sglang 0.4.6.post5__py3-none-any.whl → 0.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +10 -4
- sglang/bench_one_batch_server.py +67 -11
- sglang/bench_serving.py +85 -74
- sglang/lang/backend/runtime_endpoint.py +24 -1
- sglang/profiler.py +167 -0
- sglang/srt/_custom_ops.py +34 -0
- sglang/srt/configs/internvl.py +8 -12
- sglang/srt/configs/model_config.py +27 -1
- sglang/srt/constrained/base_grammar_backend.py +5 -2
- sglang/srt/constrained/llguidance_backend.py +9 -8
- sglang/srt/constrained/outlines_backend.py +5 -4
- sglang/srt/constrained/xgrammar_backend.py +18 -18
- sglang/srt/conversation.py +46 -8
- sglang/srt/custom_op.py +38 -3
- sglang/srt/debug_utils.py +74 -0
- sglang/srt/disaggregation/common/__init__.py +1 -0
- sglang/srt/disaggregation/common/conn.py +407 -0
- sglang/srt/disaggregation/decode.py +67 -3
- sglang/srt/disaggregation/fake/conn.py +1 -0
- sglang/srt/disaggregation/kv_events.py +60 -5
- sglang/srt/disaggregation/launch_lb.py +140 -0
- sglang/srt/disaggregation/mini_lb.py +29 -48
- sglang/srt/disaggregation/mooncake/conn.py +432 -140
- sglang/srt/disaggregation/mooncake/transfer_engine.py +32 -16
- sglang/srt/disaggregation/nixl/conn.py +124 -432
- sglang/srt/disaggregation/prefill.py +2 -0
- sglang/srt/disaggregation/utils.py +38 -1
- sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
- sglang/srt/distributed/parallel_state.py +52 -5
- sglang/srt/entrypoints/EngineBase.py +6 -0
- sglang/srt/entrypoints/engine.py +102 -5
- sglang/srt/entrypoints/http_server.py +15 -2
- sglang/srt/function_call/base_format_detector.py +138 -86
- sglang/srt/function_call/deepseekv3_detector.py +54 -6
- sglang/srt/function_call/ebnf_composer.py +33 -19
- sglang/srt/function_call/function_call_parser.py +27 -0
- sglang/srt/function_call/llama32_detector.py +33 -14
- sglang/srt/function_call/mistral_detector.py +73 -26
- sglang/srt/function_call/pythonic_detector.py +86 -20
- sglang/srt/function_call/qwen25_detector.py +64 -10
- sglang/srt/function_call/utils.py +17 -0
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/attention/aiter_backend.py +488 -123
- sglang/srt/layers/attention/base_attn_backend.py +4 -0
- sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
- sglang/srt/layers/attention/flashattention_backend.py +103 -18
- sglang/srt/layers/attention/flashinfer_backend.py +45 -1
- sglang/srt/layers/attention/flashinfer_mla_backend.py +37 -1
- sglang/srt/layers/attention/intel_amx_backend.py +128 -0
- sglang/srt/layers/attention/tbo_backend.py +232 -0
- sglang/srt/layers/attention/torch_native_backend.py +3 -0
- sglang/srt/layers/attention/triton_backend.py +244 -5
- sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
- sglang/srt/layers/communicator.py +260 -194
- sglang/srt/layers/dp_attention.py +6 -5
- sglang/srt/layers/layernorm.py +30 -19
- sglang/srt/layers/moe/cutlass_moe.py +170 -7
- sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +27 -6
- sglang/srt/layers/moe/ep_moe/layer.py +94 -40
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +13 -8
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
- sglang/srt/layers/moe/fused_moe_triton/layer.py +34 -4
- sglang/srt/layers/moe/topk.py +44 -18
- sglang/srt/layers/multimodal.py +3 -3
- sglang/srt/layers/quantization/__init__.py +3 -2
- sglang/srt/layers/quantization/blockwise_int8.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
- sglang/srt/layers/quantization/deep_gemm.py +55 -56
- sglang/srt/layers/quantization/fp8.py +28 -23
- sglang/srt/layers/quantization/fp8_kernel.py +118 -66
- sglang/srt/layers/quantization/fp8_utils.py +165 -49
- sglang/srt/layers/quantization/modelopt_quant.py +334 -7
- sglang/srt/layers/quantization/moe_wna16.py +3 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
- sglang/srt/layers/quantization/w8a8_int8.py +3 -0
- sglang/srt/layers/rotary_embedding.py +6 -12
- sglang/srt/layers/sampler.py +80 -79
- sglang/srt/layers/utils.py +6 -0
- sglang/srt/lora/layers.py +12 -15
- sglang/srt/lora/lora.py +49 -5
- sglang/srt/lora/lora_manager.py +19 -5
- sglang/srt/lora/mem_pool.py +24 -16
- sglang/srt/lora/utils.py +17 -13
- sglang/srt/managers/data_parallel_controller.py +13 -5
- sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
- sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
- sglang/srt/managers/{deepseek_eplb.py → eplb_algorithms/deepseek_vec.py} +5 -7
- sglang/srt/managers/eplb_manager.py +55 -14
- sglang/srt/managers/expert_distribution.py +220 -46
- sglang/srt/managers/expert_location.py +110 -56
- sglang/srt/managers/expert_location_dispatch.py +23 -6
- sglang/srt/managers/io_struct.py +15 -4
- sglang/srt/managers/mm_utils.py +88 -38
- sglang/srt/managers/multimodal_processors/base_processor.py +188 -16
- sglang/srt/managers/multimodal_processors/gemma3.py +4 -31
- sglang/srt/managers/multimodal_processors/internvl.py +4 -0
- sglang/srt/managers/multimodal_processors/kimi_vl.py +15 -34
- sglang/srt/managers/multimodal_processors/minicpm.py +2 -1
- sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
- sglang/srt/managers/multimodal_processors/qwen_vl.py +22 -64
- sglang/srt/managers/schedule_batch.py +140 -38
- sglang/srt/managers/scheduler.py +305 -112
- sglang/srt/managers/tokenizer_manager.py +134 -17
- sglang/srt/managers/utils.py +0 -4
- sglang/srt/metrics/collector.py +9 -0
- sglang/srt/model_executor/cuda_graph_runner.py +72 -61
- sglang/srt/model_executor/expert_location_updater.py +157 -22
- sglang/srt/model_executor/forward_batch_info.py +38 -17
- sglang/srt/model_executor/model_runner.py +96 -56
- sglang/srt/model_loader/utils.py +67 -1
- sglang/srt/models/deepseek_nextn.py +1 -1
- sglang/srt/models/deepseek_v2.py +609 -234
- sglang/srt/models/gemma3_causal.py +7 -0
- sglang/srt/models/gemma3_mm.py +19 -14
- sglang/srt/models/idefics2.py +342 -0
- sglang/srt/models/kimi_vl.py +4 -4
- sglang/srt/models/llama.py +1 -1
- sglang/srt/models/minicpmo.py +2 -5
- sglang/srt/models/minicpmv.py +3 -295
- sglang/srt/models/phi4mm.py +512 -0
- sglang/srt/models/qwen2.py +38 -9
- sglang/srt/models/qwen2_5_vl.py +3 -9
- sglang/srt/models/qwen2_eagle.py +4 -1
- sglang/srt/models/qwen2_moe.py +58 -191
- sglang/srt/models/qwen2_vl.py +3 -9
- sglang/srt/models/qwen3.py +41 -10
- sglang/srt/models/qwen3_moe.py +230 -191
- sglang/srt/models/registry.py +9 -1
- sglang/srt/models/transformers.py +291 -0
- sglang/srt/openai_api/adapter.py +86 -24
- sglang/srt/openai_api/protocol.py +31 -2
- sglang/srt/openai_api/utils.py +172 -0
- sglang/srt/operations.py +37 -2
- sglang/srt/operations_strategy.py +200 -24
- sglang/srt/sampling/sampling_batch_info.py +13 -1
- sglang/srt/sampling/sampling_params.py +2 -1
- sglang/srt/server_args.py +114 -27
- sglang/srt/speculative/build_eagle_tree.py +8 -8
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
- sglang/srt/speculative/eagle_utils.py +51 -91
- sglang/srt/speculative/eagle_worker.py +101 -21
- sglang/srt/two_batch_overlap.py +635 -0
- sglang/srt/utils.py +129 -7
- sglang/test/runners.py +16 -7
- sglang/test/send_one.py +4 -0
- sglang/test/test_cutlass_moe.py +3 -3
- sglang/test/test_fp4_moe.py +248 -0
- sglang/test/test_utils.py +79 -6
- sglang/version.py +1 -1
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/METADATA +14 -11
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/RECORD +318 -291
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
@@ -277,6 +277,13 @@ class Gemma3Attention(nn.Module):
|
|
277
277
|
k = k.permute(0, 2, 1, 3)
|
278
278
|
|
279
279
|
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
|
280
|
+
|
281
|
+
# Compatible with triton backend which returns [1, s, h, head_dim]
|
282
|
+
if attn_output.dim() == 4 and attn_output.shape[0] == 1:
|
283
|
+
attn_output = attn_output.squeeze(0)
|
284
|
+
attn_output = attn_output.flatten(-2, -1)
|
285
|
+
# [s, h * head_dim]
|
286
|
+
|
280
287
|
output, _ = self.o_proj(attn_output)
|
281
288
|
return output
|
282
289
|
|
sglang/srt/models/gemma3_mm.py
CHANGED
@@ -282,25 +282,30 @@ class Gemma3ForConditionalGeneration(PreTrainedModel):
|
|
282
282
|
Returns:
|
283
283
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
284
284
|
"""
|
285
|
-
if any(item.precomputed_features is not None for item in items):
|
286
|
-
if not all(item.precomputed_features is not None for item in items):
|
287
|
-
raise NotImplementedError(
|
288
|
-
"MM inputs where only some items are precomputed."
|
289
|
-
)
|
290
|
-
return torch.concat([item.precomputed_features for item in items])
|
291
|
-
|
292
285
|
# Process images one by one to handle flatten_batch=True constraint in vision_tower
|
293
286
|
all_pixel_values = flatten_nested_list([item.pixel_values for item in items])
|
294
287
|
vision_outputs_list = []
|
295
288
|
|
296
|
-
for
|
297
|
-
#
|
298
|
-
|
299
|
-
|
300
|
-
|
289
|
+
for pixel_values_batch in all_pixel_values:
|
290
|
+
# Normalize input shape to [batch_size, channels, height, width]
|
291
|
+
if pixel_values_batch.dim() == 5:
|
292
|
+
pixel_values_batch = pixel_values_batch.squeeze(0)
|
293
|
+
elif pixel_values_batch.dim() == 3:
|
294
|
+
pixel_values_batch = pixel_values_batch.unsqueeze(0)
|
295
|
+
elif pixel_values_batch.dim() != 4:
|
296
|
+
raise ValueError(
|
297
|
+
f"Unexpected pixel_values shape: {pixel_values_batch.shape}"
|
298
|
+
)
|
301
299
|
|
302
|
-
|
303
|
-
|
300
|
+
# Process each image in the batch
|
301
|
+
batch_size = pixel_values_batch.shape[0]
|
302
|
+
for i in range(batch_size):
|
303
|
+
pixel_value = pixel_values_batch[i : i + 1] # Keep batch dimension as 1
|
304
|
+
pixel_value = pixel_value.to(
|
305
|
+
device=self.vision_tower.device, dtype=self.language_model.dtype()
|
306
|
+
)
|
307
|
+
vision_output = self.vision_tower(pixel_values=pixel_value)
|
308
|
+
vision_outputs_list.append(vision_output)
|
304
309
|
|
305
310
|
# Concatenate all vision outputs
|
306
311
|
vision_outputs = torch.cat(vision_outputs_list, dim=0)
|
@@ -0,0 +1,342 @@
|
|
1
|
+
# Copyright 2023 The SGLang team.
|
2
|
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5
|
+
# and OPT implementations in this library. It has been modified from its
|
6
|
+
# original forms to accommodate minor architectural differences compared
|
7
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8
|
+
#
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10
|
+
# you may not use this file except in compliance with the License.
|
11
|
+
# You may obtain a copy of the License at
|
12
|
+
#
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14
|
+
#
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18
|
+
# See the License for the specific language governing permissions and
|
19
|
+
# limitations under the License.
|
20
|
+
|
21
|
+
from typing import Optional
|
22
|
+
|
23
|
+
import torch
|
24
|
+
from torch import nn
|
25
|
+
from transformers import PretrainedConfig
|
26
|
+
|
27
|
+
from sglang.srt.layers.activation import get_act_fn
|
28
|
+
from sglang.srt.layers.attention.vision import VisionAttention
|
29
|
+
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
|
30
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
31
|
+
from sglang.srt.utils import add_prefix
|
32
|
+
|
33
|
+
|
34
|
+
class Idefics2VisionMLP(nn.Module):
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
config: PretrainedConfig,
|
39
|
+
quant_config: Optional[QuantizationConfig] = None,
|
40
|
+
prefix: str = "",
|
41
|
+
) -> None:
|
42
|
+
super().__init__()
|
43
|
+
self.config = config
|
44
|
+
self.activation_fn = get_act_fn(config.hidden_act)
|
45
|
+
self.fc1 = ColumnParallelLinear(
|
46
|
+
config.hidden_size,
|
47
|
+
config.intermediate_size,
|
48
|
+
bias=True,
|
49
|
+
quant_config=quant_config,
|
50
|
+
prefix=add_prefix("fc1", prefix),
|
51
|
+
)
|
52
|
+
self.fc2 = RowParallelLinear(
|
53
|
+
config.intermediate_size,
|
54
|
+
config.hidden_size,
|
55
|
+
bias=True,
|
56
|
+
quant_config=quant_config,
|
57
|
+
prefix=add_prefix("fc2", prefix),
|
58
|
+
)
|
59
|
+
|
60
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
61
|
+
hidden_states, _ = self.fc1(hidden_states)
|
62
|
+
hidden_states = self.activation_fn(hidden_states)
|
63
|
+
hidden_states, _ = self.fc2(hidden_states)
|
64
|
+
return hidden_states
|
65
|
+
|
66
|
+
|
67
|
+
class Idefics2EncoderLayer(nn.Module):
|
68
|
+
|
69
|
+
def __init__(
|
70
|
+
self,
|
71
|
+
config: PretrainedConfig,
|
72
|
+
quant_config: Optional[QuantizationConfig] = None,
|
73
|
+
prefix: str = "",
|
74
|
+
) -> None:
|
75
|
+
super().__init__()
|
76
|
+
self.embed_dim = config.hidden_size
|
77
|
+
self.num_heads = config.num_attention_heads
|
78
|
+
self.self_attn = VisionAttention(
|
79
|
+
embed_dim=config.hidden_size,
|
80
|
+
num_heads=self.num_heads,
|
81
|
+
projection_size=config.intermediate_size,
|
82
|
+
use_qkv_parallel=True,
|
83
|
+
quant_config=quant_config,
|
84
|
+
dropout=config.attention_dropout,
|
85
|
+
qkv_backend="sdpa",
|
86
|
+
softmax_in_single_precision=True,
|
87
|
+
flatten_batch=False,
|
88
|
+
prefix=add_prefix("self_attn", prefix),
|
89
|
+
)
|
90
|
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
91
|
+
self.mlp = Idefics2VisionMLP(
|
92
|
+
config,
|
93
|
+
quant_config=quant_config,
|
94
|
+
prefix=add_prefix("mlp", prefix),
|
95
|
+
)
|
96
|
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
97
|
+
|
98
|
+
def forward(
|
99
|
+
self,
|
100
|
+
hidden_states: torch.Tensor,
|
101
|
+
cu_seqlens: torch.Tensor,
|
102
|
+
) -> torch.Tensor:
|
103
|
+
"""
|
104
|
+
Args:
|
105
|
+
hidden_states (`torch.FloatTensor`):
|
106
|
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
107
|
+
|
108
|
+
"""
|
109
|
+
residual = hidden_states
|
110
|
+
hidden_states = self.layer_norm1(hidden_states)
|
111
|
+
hidden_states = self.self_attn(hidden_states, cu_seqlens=cu_seqlens)
|
112
|
+
|
113
|
+
hidden_states = residual + hidden_states
|
114
|
+
residual = hidden_states
|
115
|
+
hidden_states = self.layer_norm2(hidden_states)
|
116
|
+
hidden_states = self.mlp(hidden_states)
|
117
|
+
hidden_states = residual + hidden_states
|
118
|
+
return hidden_states
|
119
|
+
|
120
|
+
|
121
|
+
class Idefics2Encoder(nn.Module):
|
122
|
+
"""
|
123
|
+
Transformer encoder consisting of `config.num_hidden_layers` self attention
|
124
|
+
layers. Each layer is a
|
125
|
+
[`Idefics2EncoderLayer`].
|
126
|
+
|
127
|
+
Args:
|
128
|
+
config: Idefics2Config
|
129
|
+
"""
|
130
|
+
|
131
|
+
def __init__(
|
132
|
+
self,
|
133
|
+
config: PretrainedConfig,
|
134
|
+
quant_config: Optional[QuantizationConfig] = None,
|
135
|
+
prefix: str = "",
|
136
|
+
) -> None:
|
137
|
+
super().__init__()
|
138
|
+
|
139
|
+
self.config = config
|
140
|
+
self.layers = nn.ModuleList(
|
141
|
+
[
|
142
|
+
Idefics2EncoderLayer(
|
143
|
+
config,
|
144
|
+
quant_config=quant_config,
|
145
|
+
prefix=add_prefix(f"layers.{i}", prefix),
|
146
|
+
)
|
147
|
+
for i in range(config.num_hidden_layers)
|
148
|
+
]
|
149
|
+
)
|
150
|
+
|
151
|
+
def forward(
|
152
|
+
self,
|
153
|
+
inputs_embeds: torch.Tensor,
|
154
|
+
cu_seqlens: torch.Tensor,
|
155
|
+
) -> torch.Tensor:
|
156
|
+
r"""
|
157
|
+
Args:
|
158
|
+
inputs_embeds (torch.Tensor):
|
159
|
+
Optionally, instead of passing `input_ids` you can choose to
|
160
|
+
directly pass an embedded representation.
|
161
|
+
This is useful if you want more control over how to convert
|
162
|
+
`input_ids` indices into associated vectorsthan the model's
|
163
|
+
internal embedding lookup matrix.
|
164
|
+
"""
|
165
|
+
hidden_states = inputs_embeds
|
166
|
+
for encoder_layer in self.layers:
|
167
|
+
layer_outputs = encoder_layer(
|
168
|
+
hidden_states,
|
169
|
+
cu_seqlens=cu_seqlens,
|
170
|
+
)
|
171
|
+
hidden_states = layer_outputs
|
172
|
+
return hidden_states
|
173
|
+
|
174
|
+
|
175
|
+
class Idefics2VisionEmbeddings(nn.Module):
|
176
|
+
"""
|
177
|
+
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings
|
178
|
+
` to enable images of variable
|
179
|
+
resolution.
|
180
|
+
|
181
|
+
The modifications are adapted from [Patch n' Pack: NaViT, a Vision
|
182
|
+
Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
|
183
|
+
which allows treating images in their native aspect ratio and without the
|
184
|
+
need to resize them to the same fixed size. In particular, we start from the
|
185
|
+
original pre-trained SigLIP model(which uses images of fixed-size square
|
186
|
+
images) and adapt it by training on images of variable resolutions.
|
187
|
+
"""
|
188
|
+
|
189
|
+
def __init__(self, config: PretrainedConfig):
|
190
|
+
super().__init__()
|
191
|
+
self.embed_dim = config.hidden_size
|
192
|
+
self.image_size = config.image_size
|
193
|
+
self.patch_size = config.patch_size
|
194
|
+
self.patch_embedding = nn.Conv2d(
|
195
|
+
in_channels=config.num_channels,
|
196
|
+
out_channels=self.embed_dim,
|
197
|
+
kernel_size=self.patch_size,
|
198
|
+
stride=self.patch_size,
|
199
|
+
padding="valid",
|
200
|
+
)
|
201
|
+
self.num_patches_per_side = self.image_size // self.patch_size
|
202
|
+
self.num_patches = self.num_patches_per_side**2
|
203
|
+
self.num_positions = self.num_patches
|
204
|
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
205
|
+
|
206
|
+
def get_position_ids(
|
207
|
+
self,
|
208
|
+
pixel_values: torch.FloatTensor,
|
209
|
+
patch_attention_mask: torch.BoolTensor,
|
210
|
+
tgt_sizes: Optional[torch.IntTensor] = None,
|
211
|
+
):
|
212
|
+
batch_size, _, max_im_h, max_im_w = pixel_values.shape
|
213
|
+
|
214
|
+
max_nb_patches_h, max_nb_patches_w = (
|
215
|
+
max_im_h // self.patch_size,
|
216
|
+
max_im_w // self.patch_size,
|
217
|
+
)
|
218
|
+
boundaries = torch.arange(
|
219
|
+
1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side
|
220
|
+
)
|
221
|
+
position_ids = torch.full(
|
222
|
+
size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0
|
223
|
+
)
|
224
|
+
|
225
|
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
226
|
+
|
227
|
+
if tgt_sizes is not None:
|
228
|
+
nb_patches_h = tgt_sizes[batch_idx][0]
|
229
|
+
nb_patches_w = tgt_sizes[batch_idx][1]
|
230
|
+
else:
|
231
|
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
232
|
+
nb_patches_w = p_attn_mask[0].sum()
|
233
|
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
234
|
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
235
|
+
bucket_coords_h = torch.bucketize(
|
236
|
+
fractional_coords_h, boundaries, right=True
|
237
|
+
)
|
238
|
+
bucket_coords_w = torch.bucketize(
|
239
|
+
fractional_coords_w, boundaries, right=True
|
240
|
+
)
|
241
|
+
pos_ids = (
|
242
|
+
bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w
|
243
|
+
).flatten()
|
244
|
+
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
245
|
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
246
|
+
return position_ids
|
247
|
+
|
248
|
+
def forward(
|
249
|
+
self,
|
250
|
+
pixel_values: torch.FloatTensor,
|
251
|
+
patch_attention_mask: torch.BoolTensor,
|
252
|
+
tgt_sizes: Optional[torch.IntTensor] = None,
|
253
|
+
) -> torch.Tensor:
|
254
|
+
target_dtype = self.patch_embedding.weight.dtype
|
255
|
+
pixel_values = pixel_values.to(
|
256
|
+
device=self.patch_embedding.weight.device, dtype=target_dtype
|
257
|
+
)
|
258
|
+
patch_embeds = self.patch_embedding(pixel_values)
|
259
|
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
260
|
+
position_ids = self.get_position_ids(
|
261
|
+
pixel_values, patch_attention_mask, tgt_sizes
|
262
|
+
)
|
263
|
+
|
264
|
+
embeddings = embeddings + self.position_embedding(position_ids)
|
265
|
+
return embeddings
|
266
|
+
|
267
|
+
|
268
|
+
class Idefics2VisionTransformer(nn.Module):
|
269
|
+
|
270
|
+
def __init__(
|
271
|
+
self,
|
272
|
+
config: PretrainedConfig,
|
273
|
+
quant_config: Optional[QuantizationConfig] = None,
|
274
|
+
require_post_norm: bool = True,
|
275
|
+
prefix: str = "",
|
276
|
+
) -> None:
|
277
|
+
super().__init__()
|
278
|
+
|
279
|
+
embed_dim = config.hidden_size
|
280
|
+
self.config = config
|
281
|
+
self.embeddings = Idefics2VisionEmbeddings(config)
|
282
|
+
self.encoder = Idefics2Encoder(
|
283
|
+
config=config,
|
284
|
+
quant_config=quant_config,
|
285
|
+
prefix=add_prefix("encoder", prefix),
|
286
|
+
)
|
287
|
+
self.post_layernorm = (
|
288
|
+
nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
289
|
+
if require_post_norm
|
290
|
+
else nn.Identity()
|
291
|
+
)
|
292
|
+
|
293
|
+
def get_input_embeddings(self) -> nn.Embedding:
|
294
|
+
return self.embeddings
|
295
|
+
|
296
|
+
def compute_cu_seqlens(
|
297
|
+
self,
|
298
|
+
tgt_sizes: Optional[torch.Tensor] = None,
|
299
|
+
input_embeds: Optional[torch.Tensor] = None,
|
300
|
+
) -> torch.Tensor:
|
301
|
+
# shape: (batch_size,)
|
302
|
+
if tgt_sizes is not None:
|
303
|
+
seqlen = tgt_sizes[:, 0] * tgt_sizes[:, 1]
|
304
|
+
elif input_embeds is not None:
|
305
|
+
seqlen = torch.full(
|
306
|
+
size=(input_embeds.shape[0],),
|
307
|
+
fill_value=input_embeds.shape[1],
|
308
|
+
dtype=torch.int32,
|
309
|
+
device=input_embeds.device,
|
310
|
+
)
|
311
|
+
else:
|
312
|
+
raise ValueError(
|
313
|
+
"Either `tgt_sizes` or `input_embeds` must be provided to compute cu_seqlens."
|
314
|
+
)
|
315
|
+
|
316
|
+
cu_seqlens = torch.cat(
|
317
|
+
[
|
318
|
+
torch.tensor([0], device=seqlen.device, dtype=torch.int32),
|
319
|
+
torch.cumsum(seqlen, dim=0, dtype=torch.int32),
|
320
|
+
],
|
321
|
+
dim=0,
|
322
|
+
).to(seqlen.device)
|
323
|
+
return cu_seqlens
|
324
|
+
|
325
|
+
def forward(
|
326
|
+
self,
|
327
|
+
pixel_values,
|
328
|
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
329
|
+
tgt_sizes: Optional[torch.IntTensor] = None,
|
330
|
+
) -> torch.Tensor:
|
331
|
+
hidden_states = self.embeddings(
|
332
|
+
pixel_values=pixel_values,
|
333
|
+
patch_attention_mask=patch_attention_mask,
|
334
|
+
tgt_sizes=tgt_sizes,
|
335
|
+
)
|
336
|
+
cu_seqlens = self.compute_cu_seqlens(tgt_sizes, hidden_states)
|
337
|
+
encoder_outputs = self.encoder(
|
338
|
+
hidden_states,
|
339
|
+
cu_seqlens=cu_seqlens,
|
340
|
+
)
|
341
|
+
last_hidden_state = self.post_layernorm(encoder_outputs)
|
342
|
+
return last_hidden_state
|
sglang/srt/models/kimi_vl.py
CHANGED
@@ -144,10 +144,10 @@ class KimiVLForConditionalGeneration(nn.Module):
|
|
144
144
|
.type(self.vision_tower.dtype)
|
145
145
|
.to(self.vision_tower.device)
|
146
146
|
)
|
147
|
-
|
148
|
-
|
149
|
-
)
|
150
|
-
image_features = self.vision_tower(pixel_values,
|
147
|
+
image_grid_hws = torch.cat([item.image_grid_hws for item in items], dim=0).to(
|
148
|
+
self.vision_tower.device
|
149
|
+
)
|
150
|
+
image_features = self.vision_tower(pixel_values, image_grid_hws)
|
151
151
|
assert isinstance(image_features, list)
|
152
152
|
# lengths = [x.shape[0] for x in image_features]
|
153
153
|
res = self.multi_modal_projector(torch.cat(image_features)) # .split(lengths)
|
sglang/srt/models/llama.py
CHANGED
@@ -17,7 +17,7 @@
|
|
17
17
|
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
18
18
|
|
19
19
|
import logging
|
20
|
-
from typing import Any, Dict, Iterable, List, Optional,
|
20
|
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
21
21
|
|
22
22
|
import torch
|
23
23
|
from torch import nn
|
sglang/srt/models/minicpmo.py
CHANGED
@@ -51,11 +51,8 @@ from sglang.srt.managers.schedule_batch import (
|
|
51
51
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
52
52
|
from sglang.srt.model_loader.utils import set_default_torch_dtype
|
53
53
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
54
|
-
from sglang.srt.models.
|
55
|
-
|
56
|
-
MiniCPMBaseModel,
|
57
|
-
Resampler2_5,
|
58
|
-
)
|
54
|
+
from sglang.srt.models.idefics2 import Idefics2VisionTransformer
|
55
|
+
from sglang.srt.models.minicpmv import MiniCPMBaseModel, Resampler2_5
|
59
56
|
from sglang.srt.models.qwen2 import Qwen2ForCausalLM
|
60
57
|
from sglang.srt.utils import logger
|
61
58
|
|