sglang 0.4.6.post4__py3-none-any.whl → 0.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +16 -10
- sglang/bench_one_batch.py +5 -4
- sglang/bench_one_batch_server.py +86 -22
- sglang/bench_serving.py +197 -110
- sglang/compile_deep_gemm.py +4 -4
- sglang/lang/backend/runtime_endpoint.py +24 -1
- sglang/profiler.py +167 -0
- sglang/srt/_custom_ops.py +34 -0
- sglang/srt/configs/internvl.py +8 -12
- sglang/srt/configs/model_config.py +66 -29
- sglang/srt/constrained/base_grammar_backend.py +5 -2
- sglang/srt/constrained/llguidance_backend.py +9 -8
- sglang/srt/constrained/outlines_backend.py +5 -4
- sglang/srt/constrained/xgrammar_backend.py +18 -18
- sglang/srt/conversation.py +47 -9
- sglang/srt/custom_op.py +38 -3
- sglang/srt/debug_utils.py +74 -0
- sglang/srt/disaggregation/common/__init__.py +1 -0
- sglang/srt/disaggregation/common/conn.py +407 -0
- sglang/srt/disaggregation/decode.py +187 -134
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +142 -0
- sglang/srt/disaggregation/fake/conn.py +4 -13
- sglang/srt/disaggregation/kv_events.py +412 -0
- sglang/srt/disaggregation/launch_lb.py +140 -0
- sglang/srt/disaggregation/mini_lb.py +84 -70
- sglang/srt/disaggregation/mooncake/conn.py +441 -140
- sglang/srt/disaggregation/mooncake/transfer_engine.py +31 -14
- sglang/srt/disaggregation/nixl/conn.py +124 -442
- sglang/srt/disaggregation/prefill.py +128 -44
- sglang/srt/disaggregation/utils.py +154 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
- sglang/srt/distributed/parallel_state.py +52 -5
- sglang/srt/distributed/utils.py +3 -3
- sglang/srt/entrypoints/EngineBase.py +11 -0
- sglang/srt/entrypoints/engine.py +129 -12
- sglang/srt/entrypoints/http_server.py +21 -6
- sglang/srt/entrypoints/http_server_engine.py +5 -2
- sglang/srt/function_call/base_format_detector.py +302 -0
- sglang/srt/function_call/core_types.py +34 -0
- sglang/srt/function_call/deepseekv3_detector.py +205 -0
- sglang/srt/function_call/ebnf_composer.py +248 -0
- sglang/srt/function_call/function_call_parser.py +202 -0
- sglang/srt/function_call/llama32_detector.py +93 -0
- sglang/srt/function_call/mistral_detector.py +131 -0
- sglang/srt/function_call/pythonic_detector.py +229 -0
- sglang/srt/function_call/qwen25_detector.py +121 -0
- sglang/srt/function_call/utils.py +52 -0
- sglang/srt/hf_transformers_utils.py +50 -7
- sglang/srt/layers/attention/aiter_backend.py +878 -0
- sglang/srt/layers/attention/base_attn_backend.py +4 -0
- sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
- sglang/srt/layers/attention/flashattention_backend.py +166 -35
- sglang/srt/layers/attention/flashinfer_backend.py +45 -1
- sglang/srt/layers/attention/flashinfer_mla_backend.py +45 -5
- sglang/srt/layers/attention/flashmla_backend.py +340 -78
- sglang/srt/layers/attention/intel_amx_backend.py +128 -0
- sglang/srt/layers/attention/tbo_backend.py +232 -0
- sglang/srt/layers/attention/torch_native_backend.py +3 -0
- sglang/srt/layers/attention/triton_backend.py +247 -5
- sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
- sglang/srt/layers/attention/utils.py +2 -2
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/communicator.py +517 -0
- sglang/srt/layers/dp_attention.py +6 -15
- sglang/srt/layers/layernorm.py +30 -19
- sglang/srt/layers/moe/cutlass_moe.py +370 -0
- sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +60 -17
- sglang/srt/layers/moe/ep_moe/layer.py +195 -87
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +88 -8
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
- sglang/srt/layers/moe/fused_moe_triton/layer.py +48 -4
- sglang/srt/layers/moe/topk.py +107 -24
- sglang/srt/layers/multimodal.py +70 -0
- sglang/srt/layers/quantization/__init__.py +10 -4
- sglang/srt/layers/quantization/blockwise_int8.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
- sglang/srt/layers/quantization/deep_gemm.py +60 -59
- sglang/srt/layers/quantization/fp8.py +113 -18
- sglang/srt/layers/quantization/fp8_kernel.py +118 -66
- sglang/srt/layers/quantization/fp8_utils.py +165 -43
- sglang/srt/layers/quantization/gptq.py +298 -6
- sglang/srt/layers/quantization/int8_kernel.py +18 -5
- sglang/srt/layers/quantization/modelopt_quant.py +334 -7
- sglang/srt/layers/quantization/moe_wna16.py +3 -0
- sglang/srt/layers/quantization/qoq.py +244 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
- sglang/srt/layers/quantization/w8a8_int8.py +3 -0
- sglang/srt/layers/rotary_embedding.py +6 -12
- sglang/srt/layers/sampler.py +80 -79
- sglang/srt/layers/utils.py +6 -0
- sglang/srt/lora/layers.py +12 -15
- sglang/srt/lora/lora.py +49 -5
- sglang/srt/lora/lora_manager.py +20 -8
- sglang/srt/lora/mem_pool.py +24 -16
- sglang/srt/lora/utils.py +17 -13
- sglang/srt/managers/data_parallel_controller.py +13 -5
- sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
- sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
- sglang/srt/managers/eplb_algorithms/deepseek_vec.py +276 -0
- sglang/srt/managers/eplb_manager.py +96 -0
- sglang/srt/managers/expert_distribution.py +878 -56
- sglang/srt/managers/expert_location.py +448 -0
- sglang/srt/managers/expert_location_dispatch.py +108 -0
- sglang/srt/managers/io_struct.py +29 -5
- sglang/srt/managers/mm_utils.py +355 -151
- sglang/srt/managers/multimodal_processors/base_processor.py +299 -42
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +6 -1
- sglang/srt/managers/multimodal_processors/gemma3.py +15 -17
- sglang/srt/managers/multimodal_processors/internvl.py +18 -5
- sglang/srt/managers/multimodal_processors/janus_pro.py +7 -1
- sglang/srt/managers/multimodal_processors/kimi_vl.py +14 -32
- sglang/srt/managers/multimodal_processors/llava.py +3 -3
- sglang/srt/managers/multimodal_processors/minicpm.py +27 -32
- sglang/srt/managers/multimodal_processors/mllama4.py +6 -0
- sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
- sglang/srt/managers/multimodal_processors/pixtral.py +9 -9
- sglang/srt/managers/multimodal_processors/qwen_vl.py +35 -35
- sglang/srt/managers/schedule_batch.py +185 -55
- sglang/srt/managers/schedule_policy.py +4 -5
- sglang/srt/managers/scheduler.py +389 -154
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +231 -39
- sglang/srt/managers/utils.py +0 -4
- sglang/srt/mem_cache/base_prefix_cache.py +3 -0
- sglang/srt/mem_cache/chunk_cache.py +3 -1
- sglang/srt/mem_cache/hiradix_cache.py +4 -4
- sglang/srt/mem_cache/memory_pool.py +74 -52
- sglang/srt/mem_cache/multimodal_cache.py +45 -0
- sglang/srt/mem_cache/radix_cache.py +58 -5
- sglang/srt/metrics/collector.py +11 -2
- sglang/srt/mm_utils.py +10 -0
- sglang/srt/model_executor/cuda_graph_runner.py +87 -65
- sglang/srt/model_executor/expert_location_updater.py +557 -0
- sglang/srt/model_executor/forward_batch_info.py +39 -14
- sglang/srt/model_executor/model_runner.py +231 -101
- sglang/srt/model_loader/loader.py +10 -6
- sglang/srt/model_loader/utils.py +67 -1
- sglang/srt/models/clip.py +5 -1
- sglang/srt/models/deepseek_nextn.py +1 -1
- sglang/srt/models/deepseek_v2.py +732 -403
- sglang/srt/models/exaone.py +8 -3
- sglang/srt/models/gemma3_causal.py +7 -0
- sglang/srt/models/gemma3_mm.py +75 -33
- sglang/srt/models/idefics2.py +342 -0
- sglang/srt/models/kimi_vl.py +4 -4
- sglang/srt/models/llama.py +1 -1
- sglang/srt/models/llama4.py +10 -2
- sglang/srt/models/llava.py +26 -18
- sglang/srt/models/mimo_mtp.py +220 -0
- sglang/srt/models/minicpmo.py +7 -17
- sglang/srt/models/minicpmv.py +3 -295
- sglang/srt/models/mistral.py +71 -1
- sglang/srt/models/mllama.py +3 -3
- sglang/srt/models/phi4mm.py +512 -0
- sglang/srt/models/qwen2.py +133 -35
- sglang/srt/models/qwen2_5_vl.py +5 -3
- sglang/srt/models/qwen2_eagle.py +4 -1
- sglang/srt/models/qwen2_moe.py +206 -69
- sglang/srt/models/qwen2_vl.py +3 -3
- sglang/srt/models/qwen3.py +92 -19
- sglang/srt/models/qwen3_moe.py +457 -55
- sglang/srt/models/registry.py +9 -1
- sglang/srt/models/siglip.py +294 -0
- sglang/srt/models/transformers.py +291 -0
- sglang/srt/openai_api/adapter.py +114 -40
- sglang/srt/openai_api/protocol.py +37 -2
- sglang/srt/openai_api/utils.py +172 -0
- sglang/srt/operations.py +189 -0
- sglang/srt/operations_strategy.py +207 -0
- sglang/srt/sampling/sampling_batch_info.py +13 -1
- sglang/srt/sampling/sampling_params.py +2 -1
- sglang/srt/server_args.py +235 -38
- sglang/srt/speculative/build_eagle_tree.py +8 -8
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
- sglang/srt/speculative/eagle_utils.py +181 -90
- sglang/srt/speculative/eagle_worker.py +146 -21
- sglang/srt/two_batch_overlap.py +635 -0
- sglang/srt/utils.py +197 -19
- sglang/test/runners.py +16 -7
- sglang/test/send_one.py +4 -0
- sglang/test/test_cutlass_moe.py +278 -0
- sglang/test/test_fp4_moe.py +248 -0
- sglang/test/test_utils.py +81 -42
- sglang/utils.py +2 -2
- sglang/version.py +1 -1
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/METADATA +31 -19
- sglang-0.4.7.dist-info/RECORD +699 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
- sglang/srt/function_call_parser.py +0 -858
- sglang/srt/platforms/interface.py +0 -371
- sglang-0.4.6.post4.dist-info/RECORD +0 -646
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/models/{xiaomi_mimo.py → mimo.py} +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
sglang/srt/utils.py
CHANGED
@@ -25,6 +25,7 @@ import json
|
|
25
25
|
import logging
|
26
26
|
import os
|
27
27
|
import pickle
|
28
|
+
import platform
|
28
29
|
import random
|
29
30
|
import re
|
30
31
|
import resource
|
@@ -44,9 +45,22 @@ from functools import lru_cache
|
|
44
45
|
from importlib.metadata import PackageNotFoundError, version
|
45
46
|
from importlib.util import find_spec
|
46
47
|
from io import BytesIO
|
48
|
+
from json import JSONDecodeError
|
47
49
|
from multiprocessing.reduction import ForkingPickler
|
48
50
|
from pathlib import Path
|
49
|
-
from typing import
|
51
|
+
from typing import (
|
52
|
+
Any,
|
53
|
+
Callable,
|
54
|
+
Dict,
|
55
|
+
Generic,
|
56
|
+
List,
|
57
|
+
Optional,
|
58
|
+
Protocol,
|
59
|
+
Set,
|
60
|
+
Tuple,
|
61
|
+
TypeVar,
|
62
|
+
Union,
|
63
|
+
)
|
50
64
|
|
51
65
|
import numpy as np
|
52
66
|
import psutil
|
@@ -125,10 +139,6 @@ builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
|
|
125
139
|
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN
|
126
140
|
|
127
141
|
|
128
|
-
def is_rocm() -> bool:
|
129
|
-
return torch.cuda.is_available() and torch.version.hip
|
130
|
-
|
131
|
-
|
132
142
|
def is_cuda():
|
133
143
|
return torch.cuda.is_available() and torch.version.cuda
|
134
144
|
|
@@ -149,6 +159,15 @@ def is_npu() -> bool:
|
|
149
159
|
return hasattr(torch, "npu") and torch.npu.is_available()
|
150
160
|
|
151
161
|
|
162
|
+
def is_cpu() -> bool:
|
163
|
+
machine = platform.machine().lower()
|
164
|
+
return (
|
165
|
+
machine in ("x86_64", "amd64", "i386", "i686")
|
166
|
+
and hasattr(torch, "cpu")
|
167
|
+
and torch.cpu.is_available()
|
168
|
+
)
|
169
|
+
|
170
|
+
|
152
171
|
def is_flashinfer_available():
|
153
172
|
"""
|
154
173
|
Check whether flashinfer is available.
|
@@ -250,7 +269,7 @@ def mark_start(name, interval=0.1, color=0, indent=0):
|
|
250
269
|
torch.cuda.synchronize()
|
251
270
|
if time_infos.get(name, None) is None:
|
252
271
|
time_infos[name] = TimeInfo(name, interval, color, indent)
|
253
|
-
time_infos[name].acc_time -= time.
|
272
|
+
time_infos[name].acc_time -= time.perf_counter()
|
254
273
|
|
255
274
|
|
256
275
|
def mark_end(name):
|
@@ -258,7 +277,7 @@ def mark_end(name):
|
|
258
277
|
if not show_time_cost:
|
259
278
|
return
|
260
279
|
torch.cuda.synchronize()
|
261
|
-
time_infos[name].acc_time += time.
|
280
|
+
time_infos[name].acc_time += time.perf_counter()
|
262
281
|
if time_infos[name].check():
|
263
282
|
time_infos[name].pretty_print()
|
264
283
|
|
@@ -268,11 +287,11 @@ def calculate_time(show=False, min_cost_ms=0.0):
|
|
268
287
|
def inner_func(*args, **kwargs):
|
269
288
|
torch.cuda.synchronize()
|
270
289
|
if show:
|
271
|
-
start_time = time.
|
290
|
+
start_time = time.perf_counter()
|
272
291
|
result = func(*args, **kwargs)
|
273
292
|
torch.cuda.synchronize()
|
274
293
|
if show:
|
275
|
-
cost_time = (time.
|
294
|
+
cost_time = (time.perf_counter() - start_time) * 1000
|
276
295
|
if cost_time > min_cost_ms:
|
277
296
|
print(f"Function {func.__name__} took {cost_time} ms to run.")
|
278
297
|
return result
|
@@ -1851,6 +1870,8 @@ def get_cuda_version():
|
|
1851
1870
|
|
1852
1871
|
|
1853
1872
|
def launch_dummy_health_check_server(host, port):
|
1873
|
+
import asyncio
|
1874
|
+
|
1854
1875
|
import uvicorn
|
1855
1876
|
from fastapi import FastAPI, Response
|
1856
1877
|
|
@@ -1866,13 +1887,27 @@ def launch_dummy_health_check_server(host, port):
|
|
1866
1887
|
"""Check the health of the http server."""
|
1867
1888
|
return Response(status_code=200)
|
1868
1889
|
|
1869
|
-
uvicorn.
|
1890
|
+
config = uvicorn.Config(
|
1870
1891
|
app,
|
1871
1892
|
host=host,
|
1872
1893
|
port=port,
|
1873
1894
|
timeout_keep_alive=5,
|
1874
|
-
loop="
|
1895
|
+
loop="auto",
|
1896
|
+
log_config=None,
|
1897
|
+
log_level="warning",
|
1875
1898
|
)
|
1899
|
+
server = uvicorn.Server(config=config)
|
1900
|
+
|
1901
|
+
try:
|
1902
|
+
loop = asyncio.get_running_loop()
|
1903
|
+
logger.info(
|
1904
|
+
f"Dummy health check server scheduled on existing loop at {host}:{port}"
|
1905
|
+
)
|
1906
|
+
loop.create_task(server.serve())
|
1907
|
+
|
1908
|
+
except RuntimeError:
|
1909
|
+
logger.info(f"Starting dummy health check server at {host}:{port}")
|
1910
|
+
server.run()
|
1876
1911
|
|
1877
1912
|
|
1878
1913
|
def create_checksum(directory: str):
|
@@ -1893,16 +1928,18 @@ def next_power_of_2(n: int):
|
|
1893
1928
|
setattr(triton, "next_power_of_2", next_power_of_2)
|
1894
1929
|
|
1895
1930
|
|
1896
|
-
|
1897
|
-
def
|
1898
|
-
|
1899
|
-
|
1900
|
-
|
1901
|
-
finally:
|
1902
|
-
# Cleanup code goes here
|
1931
|
+
class EmptyContextManager:
|
1932
|
+
def __enter__(self):
|
1933
|
+
return self
|
1934
|
+
|
1935
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
1903
1936
|
pass
|
1904
1937
|
|
1905
1938
|
|
1939
|
+
def empty_context(*args, **kwargs):
|
1940
|
+
return EmptyContextManager()
|
1941
|
+
|
1942
|
+
|
1906
1943
|
def add_prefix(name: str, prefix: str) -> str:
|
1907
1944
|
"""Add a weight path prefix to a module name.
|
1908
1945
|
|
@@ -2001,6 +2038,14 @@ class DeepEPMode(Enum):
|
|
2001
2038
|
return DeepEPMode.normal
|
2002
2039
|
|
2003
2040
|
|
2041
|
+
def is_non_idle_and_non_empty(forward_mode, hidden_states):
|
2042
|
+
return (
|
2043
|
+
(forward_mode is not None)
|
2044
|
+
and not forward_mode.is_idle()
|
2045
|
+
and hidden_states.shape[0] > 0
|
2046
|
+
)
|
2047
|
+
|
2048
|
+
|
2004
2049
|
def fast_topk(values, topk, dim):
|
2005
2050
|
if topk == 1:
|
2006
2051
|
# Use max along the specified dimension to get both value and index
|
@@ -2022,6 +2067,12 @@ is_ampere_with_cuda_12_3 = lambda: _check(8)
|
|
2022
2067
|
is_hopper_with_cuda_12_3 = lambda: _check(9)
|
2023
2068
|
|
2024
2069
|
|
2070
|
+
def is_blackwell():
|
2071
|
+
if not is_cuda():
|
2072
|
+
return False
|
2073
|
+
return torch.cuda.get_device_capability()[0] == 10
|
2074
|
+
|
2075
|
+
|
2025
2076
|
def get_free_port():
|
2026
2077
|
# try ipv4
|
2027
2078
|
try:
|
@@ -2044,6 +2095,14 @@ def get_local_ip_by_remote() -> str:
|
|
2044
2095
|
except Exception:
|
2045
2096
|
pass
|
2046
2097
|
|
2098
|
+
try:
|
2099
|
+
hostname = socket.gethostname()
|
2100
|
+
ip = socket.gethostbyname(hostname)
|
2101
|
+
if ip and ip != "127.0.0.1" and ip != "0.0.0.0":
|
2102
|
+
return ip
|
2103
|
+
except Exception:
|
2104
|
+
pass
|
2105
|
+
|
2047
2106
|
# try ipv6
|
2048
2107
|
try:
|
2049
2108
|
s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
|
@@ -2077,7 +2136,6 @@ def is_fa3_default_architecture(hf_config):
|
|
2077
2136
|
"Qwen2ForCausalLM",
|
2078
2137
|
"Llama4ForConditionalGeneration",
|
2079
2138
|
"LlamaForCausalLM",
|
2080
|
-
"MistralForCausalLM",
|
2081
2139
|
"Gemma2ForCausalLM",
|
2082
2140
|
"Gemma3ForConditionalGeneration",
|
2083
2141
|
"Qwen3ForCausalLM",
|
@@ -2104,3 +2162,123 @@ def log_info_on_rank0(logger, msg):
|
|
2104
2162
|
|
2105
2163
|
if get_tensor_model_parallel_rank() == 0:
|
2106
2164
|
logger.info(msg)
|
2165
|
+
|
2166
|
+
|
2167
|
+
def load_json_config(data: str):
|
2168
|
+
try:
|
2169
|
+
return json.loads(data)
|
2170
|
+
except JSONDecodeError:
|
2171
|
+
return json.loads(Path(data).read_text())
|
2172
|
+
|
2173
|
+
|
2174
|
+
def dispose_tensor(x: torch.Tensor):
|
2175
|
+
x.set_(torch.empty((0,), device=x.device, dtype=x.dtype))
|
2176
|
+
|
2177
|
+
|
2178
|
+
T = TypeVar("T")
|
2179
|
+
|
2180
|
+
|
2181
|
+
class Withable(Generic[T]):
|
2182
|
+
def __init__(self):
|
2183
|
+
self._value: Optional[T] = None
|
2184
|
+
|
2185
|
+
@property
|
2186
|
+
def value(self) -> T:
|
2187
|
+
return self._value
|
2188
|
+
|
2189
|
+
@contextmanager
|
2190
|
+
def with_value(self, new_value: T):
|
2191
|
+
assert self._value is None
|
2192
|
+
self._value = new_value
|
2193
|
+
try:
|
2194
|
+
yield
|
2195
|
+
finally:
|
2196
|
+
assert self._value is new_value
|
2197
|
+
self._value = None
|
2198
|
+
|
2199
|
+
|
2200
|
+
def find_local_repo_dir(repo_id: str, revision: Optional[str] = None) -> Optional[str]:
|
2201
|
+
import huggingface_hub as hf
|
2202
|
+
|
2203
|
+
# Build cache path
|
2204
|
+
cache_path = os.path.join(
|
2205
|
+
hf.constants.HF_HUB_CACHE,
|
2206
|
+
hf.constants.REPO_ID_SEPARATOR.join(["models", *repo_id.split("/")]),
|
2207
|
+
)
|
2208
|
+
|
2209
|
+
# Get revision from main ref if not specified
|
2210
|
+
if not revision:
|
2211
|
+
ref_path = os.path.join(cache_path, "refs", "main")
|
2212
|
+
if os.path.isfile(ref_path):
|
2213
|
+
with open(ref_path) as f:
|
2214
|
+
revision = f.read().strip()
|
2215
|
+
|
2216
|
+
# List files from revision directory
|
2217
|
+
if revision:
|
2218
|
+
rev_dir = os.path.join(cache_path, "snapshots", revision)
|
2219
|
+
if os.path.isdir(rev_dir):
|
2220
|
+
return rev_dir
|
2221
|
+
|
2222
|
+
return None
|
2223
|
+
|
2224
|
+
|
2225
|
+
def read_system_prompt_from_file(model_name: str) -> str:
|
2226
|
+
"""Read system prompt from a file in the HuggingFace cache directory.
|
2227
|
+
|
2228
|
+
Args:
|
2229
|
+
model_name: The model name to construct the file path
|
2230
|
+
|
2231
|
+
Returns:
|
2232
|
+
The system prompt content from the file, or empty string if file not found
|
2233
|
+
"""
|
2234
|
+
try:
|
2235
|
+
local_repo_dir = find_local_repo_dir(model_name)
|
2236
|
+
if local_repo_dir:
|
2237
|
+
system_prompt_file = os.path.join(local_repo_dir, "SYSTEM_PROMPT.txt")
|
2238
|
+
if os.path.exists(system_prompt_file):
|
2239
|
+
with open(system_prompt_file, "r", encoding="utf-8") as f:
|
2240
|
+
return f.read()
|
2241
|
+
|
2242
|
+
return ""
|
2243
|
+
except Exception:
|
2244
|
+
# If anything fails, return empty string
|
2245
|
+
return ""
|
2246
|
+
|
2247
|
+
|
2248
|
+
def bind_or_assign(target, source):
|
2249
|
+
if target is not None:
|
2250
|
+
target.copy_(source)
|
2251
|
+
return target
|
2252
|
+
else:
|
2253
|
+
return source
|
2254
|
+
|
2255
|
+
|
2256
|
+
def support_triton(backend: str) -> bool:
|
2257
|
+
return backend not in ["torch_native", "intel_amx"]
|
2258
|
+
|
2259
|
+
|
2260
|
+
try:
|
2261
|
+
import sgl_kernel
|
2262
|
+
|
2263
|
+
is_intel_amx_backend_available = hasattr(
|
2264
|
+
torch.ops.sgl_kernel, "convert_weight_packed"
|
2265
|
+
)
|
2266
|
+
except:
|
2267
|
+
is_intel_amx_backend_available = False
|
2268
|
+
|
2269
|
+
|
2270
|
+
def cpu_has_amx_support():
|
2271
|
+
return torch._C._cpu._is_amx_tile_supported() and is_intel_amx_backend_available
|
2272
|
+
|
2273
|
+
|
2274
|
+
class LazyValue:
|
2275
|
+
def __init__(self, creator: Callable):
|
2276
|
+
self._creator = creator
|
2277
|
+
self._value = None
|
2278
|
+
|
2279
|
+
@property
|
2280
|
+
def value(self):
|
2281
|
+
if self._creator is not None:
|
2282
|
+
self._value = self._creator()
|
2283
|
+
self._creator = None
|
2284
|
+
return self._value
|
sglang/test/runners.py
CHANGED
@@ -26,6 +26,7 @@ from transformers import (
|
|
26
26
|
AutoModelForCausalLM,
|
27
27
|
AutoModelForVision2Seq,
|
28
28
|
AutoProcessor,
|
29
|
+
GenerationConfig,
|
29
30
|
)
|
30
31
|
|
31
32
|
from sglang.srt.entrypoints.engine import Engine
|
@@ -382,13 +383,17 @@ class HFRunner:
|
|
382
383
|
model = base_model
|
383
384
|
|
384
385
|
outputs = model.generate(
|
385
|
-
input_ids,
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
386
|
+
input_ids=input_ids,
|
387
|
+
generation_config=GenerationConfig(
|
388
|
+
do_sample=False,
|
389
|
+
temperature=None,
|
390
|
+
top_p=None,
|
391
|
+
max_new_tokens=max_new_tokens,
|
392
|
+
return_dict_in_generate=True,
|
393
|
+
output_scores=(not output_str_only),
|
394
|
+
# make sure to disable compile
|
395
|
+
disable_compile=True,
|
396
|
+
),
|
392
397
|
)
|
393
398
|
|
394
399
|
text = tokenizer.decode(
|
@@ -450,6 +455,7 @@ class SRTRunner:
|
|
450
455
|
torch_dtype: torch.dtype,
|
451
456
|
model_type: str,
|
452
457
|
tp_size: int = 1,
|
458
|
+
impl: str = "auto",
|
453
459
|
port: int = DEFAULT_PORT_FOR_SRT_TEST_RUNNER,
|
454
460
|
lora_paths: List[str] = None,
|
455
461
|
max_loras_per_batch: int = 4,
|
@@ -470,6 +476,7 @@ class SRTRunner:
|
|
470
476
|
speculative_num_draft_tokens: Optional[int] = None,
|
471
477
|
disable_overlap_schedule: bool = False,
|
472
478
|
disable_custom_all_reduce: bool = False,
|
479
|
+
torchao_config: Optional[str] = None,
|
473
480
|
):
|
474
481
|
self.model_type = model_type
|
475
482
|
self.is_generation = model_type == "generation"
|
@@ -488,6 +495,8 @@ class SRTRunner:
|
|
488
495
|
tp_size=tp_size,
|
489
496
|
dtype=get_dtype_str(torch_dtype),
|
490
497
|
port=port,
|
498
|
+
impl=impl,
|
499
|
+
torchao_config=torchao_config,
|
491
500
|
mem_fraction_static=mem_fraction_static,
|
492
501
|
trust_remote_code=trust_remote_code,
|
493
502
|
is_embedding=not self.is_generation,
|
sglang/test/send_one.py
CHANGED
@@ -0,0 +1,278 @@
|
|
1
|
+
import argparse
|
2
|
+
import time
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import triton # Added import
|
6
|
+
import triton.testing # Added import
|
7
|
+
from transformers import AutoConfig
|
8
|
+
|
9
|
+
from sglang.srt.layers.moe.cutlass_moe import cutlass_fused_experts_fp8
|
10
|
+
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
11
|
+
|
12
|
+
|
13
|
+
def get_model_config(tp_size: int):
|
14
|
+
config = AutoConfig.from_pretrained(
|
15
|
+
"deepseek-ai/deepseek-R1", trust_remote_code=True
|
16
|
+
)
|
17
|
+
E = config.n_routed_experts
|
18
|
+
topk = config.num_experts_per_tok
|
19
|
+
intermediate_size = config.moe_intermediate_size
|
20
|
+
shard_intermediate_size = 2 * intermediate_size // tp_size
|
21
|
+
|
22
|
+
return {
|
23
|
+
"num_experts": E,
|
24
|
+
"topk": topk,
|
25
|
+
"hidden_size": config.hidden_size,
|
26
|
+
"shard_intermediate_size": shard_intermediate_size,
|
27
|
+
"dtype": config.torch_dtype,
|
28
|
+
"block_shape": config.quantization_config["weight_block_size"],
|
29
|
+
}
|
30
|
+
|
31
|
+
|
32
|
+
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
33
|
+
"""Converts tensor to FP8 E4M3, scaling values to fit the range."""
|
34
|
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
35
|
+
# Calculate max absolute value safely
|
36
|
+
max_val = torch.max(torch.abs(tensor))
|
37
|
+
# Avoid division by zero if tensor is all zeros
|
38
|
+
if max_val == 0:
|
39
|
+
scale_factor = 1.0
|
40
|
+
else:
|
41
|
+
# Scale factor to bring the max value to finfo.max
|
42
|
+
scale_factor = finfo.max / max_val
|
43
|
+
|
44
|
+
# Apply scaling
|
45
|
+
scaled_tensor = tensor * scale_factor
|
46
|
+
|
47
|
+
# Clamp and convert
|
48
|
+
fp8_tensor = scaled_tensor.clamp(min=finfo.min, max=finfo.max).to(
|
49
|
+
dtype=torch.float8_e4m3fn
|
50
|
+
)
|
51
|
+
return fp8_tensor
|
52
|
+
|
53
|
+
|
54
|
+
def run_test(tp_size, batch_size, model_config, check=False):
|
55
|
+
print(f"\n--- Batch Size: {batch_size} ---")
|
56
|
+
torch.set_default_device("cuda")
|
57
|
+
torch.cuda.manual_seed_all(42) # For reproducible random numbers
|
58
|
+
|
59
|
+
E = model_config["num_experts"]
|
60
|
+
topk = model_config["topk"]
|
61
|
+
H = model_config["hidden_size"]
|
62
|
+
I = model_config["shard_intermediate_size"]
|
63
|
+
block_shape = model_config["block_shape"] # Tuple (BLOCK_N, BLOCK_K)
|
64
|
+
dtype = model_config["dtype"] # e.g., torch.bfloat16
|
65
|
+
|
66
|
+
print(
|
67
|
+
f"Config: E={E}, topk={topk}, H={H}, I_shard={I}, dtype={dtype}, block_shape={block_shape}"
|
68
|
+
)
|
69
|
+
|
70
|
+
# --- Input Data ---
|
71
|
+
# Use bf16/fp16 for input activation based on model config
|
72
|
+
x = torch.randn((batch_size, H), device="cuda", dtype=dtype) * 0.0001
|
73
|
+
# --- Weights (Generate in higher precision, then convert to FP8) ---
|
74
|
+
# Generate weights suitable for FP8 conversion (e.g., scaled appropriately)
|
75
|
+
w1_hp = (
|
76
|
+
torch.randn((E, I, H), device="cuda", dtype=torch.float32) * 0.00001 + 0.00001
|
77
|
+
)
|
78
|
+
w2_hp = (
|
79
|
+
torch.randn((E, H, I // 2), device="cuda", dtype=torch.float32) * 0.00001
|
80
|
+
+ 0.00001
|
81
|
+
)
|
82
|
+
|
83
|
+
w1 = to_fp8(w1_hp)
|
84
|
+
w2 = to_fp8(w2_hp)
|
85
|
+
|
86
|
+
# --- Scales for FP8 Weights ---
|
87
|
+
block_n, block_k = block_shape
|
88
|
+
# Calculate number of blocks needed
|
89
|
+
w1_blocks_dim1 = (I + block_n - 1) // block_n
|
90
|
+
w1_blocks_dim2 = (H + block_k - 1) // block_k
|
91
|
+
w2_blocks_dim1 = (H + block_n - 1) // block_n
|
92
|
+
w2_blocks_dim2 = (I // 2 + block_k - 1) // block_k
|
93
|
+
|
94
|
+
# Scales are typically float32 or float16/bfloat16
|
95
|
+
scale_dtype = torch.float32 # Or dtype if scales match model dtype
|
96
|
+
w1_scale = torch.full(
|
97
|
+
(E, w1_blocks_dim1, w1_blocks_dim2), 1, device="cuda", dtype=scale_dtype
|
98
|
+
) # Avoid zero scales
|
99
|
+
w2_scale = torch.full(
|
100
|
+
(E, w2_blocks_dim1, w2_blocks_dim2), 1, device="cuda", dtype=scale_dtype
|
101
|
+
) # Avoid zero scales
|
102
|
+
|
103
|
+
# --- Routing Information ---
|
104
|
+
topk_weights = torch.softmax(
|
105
|
+
torch.rand(batch_size, topk, device="cuda", dtype=dtype), dim=-1
|
106
|
+
)
|
107
|
+
topk_ids = torch.randint(0, E, (batch_size, topk), dtype=torch.int32, device="cuda")
|
108
|
+
|
109
|
+
a1_strides = torch.full((E,), H, dtype=torch.int64, device="cuda")
|
110
|
+
c1_strides = torch.full((E,), I, dtype=torch.int64, device="cuda")
|
111
|
+
a2_strides = torch.full((E,), I // 2, dtype=torch.int64, device="cuda")
|
112
|
+
c2_strides = torch.full((E,), H, dtype=torch.int64, device="cuda")
|
113
|
+
|
114
|
+
workspace = torch.empty(
|
115
|
+
(7182 * 1024), device="cuda", dtype=torch.uint8
|
116
|
+
) # Allocate sufficient workspace
|
117
|
+
# Pointer arrays (often filled by the kernel or a prep step, but needed as args)
|
118
|
+
a_ptrs = torch.empty((E,), dtype=torch.int64, device="cuda")
|
119
|
+
b_ptrs = torch.empty((E,), dtype=torch.int64, device="cuda")
|
120
|
+
out_ptrs = torch.empty((E,), dtype=torch.int64, device="cuda")
|
121
|
+
a_scales_ptrs = torch.empty((E,), dtype=torch.int64, device="cuda")
|
122
|
+
b_scales_ptrs = torch.empty((E,), dtype=torch.int64, device="cuda")
|
123
|
+
expert_offsets = torch.empty((E + 1,), dtype=torch.int32, device="cuda")
|
124
|
+
problem_sizes1 = torch.empty((E, 3), dtype=torch.int32, device="cuda")
|
125
|
+
problem_sizes2 = torch.empty((E, 3), dtype=torch.int32, device="cuda")
|
126
|
+
|
127
|
+
# --- Lambdas for Benchmarking ---
|
128
|
+
cutlass_lambda = lambda: cutlass_fused_experts_fp8(
|
129
|
+
x,
|
130
|
+
w1.transpose(1, 2), # Transposed
|
131
|
+
w2.transpose(1, 2), # Transposed
|
132
|
+
w1_scale.transpose(1, 2),
|
133
|
+
w2_scale.transpose(1, 2),
|
134
|
+
topk_weights,
|
135
|
+
topk_ids,
|
136
|
+
a1_strides,
|
137
|
+
c1_strides,
|
138
|
+
a2_strides,
|
139
|
+
c2_strides,
|
140
|
+
workspace,
|
141
|
+
a_ptrs,
|
142
|
+
b_ptrs,
|
143
|
+
out_ptrs,
|
144
|
+
a_scales_ptrs,
|
145
|
+
b_scales_ptrs,
|
146
|
+
expert_offsets,
|
147
|
+
problem_sizes1,
|
148
|
+
problem_sizes2,
|
149
|
+
)
|
150
|
+
|
151
|
+
# Note: Triton expects non-transposed weights
|
152
|
+
triton_lambda = lambda: fused_experts(
|
153
|
+
x,
|
154
|
+
w1,
|
155
|
+
w2,
|
156
|
+
topk_weights,
|
157
|
+
topk_ids,
|
158
|
+
inplace=False, # Use False for benchmarking to avoid side effects if run multiple times
|
159
|
+
activation="silu", # Assuming SiLU activation common in MoEs
|
160
|
+
use_fp8_w8a8=True,
|
161
|
+
w1_scale=w1_scale,
|
162
|
+
w2_scale=w2_scale,
|
163
|
+
block_shape=block_shape,
|
164
|
+
)
|
165
|
+
|
166
|
+
# --- Warmup ---
|
167
|
+
print("Warming up...")
|
168
|
+
for _ in range(10):
|
169
|
+
_ = cutlass_lambda()
|
170
|
+
_ = triton_lambda()
|
171
|
+
torch.cuda.synchronize()
|
172
|
+
|
173
|
+
# --- Benchmarking ---
|
174
|
+
quantiles = [0.5, 0.2, 0.8]
|
175
|
+
print(f"Benchmarking Cutlass fused_experts...")
|
176
|
+
cutlass_ms, cutlass_min, cutlass_max = triton.testing.do_bench_cudagraph(
|
177
|
+
cutlass_lambda, rep=1000, quantiles=quantiles
|
178
|
+
)
|
179
|
+
|
180
|
+
print(f"Benchmarking Triton fused_experts...")
|
181
|
+
triton_ms, triton_min, triton_max = triton.testing.do_bench_cudagraph(
|
182
|
+
triton_lambda, rep=1000, quantiles=quantiles
|
183
|
+
)
|
184
|
+
print(
|
185
|
+
f"Cutlass fused_experts time: {cutlass_ms:.3f} ms (median) [{cutlass_min:.3f} - {cutlass_max:.3f}]"
|
186
|
+
)
|
187
|
+
print(
|
188
|
+
f"Triton fused_experts time: {triton_ms:.3f} ms (median) [{triton_min:.3f} - {triton_max:.3f}]"
|
189
|
+
)
|
190
|
+
|
191
|
+
# --- Correctness Check ---
|
192
|
+
if check:
|
193
|
+
print("Running correctness check...")
|
194
|
+
with torch.no_grad():
|
195
|
+
# Run CUTLASS version (requires transposed weights)
|
196
|
+
y_cutlass = cutlass_fused_experts_fp8(
|
197
|
+
x,
|
198
|
+
w1.transpose(1, 2), # Transposed
|
199
|
+
w2.transpose(1, 2), # Transposed
|
200
|
+
w1_scale.transpose(1, 2),
|
201
|
+
w2_scale.transpose(1, 2),
|
202
|
+
topk_weights,
|
203
|
+
topk_ids,
|
204
|
+
a1_strides,
|
205
|
+
c1_strides,
|
206
|
+
a2_strides,
|
207
|
+
c2_strides,
|
208
|
+
workspace,
|
209
|
+
a_ptrs,
|
210
|
+
b_ptrs,
|
211
|
+
out_ptrs,
|
212
|
+
a_scales_ptrs,
|
213
|
+
b_scales_ptrs,
|
214
|
+
expert_offsets,
|
215
|
+
problem_sizes1,
|
216
|
+
problem_sizes2,
|
217
|
+
)
|
218
|
+
|
219
|
+
# Run Triton version (requires original shape weights, use inplace=False)
|
220
|
+
y_triton = fused_experts(
|
221
|
+
x,
|
222
|
+
w1, # Original shape
|
223
|
+
w2, # Original shape
|
224
|
+
topk_weights,
|
225
|
+
topk_ids,
|
226
|
+
inplace=False, # Important: Use False to get output tensor
|
227
|
+
activation="silu",
|
228
|
+
use_fp8_w8a8=True,
|
229
|
+
w1_scale=w1_scale,
|
230
|
+
w2_scale=w2_scale,
|
231
|
+
block_shape=block_shape,
|
232
|
+
)
|
233
|
+
|
234
|
+
# Ensure outputs are same dtype for comparison
|
235
|
+
y_cutlass = y_cutlass.to(dtype)
|
236
|
+
y_triton = y_triton.to(dtype)
|
237
|
+
|
238
|
+
abs_error = torch.abs(y_cutlass - y_triton)
|
239
|
+
rel_error = abs_error / torch.clamp(torch.abs(y_triton), min=1e-2)
|
240
|
+
|
241
|
+
max_abs_err = abs_error.max().item()
|
242
|
+
max_rel_err = rel_error.max().item()
|
243
|
+
|
244
|
+
print("y_cutlass:", y_cutlass[:, :10])
|
245
|
+
print("y_triton:", y_triton[:, :10])
|
246
|
+
print(f"Max absolute error: {max_abs_err:.6f}")
|
247
|
+
print(f"Max relative error: {max_rel_err:.6f}")
|
248
|
+
|
249
|
+
# Tolerance might need adjustment based on FP8 specifics and kernel differences
|
250
|
+
# FP8 comparisons often require higher tolerance than FP16/BF16
|
251
|
+
assert max_rel_err < 5e-1, f"Relative error too high! {max_rel_err}"
|
252
|
+
print("Correctness check passed.")
|
253
|
+
|
254
|
+
|
255
|
+
def main(tp_size=8, batch_sizes=[1, 4, 8, 16, 32, 64, 128, 256, 512], check=False):
|
256
|
+
model_config = get_model_config(tp_size)
|
257
|
+
print("Model Config:", model_config)
|
258
|
+
for batch_size in batch_sizes:
|
259
|
+
run_test(tp_size, batch_size, model_config, check)
|
260
|
+
|
261
|
+
|
262
|
+
if __name__ == "__main__":
|
263
|
+
parser = argparse.ArgumentParser()
|
264
|
+
parser.add_argument("--tp-size", type=int, default=8, help="Tensor Parallel size")
|
265
|
+
parser.add_argument(
|
266
|
+
"--batch-sizes",
|
267
|
+
type=int,
|
268
|
+
nargs="+",
|
269
|
+
default=[1, 4, 8, 16, 32, 64, 128, 256, 512], # Adjusted default
|
270
|
+
help="List of batch sizes to test",
|
271
|
+
)
|
272
|
+
parser.add_argument("--check", action="store_true", help="Enable check mode")
|
273
|
+
args = parser.parse_args()
|
274
|
+
|
275
|
+
print(f"Running benchmarks with TP size: {args.tp_size}")
|
276
|
+
print(f"Testing batch sizes: {args.batch_sizes}")
|
277
|
+
|
278
|
+
main(tp_size=args.tp_size, batch_sizes=args.batch_sizes, check=args.check)
|