sglang 0.4.6.post4__py3-none-any.whl → 0.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +16 -10
- sglang/bench_one_batch.py +5 -4
- sglang/bench_one_batch_server.py +86 -22
- sglang/bench_serving.py +197 -110
- sglang/compile_deep_gemm.py +4 -4
- sglang/lang/backend/runtime_endpoint.py +24 -1
- sglang/profiler.py +167 -0
- sglang/srt/_custom_ops.py +34 -0
- sglang/srt/configs/internvl.py +8 -12
- sglang/srt/configs/model_config.py +66 -29
- sglang/srt/constrained/base_grammar_backend.py +5 -2
- sglang/srt/constrained/llguidance_backend.py +9 -8
- sglang/srt/constrained/outlines_backend.py +5 -4
- sglang/srt/constrained/xgrammar_backend.py +18 -18
- sglang/srt/conversation.py +47 -9
- sglang/srt/custom_op.py +38 -3
- sglang/srt/debug_utils.py +74 -0
- sglang/srt/disaggregation/common/__init__.py +1 -0
- sglang/srt/disaggregation/common/conn.py +407 -0
- sglang/srt/disaggregation/decode.py +187 -134
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +142 -0
- sglang/srt/disaggregation/fake/conn.py +4 -13
- sglang/srt/disaggregation/kv_events.py +412 -0
- sglang/srt/disaggregation/launch_lb.py +140 -0
- sglang/srt/disaggregation/mini_lb.py +84 -70
- sglang/srt/disaggregation/mooncake/conn.py +441 -140
- sglang/srt/disaggregation/mooncake/transfer_engine.py +31 -14
- sglang/srt/disaggregation/nixl/conn.py +124 -442
- sglang/srt/disaggregation/prefill.py +128 -44
- sglang/srt/disaggregation/utils.py +154 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
- sglang/srt/distributed/parallel_state.py +52 -5
- sglang/srt/distributed/utils.py +3 -3
- sglang/srt/entrypoints/EngineBase.py +11 -0
- sglang/srt/entrypoints/engine.py +129 -12
- sglang/srt/entrypoints/http_server.py +21 -6
- sglang/srt/entrypoints/http_server_engine.py +5 -2
- sglang/srt/function_call/base_format_detector.py +302 -0
- sglang/srt/function_call/core_types.py +34 -0
- sglang/srt/function_call/deepseekv3_detector.py +205 -0
- sglang/srt/function_call/ebnf_composer.py +248 -0
- sglang/srt/function_call/function_call_parser.py +202 -0
- sglang/srt/function_call/llama32_detector.py +93 -0
- sglang/srt/function_call/mistral_detector.py +131 -0
- sglang/srt/function_call/pythonic_detector.py +229 -0
- sglang/srt/function_call/qwen25_detector.py +121 -0
- sglang/srt/function_call/utils.py +52 -0
- sglang/srt/hf_transformers_utils.py +50 -7
- sglang/srt/layers/attention/aiter_backend.py +878 -0
- sglang/srt/layers/attention/base_attn_backend.py +4 -0
- sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
- sglang/srt/layers/attention/flashattention_backend.py +166 -35
- sglang/srt/layers/attention/flashinfer_backend.py +45 -1
- sglang/srt/layers/attention/flashinfer_mla_backend.py +45 -5
- sglang/srt/layers/attention/flashmla_backend.py +340 -78
- sglang/srt/layers/attention/intel_amx_backend.py +128 -0
- sglang/srt/layers/attention/tbo_backend.py +232 -0
- sglang/srt/layers/attention/torch_native_backend.py +3 -0
- sglang/srt/layers/attention/triton_backend.py +247 -5
- sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
- sglang/srt/layers/attention/utils.py +2 -2
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/communicator.py +517 -0
- sglang/srt/layers/dp_attention.py +6 -15
- sglang/srt/layers/layernorm.py +30 -19
- sglang/srt/layers/moe/cutlass_moe.py +370 -0
- sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +60 -17
- sglang/srt/layers/moe/ep_moe/layer.py +195 -87
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +88 -8
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
- sglang/srt/layers/moe/fused_moe_triton/layer.py +48 -4
- sglang/srt/layers/moe/topk.py +107 -24
- sglang/srt/layers/multimodal.py +70 -0
- sglang/srt/layers/quantization/__init__.py +10 -4
- sglang/srt/layers/quantization/blockwise_int8.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
- sglang/srt/layers/quantization/deep_gemm.py +60 -59
- sglang/srt/layers/quantization/fp8.py +113 -18
- sglang/srt/layers/quantization/fp8_kernel.py +118 -66
- sglang/srt/layers/quantization/fp8_utils.py +165 -43
- sglang/srt/layers/quantization/gptq.py +298 -6
- sglang/srt/layers/quantization/int8_kernel.py +18 -5
- sglang/srt/layers/quantization/modelopt_quant.py +334 -7
- sglang/srt/layers/quantization/moe_wna16.py +3 -0
- sglang/srt/layers/quantization/qoq.py +244 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
- sglang/srt/layers/quantization/w8a8_int8.py +3 -0
- sglang/srt/layers/rotary_embedding.py +6 -12
- sglang/srt/layers/sampler.py +80 -79
- sglang/srt/layers/utils.py +6 -0
- sglang/srt/lora/layers.py +12 -15
- sglang/srt/lora/lora.py +49 -5
- sglang/srt/lora/lora_manager.py +20 -8
- sglang/srt/lora/mem_pool.py +24 -16
- sglang/srt/lora/utils.py +17 -13
- sglang/srt/managers/data_parallel_controller.py +13 -5
- sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
- sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
- sglang/srt/managers/eplb_algorithms/deepseek_vec.py +276 -0
- sglang/srt/managers/eplb_manager.py +96 -0
- sglang/srt/managers/expert_distribution.py +878 -56
- sglang/srt/managers/expert_location.py +448 -0
- sglang/srt/managers/expert_location_dispatch.py +108 -0
- sglang/srt/managers/io_struct.py +29 -5
- sglang/srt/managers/mm_utils.py +355 -151
- sglang/srt/managers/multimodal_processors/base_processor.py +299 -42
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +6 -1
- sglang/srt/managers/multimodal_processors/gemma3.py +15 -17
- sglang/srt/managers/multimodal_processors/internvl.py +18 -5
- sglang/srt/managers/multimodal_processors/janus_pro.py +7 -1
- sglang/srt/managers/multimodal_processors/kimi_vl.py +14 -32
- sglang/srt/managers/multimodal_processors/llava.py +3 -3
- sglang/srt/managers/multimodal_processors/minicpm.py +27 -32
- sglang/srt/managers/multimodal_processors/mllama4.py +6 -0
- sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
- sglang/srt/managers/multimodal_processors/pixtral.py +9 -9
- sglang/srt/managers/multimodal_processors/qwen_vl.py +35 -35
- sglang/srt/managers/schedule_batch.py +185 -55
- sglang/srt/managers/schedule_policy.py +4 -5
- sglang/srt/managers/scheduler.py +389 -154
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +231 -39
- sglang/srt/managers/utils.py +0 -4
- sglang/srt/mem_cache/base_prefix_cache.py +3 -0
- sglang/srt/mem_cache/chunk_cache.py +3 -1
- sglang/srt/mem_cache/hiradix_cache.py +4 -4
- sglang/srt/mem_cache/memory_pool.py +74 -52
- sglang/srt/mem_cache/multimodal_cache.py +45 -0
- sglang/srt/mem_cache/radix_cache.py +58 -5
- sglang/srt/metrics/collector.py +11 -2
- sglang/srt/mm_utils.py +10 -0
- sglang/srt/model_executor/cuda_graph_runner.py +87 -65
- sglang/srt/model_executor/expert_location_updater.py +557 -0
- sglang/srt/model_executor/forward_batch_info.py +39 -14
- sglang/srt/model_executor/model_runner.py +231 -101
- sglang/srt/model_loader/loader.py +10 -6
- sglang/srt/model_loader/utils.py +67 -1
- sglang/srt/models/clip.py +5 -1
- sglang/srt/models/deepseek_nextn.py +1 -1
- sglang/srt/models/deepseek_v2.py +732 -403
- sglang/srt/models/exaone.py +8 -3
- sglang/srt/models/gemma3_causal.py +7 -0
- sglang/srt/models/gemma3_mm.py +75 -33
- sglang/srt/models/idefics2.py +342 -0
- sglang/srt/models/kimi_vl.py +4 -4
- sglang/srt/models/llama.py +1 -1
- sglang/srt/models/llama4.py +10 -2
- sglang/srt/models/llava.py +26 -18
- sglang/srt/models/mimo_mtp.py +220 -0
- sglang/srt/models/minicpmo.py +7 -17
- sglang/srt/models/minicpmv.py +3 -295
- sglang/srt/models/mistral.py +71 -1
- sglang/srt/models/mllama.py +3 -3
- sglang/srt/models/phi4mm.py +512 -0
- sglang/srt/models/qwen2.py +133 -35
- sglang/srt/models/qwen2_5_vl.py +5 -3
- sglang/srt/models/qwen2_eagle.py +4 -1
- sglang/srt/models/qwen2_moe.py +206 -69
- sglang/srt/models/qwen2_vl.py +3 -3
- sglang/srt/models/qwen3.py +92 -19
- sglang/srt/models/qwen3_moe.py +457 -55
- sglang/srt/models/registry.py +9 -1
- sglang/srt/models/siglip.py +294 -0
- sglang/srt/models/transformers.py +291 -0
- sglang/srt/openai_api/adapter.py +114 -40
- sglang/srt/openai_api/protocol.py +37 -2
- sglang/srt/openai_api/utils.py +172 -0
- sglang/srt/operations.py +189 -0
- sglang/srt/operations_strategy.py +207 -0
- sglang/srt/sampling/sampling_batch_info.py +13 -1
- sglang/srt/sampling/sampling_params.py +2 -1
- sglang/srt/server_args.py +235 -38
- sglang/srt/speculative/build_eagle_tree.py +8 -8
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
- sglang/srt/speculative/eagle_utils.py +181 -90
- sglang/srt/speculative/eagle_worker.py +146 -21
- sglang/srt/two_batch_overlap.py +635 -0
- sglang/srt/utils.py +197 -19
- sglang/test/runners.py +16 -7
- sglang/test/send_one.py +4 -0
- sglang/test/test_cutlass_moe.py +278 -0
- sglang/test/test_fp4_moe.py +248 -0
- sglang/test/test_utils.py +81 -42
- sglang/utils.py +2 -2
- sglang/version.py +1 -1
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/METADATA +31 -19
- sglang-0.4.7.dist-info/RECORD +699 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
- sglang/srt/function_call_parser.py +0 -858
- sglang/srt/platforms/interface.py +0 -371
- sglang-0.4.6.post4.dist-info/RECORD +0 -646
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/models/{xiaomi_mimo.py → mimo.py} +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,315 @@
|
|
1
|
+
import bisect
|
2
|
+
import logging
|
3
|
+
import math
|
4
|
+
import os
|
5
|
+
from contextlib import contextmanager
|
6
|
+
from enum import IntEnum
|
7
|
+
from typing import Any, Callable, List, Optional, TypeVar, Union
|
8
|
+
|
9
|
+
import torch
|
10
|
+
import torch.distributed as dist
|
11
|
+
from torch.distributed import ProcessGroup, ReduceOp
|
12
|
+
|
13
|
+
from sglang.srt import _custom_ops as ops
|
14
|
+
from sglang.srt.utils import is_cuda, is_hip
|
15
|
+
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
_is_cuda = is_cuda()
|
19
|
+
_is_hip = is_hip()
|
20
|
+
|
21
|
+
mscclpp_is_available = False
|
22
|
+
if _is_hip:
|
23
|
+
# TODO(zyksir): mscclpp is untested on AMD and therefore disabled.
|
24
|
+
mscclpp_is_available = False
|
25
|
+
if _is_cuda:
|
26
|
+
try:
|
27
|
+
import sgl_kernel
|
28
|
+
|
29
|
+
mscclpp_is_available = True
|
30
|
+
except:
|
31
|
+
mscclpp_is_available = False
|
32
|
+
|
33
|
+
|
34
|
+
class MscclContextSelection(IntEnum):
|
35
|
+
MSCCL1SHOT1NODELL = 1
|
36
|
+
MSCCL1SHOT2NODELL = 2
|
37
|
+
|
38
|
+
|
39
|
+
def mscclpp_is_weak_contiguous(inp: torch.Tensor):
|
40
|
+
return inp.is_contiguous() or (
|
41
|
+
inp.storage().nbytes() - inp.storage_offset() * inp.element_size()
|
42
|
+
== inp.numel() * inp.element_size()
|
43
|
+
)
|
44
|
+
|
45
|
+
|
46
|
+
def mscclpp_convert_to_bytes(size_str):
|
47
|
+
"""
|
48
|
+
Converts a human-readable size string (e.g., "1MB", "2.5kb", "3 GB")
|
49
|
+
into the equivalent number of bytes using binary units.
|
50
|
+
|
51
|
+
Args:
|
52
|
+
size_str (str): A string representing size with unit (KB, MB, GB).
|
53
|
+
|
54
|
+
Returns:
|
55
|
+
int: Number of bytes.
|
56
|
+
"""
|
57
|
+
size_str = size_str.strip().lower()
|
58
|
+
|
59
|
+
if not size_str:
|
60
|
+
raise ValueError("Empty input string")
|
61
|
+
|
62
|
+
# Extract numeric part and unit
|
63
|
+
for i in range(len(size_str)):
|
64
|
+
if not size_str[i].isdigit() and size_str[i] != ".":
|
65
|
+
break
|
66
|
+
num_str = size_str[:i]
|
67
|
+
unit = size_str[i:].strip()
|
68
|
+
|
69
|
+
try:
|
70
|
+
num = float(num_str)
|
71
|
+
except ValueError:
|
72
|
+
raise ValueError(f"Invalid numeric value in '{size_str}'")
|
73
|
+
|
74
|
+
# Conversion factors
|
75
|
+
if unit == "b":
|
76
|
+
return int(num)
|
77
|
+
elif unit == "kb":
|
78
|
+
return int(num * 1024)
|
79
|
+
elif unit == "mb":
|
80
|
+
return int(num * 1024 * 1024)
|
81
|
+
elif unit == "gb":
|
82
|
+
return int(num * 1024 * 1024 * 1024)
|
83
|
+
else:
|
84
|
+
raise ValueError(f"Unsupported unit: {unit}, support B, KB, MB, GB only")
|
85
|
+
|
86
|
+
|
87
|
+
def mscclpp_bench_time(func, test_niter: int = 10, warmup_niter: int = 2):
|
88
|
+
# warmup
|
89
|
+
for _ in range(warmup_niter):
|
90
|
+
func()
|
91
|
+
start_event = torch.cuda.Event(enable_timing=True)
|
92
|
+
end_event = torch.cuda.Event(enable_timing=True)
|
93
|
+
torch.cuda.synchronize()
|
94
|
+
dist.barrier()
|
95
|
+
start_event.record()
|
96
|
+
for _ in range(test_niter):
|
97
|
+
func()
|
98
|
+
end_event.record()
|
99
|
+
end_event.synchronize()
|
100
|
+
func_cost_us = start_event.elapsed_time(end_event) / test_niter * 1000
|
101
|
+
return func_cost_us
|
102
|
+
|
103
|
+
|
104
|
+
class PyMscclppCommunicator:
|
105
|
+
_SUPPORTED_WORLD_SIZES = [8, 16]
|
106
|
+
_MAX_BYTES = mscclpp_convert_to_bytes(os.getenv("SGLANG_MSCCLPP_MAX_BYTES", "1MB"))
|
107
|
+
_SUPPORTED_DTYPE = [torch.float, torch.float16, torch.bfloat16]
|
108
|
+
|
109
|
+
# max_bytes: max supported mscclpp allreduce size
|
110
|
+
# in A100 mscclpp is faster than nccl only under condition of msg size smaller than1MB
|
111
|
+
def __init__(
|
112
|
+
self,
|
113
|
+
group: ProcessGroup,
|
114
|
+
device: Union[int, str, torch.device],
|
115
|
+
max_bytes=_MAX_BYTES,
|
116
|
+
) -> None:
|
117
|
+
"""
|
118
|
+
Args:
|
119
|
+
group: the process group to work on. If None, it will use the
|
120
|
+
default process group.
|
121
|
+
device: the device to bind the CustomAllreduce to. If None,
|
122
|
+
it will be bind to f"cuda:{local_rank}".
|
123
|
+
It is the caller's responsibility to make sure each communicator
|
124
|
+
is bind to a unique device, and all communicators in this group
|
125
|
+
are in the same node.
|
126
|
+
"""
|
127
|
+
self._IS_CAPTURING = False
|
128
|
+
self.disabled = True
|
129
|
+
|
130
|
+
if not mscclpp_is_available:
|
131
|
+
# disable because of missing mscclpp library
|
132
|
+
# e.g. in a non-cuda environment
|
133
|
+
return
|
134
|
+
|
135
|
+
self.group = group
|
136
|
+
|
137
|
+
assert (
|
138
|
+
dist.get_backend(group) != dist.Backend.NCCL
|
139
|
+
), "CustomAllreduce should be attached to a non-NCCL group."
|
140
|
+
|
141
|
+
rank = dist.get_rank(group=self.group)
|
142
|
+
world_size = dist.get_world_size(group=self.group)
|
143
|
+
if world_size == 1:
|
144
|
+
# No need to initialize mscclpp for single GPU case.
|
145
|
+
return
|
146
|
+
|
147
|
+
if world_size not in PyMscclppCommunicator._SUPPORTED_WORLD_SIZES:
|
148
|
+
logger.warning(
|
149
|
+
"PyMscclpp is disabled due to an unsupported world"
|
150
|
+
" size: %d. Supported world sizes: %s. To silence this "
|
151
|
+
"warning, specify disable_mscclpp=True explicitly.",
|
152
|
+
world_size,
|
153
|
+
str(PyMscclppCommunicator._SUPPORTED_WORLD_SIZES),
|
154
|
+
)
|
155
|
+
return
|
156
|
+
|
157
|
+
self.ranks = torch.distributed.get_process_group_ranks(group)
|
158
|
+
self.nranks_per_node = torch.cuda.device_count()
|
159
|
+
# for now mscclpp with stride in the communicator is not tested
|
160
|
+
if not (abs(self.ranks[-1] - self.ranks[0]) == world_size - 1):
|
161
|
+
logger.warning(
|
162
|
+
"PyMscclpp is disabled due to an unsupported group %s."
|
163
|
+
"Please ensure all ranks in the group are consecutive."
|
164
|
+
"To silence this warning, specify disable_mscclpp=True explicitly.",
|
165
|
+
str(self.ranks),
|
166
|
+
)
|
167
|
+
return
|
168
|
+
|
169
|
+
if isinstance(device, int):
|
170
|
+
device = torch.device(f"cuda:{device}")
|
171
|
+
elif isinstance(device, str):
|
172
|
+
device = torch.device(device)
|
173
|
+
# now `device` is a `torch.device` object
|
174
|
+
assert isinstance(device, torch.device)
|
175
|
+
self.device = device
|
176
|
+
|
177
|
+
self.max_bytes = max_bytes
|
178
|
+
self.rank = rank
|
179
|
+
self.world_size = world_size
|
180
|
+
|
181
|
+
if dist.get_rank(group) == 0:
|
182
|
+
unique_id = [ops.mscclpp_generate_unique_id()]
|
183
|
+
else:
|
184
|
+
unique_id = [None]
|
185
|
+
dist.broadcast_object_list(unique_id, src=self.ranks[0], group=self.group)
|
186
|
+
self.unique_id = unique_id[0]
|
187
|
+
self.rank_to_node, self.rank_to_ib = list(range(world_size)), list(
|
188
|
+
range(world_size)
|
189
|
+
)
|
190
|
+
for r in range(world_size):
|
191
|
+
self.rank_to_node[r] = r // 8
|
192
|
+
self.rank_to_ib[r] = self.rank % 8
|
193
|
+
|
194
|
+
self._context = None
|
195
|
+
self.context_selection = None
|
196
|
+
self.msg_size_for_finetune = [
|
197
|
+
2**i for i in range(10, math.floor(math.log2(self.max_bytes)) + 1)
|
198
|
+
]
|
199
|
+
self.msg_size2best_config = {}
|
200
|
+
if world_size == 8:
|
201
|
+
self.context_selection = MscclContextSelection.MSCCL1SHOT1NODELL
|
202
|
+
elif world_size == 16:
|
203
|
+
self.context_selection = MscclContextSelection.MSCCL1SHOT2NODELL
|
204
|
+
if not _is_hip:
|
205
|
+
self.scratch = torch.empty(
|
206
|
+
self.max_bytes * 8,
|
207
|
+
dtype=torch.uint8,
|
208
|
+
device=self.device,
|
209
|
+
)
|
210
|
+
self.put_buffer = torch.empty(
|
211
|
+
self.max_bytes * 8 // self.nranks_per_node,
|
212
|
+
dtype=torch.uint8,
|
213
|
+
device=self.device,
|
214
|
+
)
|
215
|
+
self._context = ops.mscclpp_init_context(
|
216
|
+
self.unique_id,
|
217
|
+
self.rank,
|
218
|
+
self.world_size,
|
219
|
+
self.scratch,
|
220
|
+
self.put_buffer,
|
221
|
+
self.nranks_per_node,
|
222
|
+
self.rank_to_node,
|
223
|
+
self.rank_to_ib,
|
224
|
+
int(self.context_selection),
|
225
|
+
)
|
226
|
+
else:
|
227
|
+
raise NotImplementedError("HIP Mscclpp is not supported yet.")
|
228
|
+
|
229
|
+
self.msg_size2best_config = {}
|
230
|
+
self.pre_tune_config()
|
231
|
+
if dist.get_rank(group) == 0:
|
232
|
+
msg_size2best_config = [self.msg_size2best_config]
|
233
|
+
else:
|
234
|
+
msg_size2best_config = [None]
|
235
|
+
dist.broadcast_object_list(
|
236
|
+
msg_size2best_config, src=self.ranks[0], group=self.group
|
237
|
+
)
|
238
|
+
self.msg_size2best_config = msg_size2best_config[0]
|
239
|
+
|
240
|
+
# PyMscclpp is enabled only in cuda graph
|
241
|
+
self.disabled = True
|
242
|
+
|
243
|
+
def pre_tune_config(self, dtype=torch.bfloat16) -> bool:
|
244
|
+
logger.debug(f"start to pre-tune configs for rank {self.rank}")
|
245
|
+
nthreads_to_try = [256, 512, 1024]
|
246
|
+
nblocks_to_try = [21, 42, 84]
|
247
|
+
inp_randn = torch.ones(
|
248
|
+
self.msg_size_for_finetune[-1] // dtype.itemsize, dtype=dtype, device="cuda"
|
249
|
+
)
|
250
|
+
oup_randn = torch.empty_like(inp_randn)
|
251
|
+
for msg_size in self.msg_size_for_finetune:
|
252
|
+
mock_inp, mock_outp = (
|
253
|
+
inp_randn[: msg_size // dtype.itemsize],
|
254
|
+
oup_randn[: msg_size // dtype.itemsize],
|
255
|
+
)
|
256
|
+
best_config, best_time = None, None
|
257
|
+
for nthreads in nthreads_to_try:
|
258
|
+
for nblocks in nblocks_to_try:
|
259
|
+
cur_cost = mscclpp_bench_time(
|
260
|
+
lambda: ops.mscclpp_allreduce(
|
261
|
+
self._context, mock_inp, mock_outp, nthreads, nblocks
|
262
|
+
)
|
263
|
+
)
|
264
|
+
if best_time is None or cur_cost < best_time:
|
265
|
+
best_config = (nthreads, nblocks)
|
266
|
+
best_time = cur_cost
|
267
|
+
self.msg_size2best_config[msg_size] = best_config
|
268
|
+
if self.rank == 0:
|
269
|
+
logger.debug(
|
270
|
+
f"for msg_size {msg_size}, best_config: {best_config}, best_time: {best_time}us"
|
271
|
+
)
|
272
|
+
|
273
|
+
def should_mscclpp_allreduce(
|
274
|
+
self, inp: torch.Tensor, op: ReduceOp = ReduceOp.SUM
|
275
|
+
) -> bool:
|
276
|
+
if self.disabled or self._context is None:
|
277
|
+
return False
|
278
|
+
if inp.dtype not in PyMscclppCommunicator._SUPPORTED_DTYPE:
|
279
|
+
return False
|
280
|
+
if not mscclpp_is_weak_contiguous(inp):
|
281
|
+
return False
|
282
|
+
# only support sum op
|
283
|
+
if op != ReduceOp.SUM:
|
284
|
+
return False
|
285
|
+
if inp.numel() * inp.element_size() > self.max_bytes:
|
286
|
+
return False
|
287
|
+
return True
|
288
|
+
|
289
|
+
def all_reduce(self, tensor: torch.Tensor, op: ReduceOp = ReduceOp.SUM):
|
290
|
+
if self._IS_CAPTURING:
|
291
|
+
if torch.cuda.is_current_stream_capturing():
|
292
|
+
self.graph_input_set.add((tensor.dtype, tensor.numel()))
|
293
|
+
msg_size = tensor.numel() * tensor.itemsize
|
294
|
+
index = bisect.bisect_left(self.msg_size_for_finetune, msg_size)
|
295
|
+
msg_size_finetune = self.msg_size_for_finetune[index]
|
296
|
+
nthreads, nblocks = self.msg_size2best_config[msg_size_finetune]
|
297
|
+
result = torch.empty_like(tensor)
|
298
|
+
ops.mscclpp_allreduce(self._context, tensor, result, nthreads, nblocks)
|
299
|
+
return result
|
300
|
+
|
301
|
+
@contextmanager
|
302
|
+
def change_state(
|
303
|
+
self,
|
304
|
+
enable: Optional[bool] = None,
|
305
|
+
):
|
306
|
+
if enable is None:
|
307
|
+
# guess a default value when not specified
|
308
|
+
enable = self.available
|
309
|
+
|
310
|
+
old_disable = self.disabled
|
311
|
+
self.disabled = not enable
|
312
|
+
|
313
|
+
yield
|
314
|
+
|
315
|
+
self.disabled = old_disable
|
@@ -41,6 +41,7 @@ from torch.distributed import Backend, ProcessGroup
|
|
41
41
|
|
42
42
|
from sglang.srt.utils import (
|
43
43
|
direct_register_custom_op,
|
44
|
+
get_bool_env_var,
|
44
45
|
is_cuda_alike,
|
45
46
|
is_npu,
|
46
47
|
supports_custom_op,
|
@@ -189,6 +190,7 @@ class GroupCoordinator:
|
|
189
190
|
cpu_group: ProcessGroup # group for CPU communication
|
190
191
|
device_group: ProcessGroup # group for device communication
|
191
192
|
use_pynccl: bool # a hint of whether to use PyNccl
|
193
|
+
use_pymscclpp: bool # a hint of whether to use PyMsccl
|
192
194
|
use_custom_allreduce: bool # a hint of whether to use CustomAllreduce
|
193
195
|
use_message_queue_broadcaster: (
|
194
196
|
bool # a hint of whether to use message queue broadcaster
|
@@ -204,6 +206,7 @@ class GroupCoordinator:
|
|
204
206
|
local_rank: int,
|
205
207
|
torch_distributed_backend: Union[str, Backend],
|
206
208
|
use_pynccl: bool,
|
209
|
+
use_pymscclpp: bool,
|
207
210
|
use_custom_allreduce: bool,
|
208
211
|
use_hpu_communicator: bool,
|
209
212
|
use_xpu_communicator: bool,
|
@@ -243,6 +246,7 @@ class GroupCoordinator:
|
|
243
246
|
self.device = torch.device("cpu")
|
244
247
|
|
245
248
|
self.use_pynccl = use_pynccl
|
249
|
+
self.use_pymscclpp = use_pymscclpp
|
246
250
|
self.use_custom_allreduce = use_custom_allreduce
|
247
251
|
self.use_hpu_communicator = use_hpu_communicator
|
248
252
|
self.use_xpu_communicator = use_xpu_communicator
|
@@ -264,6 +268,17 @@ class GroupCoordinator:
|
|
264
268
|
device=self.device,
|
265
269
|
)
|
266
270
|
|
271
|
+
from sglang.srt.distributed.device_communicators.pymscclpp import (
|
272
|
+
PyMscclppCommunicator,
|
273
|
+
)
|
274
|
+
|
275
|
+
self.pymscclpp_comm: Optional[PyMscclppCommunicator] = None
|
276
|
+
if use_pymscclpp and self.world_size > 1:
|
277
|
+
self.pymscclpp_comm = PyMscclppCommunicator(
|
278
|
+
group=self.cpu_group,
|
279
|
+
device=self.device,
|
280
|
+
)
|
281
|
+
|
267
282
|
self.ca_comm: Optional[CustomAllreduce] = None
|
268
283
|
if use_custom_allreduce and self.world_size > 1:
|
269
284
|
# Initialize a custom fast all-reduce implementation.
|
@@ -372,11 +387,15 @@ class GroupCoordinator:
|
|
372
387
|
# --------------------------------------------
|
373
388
|
# custom allreduce | enabled | enabled |
|
374
389
|
# PyNccl | disabled| enabled |
|
390
|
+
# PyMscclpp | disabled| enabled |
|
375
391
|
# torch.distributed | enabled | disabled|
|
376
392
|
#
|
377
393
|
# Note that custom allreduce will have a runtime check, if the
|
378
394
|
# tensor size is too large, it will fallback to the next
|
379
395
|
# available option.
|
396
|
+
# Note that the PyMsccl needs to register the tensor in ahead,
|
397
|
+
# which will introduce large overhead in the eager case,
|
398
|
+
# therefore it is only supported in the graph case.
|
380
399
|
# In summary: When using CUDA graph, we use
|
381
400
|
# either custom all-reduce kernel or pynccl. When not using
|
382
401
|
# CUDA graph, we use either custom all-reduce kernel or
|
@@ -391,7 +410,14 @@ class GroupCoordinator:
|
|
391
410
|
maybe_pynccl_context = pynccl_comm.change_state(
|
392
411
|
enable=True, stream=torch.cuda.current_stream()
|
393
412
|
)
|
394
|
-
|
413
|
+
|
414
|
+
pymscclpp_comm = self.pymscclpp_comm
|
415
|
+
maybe_pymscclpp_context: Any
|
416
|
+
if not pymscclpp_comm:
|
417
|
+
maybe_pymscclpp_context = nullcontext()
|
418
|
+
else:
|
419
|
+
maybe_pymscclpp_context = pymscclpp_comm.change_state(enable=True)
|
420
|
+
with maybe_pynccl_context, maybe_pymscclpp_context:
|
395
421
|
yield graph_capture_context
|
396
422
|
|
397
423
|
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
|
@@ -436,6 +462,10 @@ class GroupCoordinator:
|
|
436
462
|
self.ca_comm is not None
|
437
463
|
and not self.ca_comm.disabled
|
438
464
|
and self.ca_comm.should_custom_ar(input_)
|
465
|
+
) or (
|
466
|
+
self.pymscclpp_comm is not None
|
467
|
+
and not self.pymscclpp_comm.disabled
|
468
|
+
and self.pymscclpp_comm.should_mscclpp_allreduce(input_)
|
439
469
|
):
|
440
470
|
return torch.ops.sglang.outplace_all_reduce(
|
441
471
|
input_, group_name=self.unique_name
|
@@ -446,9 +476,13 @@ class GroupCoordinator:
|
|
446
476
|
|
447
477
|
def _all_reduce_out_place(self, input_: torch.Tensor) -> torch.Tensor:
|
448
478
|
ca_comm = self.ca_comm
|
449
|
-
|
450
|
-
assert not
|
451
|
-
|
479
|
+
pymscclpp_comm = self.pymscclpp_comm
|
480
|
+
assert ca_comm is not None or pymscclpp_comm is not None
|
481
|
+
if ca_comm is not None and not ca_comm.disabled:
|
482
|
+
out = ca_comm.custom_all_reduce(input_)
|
483
|
+
else:
|
484
|
+
assert not pymscclpp_comm.disabled
|
485
|
+
out = pymscclpp_comm.all_reduce(input_)
|
452
486
|
assert out is not None
|
453
487
|
return out
|
454
488
|
|
@@ -957,6 +991,7 @@ def init_world_group(
|
|
957
991
|
local_rank=local_rank,
|
958
992
|
torch_distributed_backend=backend,
|
959
993
|
use_pynccl=False,
|
994
|
+
use_pymscclpp=False,
|
960
995
|
use_custom_allreduce=False,
|
961
996
|
use_hpu_communicator=False,
|
962
997
|
use_xpu_communicator=False,
|
@@ -972,14 +1007,18 @@ def init_model_parallel_group(
|
|
972
1007
|
use_custom_allreduce: Optional[bool] = None,
|
973
1008
|
use_message_queue_broadcaster: bool = False,
|
974
1009
|
group_name: Optional[str] = None,
|
1010
|
+
use_mscclpp_allreduce: Optional[bool] = None,
|
975
1011
|
) -> GroupCoordinator:
|
976
1012
|
if use_custom_allreduce is None:
|
977
1013
|
use_custom_allreduce = _ENABLE_CUSTOM_ALL_REDUCE
|
1014
|
+
if use_mscclpp_allreduce is None:
|
1015
|
+
use_mscclpp_allreduce = _ENABLE_MSCCLPP_ALL_REDUCE
|
978
1016
|
return GroupCoordinator(
|
979
1017
|
group_ranks=group_ranks,
|
980
1018
|
local_rank=local_rank,
|
981
1019
|
torch_distributed_backend=backend,
|
982
1020
|
use_pynccl=not is_npu(),
|
1021
|
+
use_pymscclpp=use_mscclpp_allreduce,
|
983
1022
|
use_custom_allreduce=use_custom_allreduce,
|
984
1023
|
use_hpu_communicator=True,
|
985
1024
|
use_xpu_communicator=True,
|
@@ -1036,6 +1075,7 @@ def graph_capture():
|
|
1036
1075
|
logger = logging.getLogger(__name__)
|
1037
1076
|
|
1038
1077
|
_ENABLE_CUSTOM_ALL_REDUCE = True
|
1078
|
+
_ENABLE_MSCCLPP_ALL_REDUCE = False
|
1039
1079
|
|
1040
1080
|
|
1041
1081
|
def set_custom_all_reduce(enable: bool):
|
@@ -1043,6 +1083,11 @@ def set_custom_all_reduce(enable: bool):
|
|
1043
1083
|
_ENABLE_CUSTOM_ALL_REDUCE = enable
|
1044
1084
|
|
1045
1085
|
|
1086
|
+
def set_mscclpp_all_reduce(enable: bool):
|
1087
|
+
global _ENABLE_MSCCLPP_ALL_REDUCE
|
1088
|
+
_ENABLE_MSCCLPP_ALL_REDUCE = enable
|
1089
|
+
|
1090
|
+
|
1046
1091
|
def init_distributed_environment(
|
1047
1092
|
world_size: int = -1,
|
1048
1093
|
rank: int = -1,
|
@@ -1153,7 +1198,9 @@ def initialize_model_parallel(
|
|
1153
1198
|
group_ranks,
|
1154
1199
|
get_world_group().local_rank,
|
1155
1200
|
backend,
|
1156
|
-
use_message_queue_broadcaster=
|
1201
|
+
use_message_queue_broadcaster=get_bool_env_var(
|
1202
|
+
"SGLANG_USE_MESSAGE_QUEUE_BROADCASTER", "true"
|
1203
|
+
),
|
1157
1204
|
group_name="tp",
|
1158
1205
|
)
|
1159
1206
|
|
sglang/srt/distributed/utils.py
CHANGED
@@ -127,14 +127,14 @@ class StatelessProcessGroup:
|
|
127
127
|
key = f"send_to/{dst}/{self.send_dst_counter[dst]}"
|
128
128
|
self.store.set(key, pickle.dumps(obj))
|
129
129
|
self.send_dst_counter[dst] += 1
|
130
|
-
self.entries.append((key, time.
|
130
|
+
self.entries.append((key, time.perf_counter()))
|
131
131
|
|
132
132
|
def expire_data(self):
|
133
133
|
"""Expire data that is older than `data_expiration_seconds` seconds."""
|
134
134
|
while self.entries:
|
135
135
|
# check the oldest entry
|
136
136
|
key, timestamp = self.entries[0]
|
137
|
-
if time.
|
137
|
+
if time.perf_counter() - timestamp > self.data_expiration_seconds:
|
138
138
|
self.store.delete_key(key)
|
139
139
|
self.entries.popleft()
|
140
140
|
else:
|
@@ -158,7 +158,7 @@ class StatelessProcessGroup:
|
|
158
158
|
key = f"broadcast_from/{src}/" f"{self.broadcast_send_counter}"
|
159
159
|
self.store.set(key, pickle.dumps(obj))
|
160
160
|
self.broadcast_send_counter += 1
|
161
|
-
self.entries.append((key, time.
|
161
|
+
self.entries.append((key, time.perf_counter()))
|
162
162
|
return obj
|
163
163
|
else:
|
164
164
|
key = f"broadcast_from/{src}/" f"{self.broadcast_recv_src_counter[src]}"
|
@@ -23,10 +23,21 @@ class EngineBase(ABC):
|
|
23
23
|
token_ids_logprob: Optional[Union[List[List[int]], List[int]]] = None,
|
24
24
|
lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None,
|
25
25
|
custom_logit_processor: Optional[Union[List[str], str]] = None,
|
26
|
+
return_hidden_states: Optional[bool] = None,
|
27
|
+
stream: Optional[bool] = None,
|
28
|
+
bootstrap_host: Optional[Union[List[str], str]] = None,
|
29
|
+
bootstrap_port: Optional[Union[List[int], int]] = None,
|
30
|
+
bootstrap_room: Optional[Union[List[int], int]] = None,
|
31
|
+
data_parallel_rank: Optional[int] = None,
|
26
32
|
) -> Union[Dict, Iterator[Dict]]:
|
27
33
|
"""Generate outputs based on given inputs."""
|
28
34
|
pass
|
29
35
|
|
36
|
+
@abstractmethod
|
37
|
+
def flush_cache(self):
|
38
|
+
"""Flush the cache of the engine."""
|
39
|
+
pass
|
40
|
+
|
30
41
|
@abstractmethod
|
31
42
|
def update_weights_from_tensor(
|
32
43
|
self,
|