
281
+ w1_fp4.ndim == 3
282
+ and w2_fp4.ndim == 3
283
+ and w1_blockscale.ndim == 3
284
+ and w2_blockscale.ndim == 3
285
+ ), "All Weights must be of rank 3 for cutlass_moe_fp4"
286
+ m_a, k_a = a.shape
287
+ e_w1, nx2_w1, half_k_w1 = w1_fp4.shape
288
+ e_w2, k_w2, half_n_w2 = w2_fp4.shape
289
+
290
+ assert e_w1 == e_w2 and e_w1 == params.num_experts, (
291
+ "Number of experts must match",
292
+ " between weights.",
293
+ )
294
+ assert (
295
+ k_a // 2 == half_k_w1 and params.hidden_size == k_w2
296
+ ), "Hidden size mismatch between a, w1 and w2"
297
+ assert (
298
+ nx2_w1 == params.intermediate_size_per_partition * 2
299
+ and half_n_w2 == params.intermediate_size_per_partition // 2
300
+ ), ("mismatch in " "expected `n`")
301
+ assert 2 * half_k_w1 == k_w2, "Hidden size mismatch w2 and w1"
302
+ assert a.dtype in [torch.half, torch.bfloat16], "Invalid input dtype"
303
+
304
+ out_dtype = a.dtype
305
+ num_topk = topk_ids.shape[1]
306
+ device = a.device
307
+ a_map = torch.empty((topk_ids.numel()), dtype=torch.int32, device=device)
308
+ c_map = torch.empty((topk_ids.numel()), dtype=torch.int32, device=device)
309
+ prepare_moe_input(
310
+ topk_ids,
311
+ params.expert_offsets,
312
+ params.problem_sizes1,
313
+ params.problem_sizes2,
314
+ a_map,
315
+ c_map,
316
+ params.num_experts,
317
+ params.intermediate_size_per_partition,
318
+ params.hidden_size,
319
+ params.blockscale_offsets,
320
+ )
321
+
322
+ rep_a_fp4, rep_a_blockscale = scaled_fp4_experts_quant(
323
+ a,
324
+ a1_gscale,
325
+ params.expert_offsets,
326
+ params.blockscale_offsets,
327
+ num_topk,
328
+ expert_map=a_map,
329
+ )
330
+ c1 = cutlass_fp4_group_mm(
331
+ rep_a_fp4,
332
+ w1_fp4,
333
+ rep_a_blockscale,
334
+ w1_blockscale,
335
+ w1_alphas,
336
+ out_dtype,
337
+ device,
338
+ params.to_gemm1_args(),
339
+ )
340
+ del rep_a_fp4, rep_a_blockscale
341
+
342
+ # hidden size dimension is split to one halfpytho sized tensor.
343
+ intermediate = torch.empty(
344
+ (m_a * num_topk, w1_fp4.shape[1] // 2), device=device, dtype=out_dtype
345
+ )
346
+ silu_and_mul(c1, intermediate)
347
+
348
+ int_fp4, int_blockscale = scaled_fp4_experts_quant(
349
+ intermediate,
350
+ a2_gscale,
351
+ params.expert_offsets,
352
+ params.blockscale_offsets,
353
+ num_topk,
354
+ )
355
+ c2 = cutlass_fp4_group_mm(
356
+ int_fp4,
357
+ w2_fp4,
358
+ int_blockscale,
359
+ w2_blockscale,
360
+ w2_alphas,
361
+ out_dtype,
362
+ device,
363
+ params.to_gemm2_args(),
364
+ )
365
+ del int_fp4, int_blockscale
366
+ c2 = shuffle_rows(c2, c_map, (m_a * num_topk, params.hidden_size))
367
+ c2 = c2.view(m_a, num_topk, params.hidden_size)
368
+ if not apply_router_weight_on_input:
369
+ c2 = c2 * topk_weights.view(m_a, num_topk, 1).to(out_dtype)
370
+ return c2.sum(dim=1).to(out_dtype)
@@ -0,0 +1,169 @@
1
+ from dataclasses import dataclass
2
+ from enum import Enum, auto
3
+ from typing import Optional
4
+
5
+ import torch
6
+
7
+
8
+ class CutlassMoEType(Enum):
9
+ """
10
+ Enum for the different types of cutlass moe operations
11
+ that are currently supported in SGLang.
12
+ """
13
+
14
+ BlockscaledFP8 = auto()
15
+ BlockscaledFP4 = auto()
16
+
17
+
18
+ @dataclass
19
+ class CutlassMoEParams:
20
+ """
21
+ Parameters for the cutlass moe operation.
22
+ """
23
+
24
+ # Type as defined above
25
+ cutlass_moe_type: CutlassMoEType
26
+
27
+ # Strides for activations, weights and output in logical number of elements.
28
+ # The activations & output stride is the number of elements to the next row.
29
+ # The weights stride is the number of elements to the next row per expert.
30
+ # For example, if the weight is [e, n, k], then the b_stride is a tensor of
31
+ # shape [e] with each element being k. Similarly for activations, if the
32
+ # shape is [m, k], then the a_stride has shape [e] with each value k.
33
+ # Similarly for output, if the output is [m, n], then the c_stride is a
34
+ # tensor of shape [e] with each element being k.
35
+
36
+ # Note: cutlass_fp4_group_mm is designed to accept the strides of
37
+ # activations and weights to be the same, so it is passed in as a single
38
+ # tensor.
39
+ # ab_strides_13: [e] dtype: int64 [Gemm 1: Activation / Weight strides]
40
+ # ab_strides_2: [e] dtype: int64 [Gemm 2: Activation / Weight strides]
41
+ # c_strides_13: [e] dtype: int64 [Gemm 1: Output Strides]
42
+ # c_strides_2: [e] dtype: int64 [Gemm 2: Output Strides]
43
+ ab_strides_13: torch.Tensor
44
+ ab_strides_2: torch.Tensor
45
+ c_strides_13: torch.Tensor
46
+ c_strides_2: torch.Tensor
47
+
48
+ # m: Total number of tokens
49
+ # n: intermediate size per partition
50
+ # k: hidden size per expert
51
+ # e: Number of experts
52
+ # device: Device to run computation on and store tensors
53
+ m: int
54
+ intermediate_size_per_partition: int
55
+ hidden_size: int
56
+ num_experts: int
57
+ device: torch.device
58
+
59
+ # Pointers container for calculating offsets of the input activations for each expert
60
+ # a_ptrs: [e] dtype: int64
61
+ a_ptrs: torch.Tensor
62
+
63
+ # Pointers container for calculating offsets of the input weights for each expert
64
+ # b_ptrs: [e] dtype: int64
65
+ b_ptrs: torch.Tensor
66
+
67
+ # Pointers container for calculating offsets of the output activations for each expert
68
+ # out_ptrs: [e] dtype: int64
69
+ out_ptrs: torch.Tensor
70
+ # Pointers container for calculating offsets of the input scales for each expert
71
+ # a_scales_ptrs: [e] dtype: int64
72
+ # b_scales_ptrs: [e] dtype: int64
73
+ a_scales_ptrs: torch.Tensor
74
+ b_scales_ptrs: torch.Tensor
75
+
76
+ # Offsets that mark at which token index each expert begins its computation
77
+ # The number of tokens computed with expert E is expert_offsets[E + 1] - expert_offsets[E]
78
+ # expert_offsets: [e+1] dtype: int32
79
+ expert_offsets: torch.Tensor
80
+
81
+ # Problem size: (num_experts, (m,2n,k)) for first GEMM
82
+ # problem_sizes1: [e, 3] dtype: int32
83
+ # Problem size: (num_experts, (m,n,k)) for second GEMM
84
+ # problem_sizes2: [e, 3] dtype: int32
85
+ problem_sizes1: torch.Tensor
86
+ problem_sizes2: torch.Tensor
87
+ # Similar to expert_offsets, but for blockscales for FP4 blockscaled Group GEMM
88
+ blockscale_offsets: Optional[torch.Tensor] = None
89
+
90
+ def __init__(
91
+ self,
92
+ cutlass_moe_type: CutlassMoEType,
93
+ device: torch.device,
94
+ num_experts: int,
95
+ intermediate_size_per_partition: int,
96
+ hidden_size: int,
97
+ ):
98
+ self.cutlass_moe_type = cutlass_moe_type
99
+ self.device = device
100
+ self.num_experts = num_experts
101
+ self.intermediate_size_per_partition = intermediate_size_per_partition
102
+ self.hidden_size = hidden_size
103
+ self.n = self.intermediate_size_per_partition
104
+ self.k = self.hidden_size
105
+ self.e = self.num_experts
106
+ self.ab_strides_13 = torch.full(
107
+ (self.e,), self.k, dtype=torch.int64, device=self.device
108
+ )
109
+ self.ab_strides_2 = torch.full(
110
+ (self.e,), self.n, dtype=torch.int64, device=self.device
111
+ )
112
+ self.c_strides_13 = torch.full(
113
+ (self.e,), 2 * self.n, dtype=torch.int64, device=self.device
114
+ )
115
+ self.c_strides_2 = torch.full(
116
+ (self.e,), self.k, dtype=torch.int64, device=self.device
117
+ )
118
+ self.expert_offsets = torch.empty(
119
+ (self.e + 1,), dtype=torch.int32, device=self.device
120
+ )
121
+ self.problem_sizes1 = torch.empty(
122
+ (self.e, 3), dtype=torch.int32, device=self.device
123
+ )
124
+ self.problem_sizes2 = torch.empty(
125
+ (self.e, 3), dtype=torch.int32, device=self.device
126
+ )
127
+ if self.cutlass_moe_type == CutlassMoEType.BlockscaledFP4:
128
+ self.blockscale_offsets = torch.empty(
129
+ (self.e + 1,), dtype=torch.int32, device=self.device
130
+ )
131
+ else:
132
+ self.blockscale_offsets = None
133
+ self.a_ptrs = torch.empty((self.e,), dtype=torch.int64, device=self.device)
134
+ self.b_ptrs = torch.empty((self.e,), dtype=torch.int64, device=self.device)
135
+ self.out_ptrs = torch.empty((self.e,), dtype=torch.int64, device=self.device)
136
+ self.a_scales_ptrs = torch.empty(
137
+ (self.e,), dtype=torch.int64, device=self.device
138
+ )
139
+ self.b_scales_ptrs = torch.empty(
140
+ (self.e,), dtype=torch.int64, device=self.device
141
+ )
142
+
143
+ def to_gemm1_args(self) -> dict:
144
+ return {
145
+ "ab_strides": self.ab_strides_13,
146
+ "c_strides": self.c_strides_13,
147
+ "problem_sizes": self.problem_sizes1,
148
+ "expert_offsets": self.expert_offsets[:-1],
149
+ "blockscale_offsets": self.blockscale_offsets[:-1],
150
+ # "a_ptrs": self.a_ptrs,
151
+ # "b_ptrs": self.b_ptrs,
152
+ # "out_ptrs": self.out_ptrs,
153
+ # "a_scales_ptrs": self.a_scales_ptrs,
154
+ # "b_scales_ptrs": self.b_scales_ptrs,
155
+ }
156
+
157
+ def to_gemm2_args(self) -> dict:
158
+ return {
159
+ "ab_strides": self.ab_strides_2,
160
+ "c_strides": self.c_strides_2,
161
+ "problem_sizes": self.problem_sizes2,
162
+ "expert_offsets": self.expert_offsets[:-1],
163
+ "blockscale_offsets": self.blockscale_offsets[:-1],
164
+ # "a_ptrs": self.a_ptrs,
165
+ # "b_ptrs": self.b_ptrs,
166
+ # "out_ptrs": self.out_ptrs,
167
+ # "a_scales_ptrs": self.a_scales_ptrs,
168
+ # "b_scales_ptrs": self.b_scales_ptrs,
169
+ }
@@ -178,26 +178,33 @@ def pre_reorder_triton_kernel(
178
178
  topk,
179
179
  hidden_size,
180
180
  BLOCK_SIZE: tl.constexpr,
181
+ use_per_token_if_dynamic: tl.constexpr,
181
182
  ):
182
183
  OutDtype = gateup_input_ptr.dtype.element_ty
183
184
 
184
185
  src_idx = tl.program_id(0)
185
186
  src2dst_ptr = src2dst_ptr + src_idx * topk
186
187
  topk_ids_ptr = topk_ids_ptr + src_idx * topk
187
-
188
188
  src_ptr = input_ptr + src_idx * hidden_size
189
+
190
+ vec = tl.arange(0, BLOCK_SIZE)
191
+
192
+ if a1_scales_ptr is not None and use_per_token_if_dynamic:
193
+ scale = 1.0 / tl.load(a1_scales_ptr + src_idx)
194
+
189
195
  for idx in range(topk):
190
196
  expert_id = tl.load(topk_ids_ptr + idx)
191
197
  if expert_id >= start_expert_id and expert_id <= end_expert_id:
192
198
  if a1_scales_ptr is not None:
193
- scale = 1.0 / tl.load(a1_scales_ptr + expert_id - start_expert_id)
199
+ if not use_per_token_if_dynamic:
200
+ scale = 1.0 / tl.load(a1_scales_ptr + expert_id - start_expert_id)
194
201
  else:
195
202
  scale = 1.0
196
203
 
197
204
  dst_idx = tl.load(src2dst_ptr + idx)
198
205
  dst_ptr = gateup_input_ptr + dst_idx * hidden_size
199
206
  for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
200
- offset = start_offset + tl.arange(0, BLOCK_SIZE)
207
+ offset = start_offset + vec
201
208
  mask = offset < hidden_size
202
209
  in_data = tl.load(src_ptr + offset, mask=mask).to(tl.float32)
203
210
  out_data = (in_data * scale).to(OutDtype)
@@ -481,8 +488,11 @@ def post_reorder_triton_kernel(
481
488
 
482
489
  computed = False
483
490
  store_ptr = output_ptr + src_idx * hidden_size
491
+
492
+ vec = tl.arange(0, BLOCK_SIZE)
493
+
484
494
  for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
485
- offset = start_offset + tl.arange(0, BLOCK_SIZE)
495
+ offset = start_offset + vec
486
496
  mask = offset < hidden_size
487
497
 
488
498
  sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
@@ -499,7 +509,7 @@ def post_reorder_triton_kernel(
499
509
 
500
510
  if computed == False:
501
511
  for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
502
- offset = start_offset + tl.arange(0, BLOCK_SIZE)
512
+ offset = start_offset + vec
503
513
  mask = offset < hidden_size
504
514
  tl.store(
505
515
  store_ptr + offset, tl.zeros([BLOCK_SIZE], dtype=InDtype), mask=mask
@@ -553,6 +563,7 @@ def grouped_gemm_triton_kernel(
553
563
  bs_stride_0: tl.constexpr,
554
564
  bs_stride_2: tl.constexpr,
555
565
  bs_stride_1: tl.constexpr,
566
+ use_per_token_if_dynamic: tl.constexpr,
556
567
  BLOCK_SIZE_M: tl.constexpr,
557
568
  BLOCK_SIZE_N: tl.constexpr,
558
569
  BLOCK_SIZE_K: tl.constexpr,
@@ -616,7 +627,10 @@ def grouped_gemm_triton_kernel(
616
627
  b_ptr += BLOCK_SIZE_K
617
628
 
618
629
  if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
619
- scale_a_value = tl.load(scale_a + expert_id)
630
+ if use_per_token_if_dynamic:
631
+ scale_a_value = tl.load(scale_a + (m_range_start + offs_am[:, None]))
632
+ else:
633
+ scale_a_value = tl.load(scale_a + expert_id)
620
634
  scale_b_value = tl.load(scale_b + expert_id)
621
635
  accumulator *= scale_a_value * scale_b_value
622
636
 
@@ -653,6 +667,7 @@ def grouped_gemm_triton(
653
667
  scale_b: torch.Tensor = None,
654
668
  block_shape: Optional[List[int]] = None,
655
669
  c_dtype=None,
670
+ use_per_token_if_dynamic: bool = True,
656
671
  ):
657
672
  assert weight_column_major == True # TODO: more
658
673
  if use_fp8_w8a8 and block_shape is None:
@@ -693,6 +708,11 @@ def grouped_gemm_triton(
693
708
  triton.cdiv(b.size(1), META["BLOCK_SIZE_N"]),
694
709
  )
695
710
 
711
+ if use_fp8_w8a8 and block_shape is None and use_per_token_if_dynamic:
712
+ assert (
713
+ scale_a.shape[0] == a.shape[0]
714
+ ), f"scale_a.shape: {scale_a.shape}, a.shape: {a.shape}"
715
+
696
716
  grouped_gemm_triton_kernel[grid](
697
717
  a,
698
718
  b,
@@ -716,6 +736,7 @@ def grouped_gemm_triton(
716
736
  scale_b.stride(0) if scale_b is not None and scale_b.ndim >= 2 else 0,
717
737
  scale_b.stride(2) if scale_b is not None and scale_b.ndim == 3 else 0,
718
738
  scale_b.stride(1) if scale_b is not None and scale_b.ndim >= 2 else 0,
739
+ use_per_token_if_dynamic,
719
740
  **config,
720
741
  )
721
742
  return c