sglang 0.4.6.post4__py3-none-any.whl → 0.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +16 -10
- sglang/bench_one_batch.py +5 -4
- sglang/bench_one_batch_server.py +86 -22
- sglang/bench_serving.py +197 -110
- sglang/compile_deep_gemm.py +4 -4
- sglang/lang/backend/runtime_endpoint.py +24 -1
- sglang/profiler.py +167 -0
- sglang/srt/_custom_ops.py +34 -0
- sglang/srt/configs/internvl.py +8 -12
- sglang/srt/configs/model_config.py +66 -29
- sglang/srt/constrained/base_grammar_backend.py +5 -2
- sglang/srt/constrained/llguidance_backend.py +9 -8
- sglang/srt/constrained/outlines_backend.py +5 -4
- sglang/srt/constrained/xgrammar_backend.py +18 -18
- sglang/srt/conversation.py +47 -9
- sglang/srt/custom_op.py +38 -3
- sglang/srt/debug_utils.py +74 -0
- sglang/srt/disaggregation/common/__init__.py +1 -0
- sglang/srt/disaggregation/common/conn.py +407 -0
- sglang/srt/disaggregation/decode.py +187 -134
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +142 -0
- sglang/srt/disaggregation/fake/conn.py +4 -13
- sglang/srt/disaggregation/kv_events.py +412 -0
- sglang/srt/disaggregation/launch_lb.py +140 -0
- sglang/srt/disaggregation/mini_lb.py +84 -70
- sglang/srt/disaggregation/mooncake/conn.py +441 -140
- sglang/srt/disaggregation/mooncake/transfer_engine.py +31 -14
- sglang/srt/disaggregation/nixl/conn.py +124 -442
- sglang/srt/disaggregation/prefill.py +128 -44
- sglang/srt/disaggregation/utils.py +154 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
- sglang/srt/distributed/parallel_state.py +52 -5
- sglang/srt/distributed/utils.py +3 -3
- sglang/srt/entrypoints/EngineBase.py +11 -0
- sglang/srt/entrypoints/engine.py +129 -12
- sglang/srt/entrypoints/http_server.py +21 -6
- sglang/srt/entrypoints/http_server_engine.py +5 -2
- sglang/srt/function_call/base_format_detector.py +302 -0
- sglang/srt/function_call/core_types.py +34 -0
- sglang/srt/function_call/deepseekv3_detector.py +205 -0
- sglang/srt/function_call/ebnf_composer.py +248 -0
- sglang/srt/function_call/function_call_parser.py +202 -0
- sglang/srt/function_call/llama32_detector.py +93 -0
- sglang/srt/function_call/mistral_detector.py +131 -0
- sglang/srt/function_call/pythonic_detector.py +229 -0
- sglang/srt/function_call/qwen25_detector.py +121 -0
- sglang/srt/function_call/utils.py +52 -0
- sglang/srt/hf_transformers_utils.py +50 -7
- sglang/srt/layers/attention/aiter_backend.py +878 -0
- sglang/srt/layers/attention/base_attn_backend.py +4 -0
- sglang/srt/layers/attention/cutlass_mla_backend.py +2 -19
- sglang/srt/layers/attention/flashattention_backend.py +166 -35
- sglang/srt/layers/attention/flashinfer_backend.py +45 -1
- sglang/srt/layers/attention/flashinfer_mla_backend.py +45 -5
- sglang/srt/layers/attention/flashmla_backend.py +340 -78
- sglang/srt/layers/attention/intel_amx_backend.py +128 -0
- sglang/srt/layers/attention/tbo_backend.py +232 -0
- sglang/srt/layers/attention/torch_native_backend.py +3 -0
- sglang/srt/layers/attention/triton_backend.py +247 -5
- sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
- sglang/srt/layers/attention/utils.py +2 -2
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/communicator.py +517 -0
- sglang/srt/layers/dp_attention.py +6 -15
- sglang/srt/layers/layernorm.py +30 -19
- sglang/srt/layers/moe/cutlass_moe.py +370 -0
- sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +60 -17
- sglang/srt/layers/moe/ep_moe/layer.py +195 -87
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +88 -8
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +220 -25
- sglang/srt/layers/moe/fused_moe_triton/layer.py +48 -4
- sglang/srt/layers/moe/topk.py +107 -24
- sglang/srt/layers/multimodal.py +70 -0
- sglang/srt/layers/quantization/__init__.py +10 -4
- sglang/srt/layers/quantization/blockwise_int8.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
- sglang/srt/layers/quantization/deep_gemm.py +60 -59
- sglang/srt/layers/quantization/fp8.py +113 -18
- sglang/srt/layers/quantization/fp8_kernel.py +118 -66
- sglang/srt/layers/quantization/fp8_utils.py +165 -43
- sglang/srt/layers/quantization/gptq.py +298 -6
- sglang/srt/layers/quantization/int8_kernel.py +18 -5
- sglang/srt/layers/quantization/modelopt_quant.py +334 -7
- sglang/srt/layers/quantization/moe_wna16.py +3 -0
- sglang/srt/layers/quantization/qoq.py +244 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
- sglang/srt/layers/quantization/w8a8_int8.py +3 -0
- sglang/srt/layers/rotary_embedding.py +6 -12
- sglang/srt/layers/sampler.py +80 -79
- sglang/srt/layers/utils.py +6 -0
- sglang/srt/lora/layers.py +12 -15
- sglang/srt/lora/lora.py +49 -5
- sglang/srt/lora/lora_manager.py +20 -8
- sglang/srt/lora/mem_pool.py +24 -16
- sglang/srt/lora/utils.py +17 -13
- sglang/srt/managers/data_parallel_controller.py +13 -5
- sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
- sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
- sglang/srt/managers/eplb_algorithms/deepseek_vec.py +276 -0
- sglang/srt/managers/eplb_manager.py +96 -0
- sglang/srt/managers/expert_distribution.py +878 -56
- sglang/srt/managers/expert_location.py +448 -0
- sglang/srt/managers/expert_location_dispatch.py +108 -0
- sglang/srt/managers/io_struct.py +29 -5
- sglang/srt/managers/mm_utils.py +355 -151
- sglang/srt/managers/multimodal_processors/base_processor.py +299 -42
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +6 -1
- sglang/srt/managers/multimodal_processors/gemma3.py +15 -17
- sglang/srt/managers/multimodal_processors/internvl.py +18 -5
- sglang/srt/managers/multimodal_processors/janus_pro.py +7 -1
- sglang/srt/managers/multimodal_processors/kimi_vl.py +14 -32
- sglang/srt/managers/multimodal_processors/llava.py +3 -3
- sglang/srt/managers/multimodal_processors/minicpm.py +27 -32
- sglang/srt/managers/multimodal_processors/mllama4.py +6 -0
- sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
- sglang/srt/managers/multimodal_processors/pixtral.py +9 -9
- sglang/srt/managers/multimodal_processors/qwen_vl.py +35 -35
- sglang/srt/managers/schedule_batch.py +185 -55
- sglang/srt/managers/schedule_policy.py +4 -5
- sglang/srt/managers/scheduler.py +389 -154
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +231 -39
- sglang/srt/managers/utils.py +0 -4
- sglang/srt/mem_cache/base_prefix_cache.py +3 -0
- sglang/srt/mem_cache/chunk_cache.py +3 -1
- sglang/srt/mem_cache/hiradix_cache.py +4 -4
- sglang/srt/mem_cache/memory_pool.py +74 -52
- sglang/srt/mem_cache/multimodal_cache.py +45 -0
- sglang/srt/mem_cache/radix_cache.py +58 -5
- sglang/srt/metrics/collector.py +11 -2
- sglang/srt/mm_utils.py +10 -0
- sglang/srt/model_executor/cuda_graph_runner.py +87 -65
- sglang/srt/model_executor/expert_location_updater.py +557 -0
- sglang/srt/model_executor/forward_batch_info.py +39 -14
- sglang/srt/model_executor/model_runner.py +231 -101
- sglang/srt/model_loader/loader.py +10 -6
- sglang/srt/model_loader/utils.py +67 -1
- sglang/srt/models/clip.py +5 -1
- sglang/srt/models/deepseek_nextn.py +1 -1
- sglang/srt/models/deepseek_v2.py +732 -403
- sglang/srt/models/exaone.py +8 -3
- sglang/srt/models/gemma3_causal.py +7 -0
- sglang/srt/models/gemma3_mm.py +75 -33
- sglang/srt/models/idefics2.py +342 -0
- sglang/srt/models/kimi_vl.py +4 -4
- sglang/srt/models/llama.py +1 -1
- sglang/srt/models/llama4.py +10 -2
- sglang/srt/models/llava.py +26 -18
- sglang/srt/models/mimo_mtp.py +220 -0
- sglang/srt/models/minicpmo.py +7 -17
- sglang/srt/models/minicpmv.py +3 -295
- sglang/srt/models/mistral.py +71 -1
- sglang/srt/models/mllama.py +3 -3
- sglang/srt/models/phi4mm.py +512 -0
- sglang/srt/models/qwen2.py +133 -35
- sglang/srt/models/qwen2_5_vl.py +5 -3
- sglang/srt/models/qwen2_eagle.py +4 -1
- sglang/srt/models/qwen2_moe.py +206 -69
- sglang/srt/models/qwen2_vl.py +3 -3
- sglang/srt/models/qwen3.py +92 -19
- sglang/srt/models/qwen3_moe.py +457 -55
- sglang/srt/models/registry.py +9 -1
- sglang/srt/models/siglip.py +294 -0
- sglang/srt/models/transformers.py +291 -0
- sglang/srt/openai_api/adapter.py +114 -40
- sglang/srt/openai_api/protocol.py +37 -2
- sglang/srt/openai_api/utils.py +172 -0
- sglang/srt/operations.py +189 -0
- sglang/srt/operations_strategy.py +207 -0
- sglang/srt/sampling/sampling_batch_info.py +13 -1
- sglang/srt/sampling/sampling_params.py +2 -1
- sglang/srt/server_args.py +235 -38
- sglang/srt/speculative/build_eagle_tree.py +8 -8
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +8 -11
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +253 -0
- sglang/srt/speculative/eagle_utils.py +181 -90
- sglang/srt/speculative/eagle_worker.py +146 -21
- sglang/srt/two_batch_overlap.py +635 -0
- sglang/srt/utils.py +197 -19
- sglang/test/runners.py +16 -7
- sglang/test/send_one.py +4 -0
- sglang/test/test_cutlass_moe.py +278 -0
- sglang/test/test_fp4_moe.py +248 -0
- sglang/test/test_utils.py +81 -42
- sglang/utils.py +2 -2
- sglang/version.py +1 -1
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/METADATA +31 -19
- sglang-0.4.7.dist-info/RECORD +699 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/WHEEL +1 -1
- sglang/srt/function_call_parser.py +0 -858
- sglang/srt/platforms/interface.py +0 -371
- sglang-0.4.6.post4.dist-info/RECORD +0 -646
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/models/{xiaomi_mimo.py → mimo.py} +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.7.dist-info}/top_level.txt +0 -0
sglang/srt/models/llava.py
CHANGED
@@ -135,7 +135,6 @@ class LlavaBaseForCausalLM(nn.Module):
|
|
135
135
|
"""
|
136
136
|
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
137
137
|
# NOTE: This is not memory efficient. (output_hidden_states=True) will save all the hidden stated.
|
138
|
-
|
139
138
|
selected_image_feature = image_outputs.hidden_states[self.vision_feature_layer]
|
140
139
|
if self.vision_feature_select_strategy in ["default", "patch"]:
|
141
140
|
selected_image_feature = selected_image_feature[:, 1:]
|
@@ -146,7 +145,6 @@ class LlavaBaseForCausalLM(nn.Module):
|
|
146
145
|
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
147
146
|
)
|
148
147
|
image_features = self.multi_modal_projector(selected_image_feature)
|
149
|
-
|
150
148
|
return image_features
|
151
149
|
|
152
150
|
@torch.no_grad()
|
@@ -613,6 +611,10 @@ class LlavaForConditionalGeneration(LlavaBaseForCausalLM):
|
|
613
611
|
|
614
612
|
MULTIMODAL_PROJECTOR_TYPE = LlavaMultiModalProjector
|
615
613
|
|
614
|
+
@property
|
615
|
+
def dtype(self):
|
616
|
+
return self.torch_dtype
|
617
|
+
|
616
618
|
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
|
617
619
|
if hasattr(self.vision_tower, "pad_input_ids"):
|
618
620
|
return self.vision_tower.pad_input_ids(input_ids, image_inputs)
|
@@ -672,11 +674,17 @@ class LlavaForConditionalGeneration(LlavaBaseForCausalLM):
|
|
672
674
|
assert hasattr(config, "text_config")
|
673
675
|
assert hasattr(config, "vision_config")
|
674
676
|
self.config = config
|
675
|
-
self.text_config = config.text_config
|
676
|
-
self.vision_config = config.vision_config
|
677
|
+
self.text_config = self.config.text_config
|
678
|
+
self.vision_config = self.config.vision_config
|
679
|
+
self.torch_dtype = getattr(self.config, "torch_dtype")
|
680
|
+
|
681
|
+
if not getattr(self.text_config, "torch_dtype"):
|
682
|
+
self.text_config.torch_dtype = self.torch_dtype
|
683
|
+
if not getattr(self.vision_config, "torch_dtype"):
|
684
|
+
self.vision_config.torch_dtype = self.torch_dtype
|
677
685
|
|
678
686
|
if not hasattr(self.config, "vocab_size"):
|
679
|
-
self.config.vocab_size = self.
|
687
|
+
self.config.vocab_size = self.text_config.vocab_size
|
680
688
|
if not hasattr(self.config, "image_aspect_ratio"):
|
681
689
|
self.config.image_aspect_ratio = "anyres"
|
682
690
|
if not hasattr(self.config, "image_grid_pinpoints"):
|
@@ -697,39 +705,39 @@ class LlavaForConditionalGeneration(LlavaBaseForCausalLM):
|
|
697
705
|
if not hasattr(self.config, "projector_hidden_act"):
|
698
706
|
self.config.projector_hidden_act = "gelu"
|
699
707
|
|
700
|
-
self.vision_feature_layer = getattr(config, "vision_feature_layer", -1)
|
708
|
+
self.vision_feature_layer = getattr(self.config, "vision_feature_layer", -1)
|
701
709
|
self.vision_feature_select_strategy = getattr(
|
702
|
-
config, "vision_feature_select_strategy", "full"
|
710
|
+
self.config, "vision_feature_select_strategy", "full"
|
703
711
|
)
|
704
|
-
self.image_size = self.
|
705
|
-
self.patch_size = self.
|
712
|
+
self.image_size = self.vision_config.image_size
|
713
|
+
self.patch_size = self.vision_config.patch_size
|
706
714
|
|
707
|
-
self.mm_patch_merge_type = config.mm_patch_merge_type
|
708
|
-
self.image_aspect_ratio = config.image_aspect_ratio
|
709
|
-
self.image_grid_pinpoints = config.image_grid_pinpoints
|
715
|
+
self.mm_patch_merge_type = self.config.mm_patch_merge_type
|
716
|
+
self.image_aspect_ratio = self.config.image_aspect_ratio
|
717
|
+
self.image_grid_pinpoints = self.config.image_grid_pinpoints
|
710
718
|
|
711
719
|
self.image_feature_len = int((self.image_size // self.patch_size) ** 2)
|
712
720
|
|
713
721
|
self.multi_modal_projector = self.MULTIMODAL_PROJECTOR_TYPE(config)
|
714
722
|
|
715
723
|
language_model_cls = self._get_sgl_model_cls(
|
716
|
-
|
724
|
+
self.text_config, AutoModelForCausalLM
|
717
725
|
)
|
718
|
-
vision_model_cls = self._get_sgl_model_cls(
|
726
|
+
vision_model_cls = self._get_sgl_model_cls(self.vision_config, AutoModel)
|
719
727
|
self.language_model = language_model_cls(
|
720
|
-
|
728
|
+
self.text_config,
|
721
729
|
quant_config=quant_config,
|
722
730
|
prefix=add_prefix("language_model", prefix),
|
723
731
|
)
|
724
732
|
self.vision_tower = vision_model_cls(
|
725
|
-
|
733
|
+
self.vision_config,
|
726
734
|
quant_config=quant_config,
|
727
735
|
prefix=add_prefix("vision_tower", prefix),
|
728
736
|
)
|
729
737
|
|
730
|
-
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
738
|
+
if "unpad" in getattr(self.config, "mm_patch_merge_type", ""):
|
731
739
|
self.language_model.model.image_newline = nn.Parameter(
|
732
|
-
torch.empty(
|
740
|
+
torch.empty(self.text_config.hidden_size, dtype=self.torch_dtype)
|
733
741
|
)
|
734
742
|
|
735
743
|
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
|
@@ -0,0 +1,220 @@
|
|
1
|
+
# Adapted from https://github.com/vllm-project/vllm/pull/17433/files and deepseek_nextn.py
|
2
|
+
|
3
|
+
from functools import partial
|
4
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
5
|
+
|
6
|
+
import torch
|
7
|
+
from torch import nn
|
8
|
+
from transformers import PretrainedConfig
|
9
|
+
|
10
|
+
from sglang.srt.distributed import (
|
11
|
+
get_tensor_model_parallel_rank,
|
12
|
+
get_tensor_model_parallel_world_size,
|
13
|
+
split_tensor_along_last_dim,
|
14
|
+
tensor_model_parallel_all_gather,
|
15
|
+
)
|
16
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
17
|
+
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
18
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
19
|
+
from sglang.srt.layers.pooler import Pooler, PoolingType
|
20
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
21
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
22
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
23
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
24
|
+
ParallelLMHead,
|
25
|
+
VocabParallelEmbedding,
|
26
|
+
)
|
27
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
28
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
29
|
+
from sglang.srt.models.mimo import MiMoForCausalLM
|
30
|
+
from sglang.srt.models.qwen2 import (
|
31
|
+
Qwen2Attention,
|
32
|
+
Qwen2DecoderLayer,
|
33
|
+
Qwen2MLP,
|
34
|
+
Qwen2Model,
|
35
|
+
)
|
36
|
+
from sglang.srt.utils import add_prefix
|
37
|
+
|
38
|
+
|
39
|
+
class MiMoMultiTokenPredictorLayer(nn.Module):
|
40
|
+
|
41
|
+
def __init__(
|
42
|
+
self,
|
43
|
+
config: PretrainedConfig,
|
44
|
+
prefix: str,
|
45
|
+
quant_config: Optional[QuantizationConfig] = None,
|
46
|
+
) -> None:
|
47
|
+
super().__init__()
|
48
|
+
|
49
|
+
self.embed_tokens = VocabParallelEmbedding(
|
50
|
+
config.vocab_size,
|
51
|
+
config.hidden_size,
|
52
|
+
)
|
53
|
+
self.token_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
54
|
+
self.hidden_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
55
|
+
self.input_proj = nn.Linear(
|
56
|
+
config.hidden_size * 2, config.hidden_size, bias=False
|
57
|
+
)
|
58
|
+
self.mtp_block = Qwen2DecoderLayer(
|
59
|
+
config=config, quant_config=quant_config, prefix=prefix
|
60
|
+
)
|
61
|
+
self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
62
|
+
|
63
|
+
def forward(
|
64
|
+
self,
|
65
|
+
input_ids: torch.Tensor,
|
66
|
+
positions: torch.Tensor,
|
67
|
+
forward_batch: ForwardBatch,
|
68
|
+
input_embeds: torch.Tensor = None,
|
69
|
+
) -> torch.Tensor:
|
70
|
+
|
71
|
+
if input_embeds is None:
|
72
|
+
hidden_states = self.embed_tokens(input_ids)
|
73
|
+
else:
|
74
|
+
hidden_states = input_embeds
|
75
|
+
# masking inputs at position 0, as not needed by MTP
|
76
|
+
hidden_states[positions == 0] = 0
|
77
|
+
|
78
|
+
hidden_states = self.input_proj(
|
79
|
+
torch.cat(
|
80
|
+
(
|
81
|
+
self.hidden_layernorm(forward_batch.spec_info.hidden_states),
|
82
|
+
self.token_layernorm(hidden_states),
|
83
|
+
),
|
84
|
+
dim=-1,
|
85
|
+
)
|
86
|
+
)
|
87
|
+
|
88
|
+
hidden_states, residual = self.mtp_block(
|
89
|
+
positions=positions,
|
90
|
+
hidden_states=hidden_states,
|
91
|
+
forward_batch=forward_batch,
|
92
|
+
residual=None,
|
93
|
+
)
|
94
|
+
hidden_states = residual + hidden_states
|
95
|
+
hidden_states = self.final_layernorm(hidden_states)
|
96
|
+
return hidden_states
|
97
|
+
|
98
|
+
|
99
|
+
class MiMoMTP(nn.Module):
|
100
|
+
def __init__(
|
101
|
+
self,
|
102
|
+
config: PretrainedConfig,
|
103
|
+
quant_config: Optional[QuantizationConfig] = None,
|
104
|
+
prefix: str = "",
|
105
|
+
) -> None:
|
106
|
+
nn.Module.__init__(self)
|
107
|
+
self.config = config
|
108
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
109
|
+
self.quant_config = quant_config
|
110
|
+
|
111
|
+
self.model = MiMoMultiTokenPredictorLayer(
|
112
|
+
config,
|
113
|
+
prefix,
|
114
|
+
quant_config,
|
115
|
+
)
|
116
|
+
self.lm_head = ParallelLMHead(
|
117
|
+
config.vocab_size,
|
118
|
+
config.hidden_size,
|
119
|
+
quant_config=quant_config,
|
120
|
+
)
|
121
|
+
self.logits_processor = LogitsProcessor(config)
|
122
|
+
|
123
|
+
@torch.no_grad()
|
124
|
+
def forward(
|
125
|
+
self,
|
126
|
+
input_ids: torch.Tensor,
|
127
|
+
positions: torch.Tensor,
|
128
|
+
forward_batch: ForwardBatch,
|
129
|
+
) -> torch.Tensor:
|
130
|
+
hidden_states = self.model(input_ids, positions, forward_batch)
|
131
|
+
return self.logits_processor(
|
132
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
133
|
+
)
|
134
|
+
|
135
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
136
|
+
stacked_params_mapping = [
|
137
|
+
# (param_name, shard_name, shard_id)
|
138
|
+
("qkv_proj", "q_proj", "q"),
|
139
|
+
("qkv_proj", "k_proj", "k"),
|
140
|
+
("qkv_proj", "v_proj", "v"),
|
141
|
+
("gate_up_proj", "gate_proj", 0),
|
142
|
+
("gate_up_proj", "up_proj", 1),
|
143
|
+
]
|
144
|
+
|
145
|
+
params_dict = dict(self.named_parameters())
|
146
|
+
for name, loaded_weight in weights:
|
147
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
148
|
+
continue
|
149
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
150
|
+
# Models trained using ColossalAI may include these tensors in
|
151
|
+
# the checkpoint. Skip them.
|
152
|
+
continue
|
153
|
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
154
|
+
continue
|
155
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
156
|
+
continue
|
157
|
+
name = self.map_model_name_to_mtp_param_name(name)
|
158
|
+
|
159
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
160
|
+
if weight_name not in name:
|
161
|
+
continue
|
162
|
+
if "mtp_block" not in name:
|
163
|
+
break
|
164
|
+
name = name.replace(weight_name, param_name)
|
165
|
+
# Skip loading extra bias for GPTQ models.
|
166
|
+
if name.endswith(".bias") and name not in params_dict:
|
167
|
+
continue
|
168
|
+
param = params_dict[name]
|
169
|
+
weight_loader = param.weight_loader
|
170
|
+
weight_loader(param, loaded_weight, shard_id)
|
171
|
+
break
|
172
|
+
else:
|
173
|
+
# Skip loading extra bias for GPTQ models.
|
174
|
+
if name.endswith(".bias") and name not in params_dict:
|
175
|
+
continue
|
176
|
+
if "mtp_block" not in name and (
|
177
|
+
"embed_tokens" not in name
|
178
|
+
and "lm_head" not in name
|
179
|
+
and "token_layernorm" not in name
|
180
|
+
and "hidden_layernorm" not in name
|
181
|
+
and "input_proj" not in name
|
182
|
+
and "final_layernorm" not in name
|
183
|
+
):
|
184
|
+
continue
|
185
|
+
param = params_dict[name]
|
186
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
187
|
+
weight_loader(param, loaded_weight)
|
188
|
+
|
189
|
+
def map_model_name_to_mtp_param_name(self, name: str) -> str:
|
190
|
+
import re
|
191
|
+
|
192
|
+
name_without_prefix = [
|
193
|
+
"token_layernorm",
|
194
|
+
"hidden_layernorm",
|
195
|
+
"input_proj",
|
196
|
+
"final_layernorm",
|
197
|
+
]
|
198
|
+
pattern = r"model.mtp_layers.(\d+)."
|
199
|
+
group = re.match(pattern, name)
|
200
|
+
if group is not None:
|
201
|
+
for sub_name in name_without_prefix:
|
202
|
+
if sub_name in name:
|
203
|
+
name = name.replace(group.group(), "model.")
|
204
|
+
return name
|
205
|
+
name = name.replace(group.group(), "model.mtp_block.")
|
206
|
+
return name
|
207
|
+
|
208
|
+
def get_embed_and_head(self):
|
209
|
+
return self.model.embed_tokens.weight, self.lm_head.weight
|
210
|
+
|
211
|
+
def set_embed_and_head(self, embed, head):
|
212
|
+
del self.model.embed_tokens.weight
|
213
|
+
del self.lm_head.weight
|
214
|
+
self.model.embed_tokens.weight = embed
|
215
|
+
self.lm_head.weight = head
|
216
|
+
torch.cuda.empty_cache()
|
217
|
+
torch.cuda.synchronize()
|
218
|
+
|
219
|
+
|
220
|
+
EntryClass = MiMoMTP
|
sglang/srt/models/minicpmo.py
CHANGED
@@ -51,11 +51,8 @@ from sglang.srt.managers.schedule_batch import (
|
|
51
51
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
52
52
|
from sglang.srt.model_loader.utils import set_default_torch_dtype
|
53
53
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
54
|
-
from sglang.srt.models.
|
55
|
-
|
56
|
-
MiniCPMBaseModel,
|
57
|
-
Resampler2_5,
|
58
|
-
)
|
54
|
+
from sglang.srt.models.idefics2 import Idefics2VisionTransformer
|
55
|
+
from sglang.srt.models.minicpmv import MiniCPMBaseModel, Resampler2_5
|
59
56
|
from sglang.srt.models.qwen2 import Qwen2ForCausalLM
|
60
57
|
from sglang.srt.utils import logger
|
61
58
|
|
@@ -1520,12 +1517,15 @@ class MiniCPMO(MiniCPMBaseModel):
|
|
1520
1517
|
slice_start_id: int = mm_input.slice_start_id
|
1521
1518
|
slice_end_id: int = mm_input.slice_end_id
|
1522
1519
|
|
1523
|
-
|
1520
|
+
data_token_pairs = [
|
1524
1521
|
(im_start_id, im_end_id),
|
1525
1522
|
(slice_start_id, slice_end_id),
|
1526
1523
|
(mm_input.audio_start_id, mm_input.audio_end_id),
|
1527
1524
|
]
|
1528
|
-
|
1525
|
+
data_start_token_ids = [im_start_id, mm_input.audio_start_id]
|
1526
|
+
pattern = MultiModalityDataPaddingPatternTokenPairs(
|
1527
|
+
data_token_pairs=data_token_pairs, data_start_token_ids=data_start_token_ids
|
1528
|
+
)
|
1529
1529
|
|
1530
1530
|
return pattern.pad_input_tokens(input_ids, mm_input)
|
1531
1531
|
|
@@ -1823,22 +1823,12 @@ class MiniCPMO(MiniCPMBaseModel):
|
|
1823
1823
|
**kwargs: Any,
|
1824
1824
|
) -> torch.Tensor:
|
1825
1825
|
|
1826
|
-
mm_input = forward_batch.merge_mm_inputs()
|
1827
|
-
placeholder_token_ids = (
|
1828
|
-
([mm_input.im_token_id] + [item.pad_value for item in mm_input.mm_items])
|
1829
|
-
if forward_batch.contains_mm_inputs()
|
1830
|
-
else []
|
1831
|
-
)
|
1832
1826
|
hidden_states = general_mm_embed_routine(
|
1833
1827
|
input_ids=input_ids,
|
1834
1828
|
forward_batch=forward_batch,
|
1835
1829
|
language_model=self.llm,
|
1836
1830
|
image_data_embedding_func=self.get_image_feature,
|
1837
1831
|
audio_data_embedding_func=self.get_audio_feature,
|
1838
|
-
placeholder_tokens={
|
1839
|
-
Modality.IMAGE: placeholder_token_ids,
|
1840
|
-
Modality.AUDIO: placeholder_token_ids,
|
1841
|
-
},
|
1842
1832
|
positions=positions,
|
1843
1833
|
)
|
1844
1834
|
return hidden_states
|
sglang/srt/models/minicpmv.py
CHANGED
@@ -20,6 +20,7 @@
|
|
20
20
|
# See the License for the specific language governing permissions and
|
21
21
|
# limitations under the License.
|
22
22
|
"""Inference-only MiniCPM-V model compatible with HuggingFace weights."""
|
23
|
+
|
23
24
|
from functools import partial
|
24
25
|
from typing import (
|
25
26
|
Any,
|
@@ -41,13 +42,7 @@ from torch import nn
|
|
41
42
|
from torch.nn.init import trunc_normal_
|
42
43
|
from transformers import PretrainedConfig
|
43
44
|
|
44
|
-
from sglang.srt.layers.
|
45
|
-
from sglang.srt.layers.attention.vision import VisionAttention
|
46
|
-
from sglang.srt.layers.linear import (
|
47
|
-
ColumnParallelLinear,
|
48
|
-
ReplicatedLinear,
|
49
|
-
RowParallelLinear,
|
50
|
-
)
|
45
|
+
from sglang.srt.layers.linear import ReplicatedLinear
|
51
46
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
52
47
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
53
48
|
from sglang.srt.managers.mm_utils import (
|
@@ -58,6 +53,7 @@ from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInp
|
|
58
53
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
59
54
|
from sglang.srt.model_loader.utils import set_default_torch_dtype
|
60
55
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
56
|
+
from sglang.srt.models.idefics2 import Idefics2VisionTransformer
|
61
57
|
from sglang.srt.models.qwen2 import Qwen2Config, Qwen2ForCausalLM
|
62
58
|
from sglang.srt.utils import add_prefix, flatten_nested_list
|
63
59
|
|
@@ -146,294 +142,6 @@ def get_2d_sincos_pos_embed(
|
|
146
142
|
return pos_embed
|
147
143
|
|
148
144
|
|
149
|
-
class Idefics2VisionMLP(nn.Module):
|
150
|
-
|
151
|
-
def __init__(
|
152
|
-
self,
|
153
|
-
config: PretrainedConfig,
|
154
|
-
quant_config: Optional[QuantizationConfig] = None,
|
155
|
-
prefix: str = "",
|
156
|
-
) -> None:
|
157
|
-
super().__init__()
|
158
|
-
self.config = config
|
159
|
-
self.activation_fn = get_act_fn(config.hidden_act)
|
160
|
-
self.fc1 = ColumnParallelLinear(
|
161
|
-
config.hidden_size,
|
162
|
-
config.intermediate_size,
|
163
|
-
bias=True,
|
164
|
-
quant_config=quant_config,
|
165
|
-
prefix=add_prefix("fc1", prefix),
|
166
|
-
)
|
167
|
-
self.fc2 = RowParallelLinear(
|
168
|
-
config.intermediate_size,
|
169
|
-
config.hidden_size,
|
170
|
-
bias=True,
|
171
|
-
quant_config=quant_config,
|
172
|
-
prefix=add_prefix("fc2", prefix),
|
173
|
-
)
|
174
|
-
|
175
|
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
176
|
-
hidden_states, _ = self.fc1(hidden_states)
|
177
|
-
hidden_states = self.activation_fn(hidden_states)
|
178
|
-
hidden_states, _ = self.fc2(hidden_states)
|
179
|
-
return hidden_states
|
180
|
-
|
181
|
-
|
182
|
-
class Idefics2EncoderLayer(nn.Module):
|
183
|
-
|
184
|
-
def __init__(
|
185
|
-
self,
|
186
|
-
config: PretrainedConfig,
|
187
|
-
quant_config: Optional[QuantizationConfig] = None,
|
188
|
-
prefix: str = "",
|
189
|
-
) -> None:
|
190
|
-
super().__init__()
|
191
|
-
self.embed_dim = config.hidden_size
|
192
|
-
self.num_heads = config.num_attention_heads
|
193
|
-
self.self_attn = VisionAttention(
|
194
|
-
embed_dim=config.hidden_size,
|
195
|
-
num_heads=self.num_heads,
|
196
|
-
projection_size=config.intermediate_size,
|
197
|
-
use_qkv_parallel=True,
|
198
|
-
quant_config=quant_config,
|
199
|
-
dropout=config.attention_dropout,
|
200
|
-
qkv_backend="sdpa",
|
201
|
-
softmax_in_single_precision=True,
|
202
|
-
flatten_batch=False,
|
203
|
-
prefix=add_prefix("self_attn", prefix),
|
204
|
-
)
|
205
|
-
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
206
|
-
self.mlp = Idefics2VisionMLP(
|
207
|
-
config,
|
208
|
-
quant_config=quant_config,
|
209
|
-
prefix=add_prefix("mlp", prefix),
|
210
|
-
)
|
211
|
-
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
212
|
-
|
213
|
-
def forward(
|
214
|
-
self,
|
215
|
-
hidden_states: torch.Tensor,
|
216
|
-
cu_seqlens: torch.Tensor,
|
217
|
-
) -> torch.Tensor:
|
218
|
-
"""
|
219
|
-
Args:
|
220
|
-
hidden_states (`torch.FloatTensor`):
|
221
|
-
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
222
|
-
|
223
|
-
"""
|
224
|
-
residual = hidden_states
|
225
|
-
hidden_states = self.layer_norm1(hidden_states)
|
226
|
-
hidden_states = self.self_attn(hidden_states, cu_seqlens=cu_seqlens)
|
227
|
-
|
228
|
-
hidden_states = residual + hidden_states
|
229
|
-
residual = hidden_states
|
230
|
-
hidden_states = self.layer_norm2(hidden_states)
|
231
|
-
hidden_states = self.mlp(hidden_states)
|
232
|
-
hidden_states = residual + hidden_states
|
233
|
-
return hidden_states
|
234
|
-
|
235
|
-
|
236
|
-
class Idefics2Encoder(nn.Module):
|
237
|
-
"""
|
238
|
-
Transformer encoder consisting of `config.num_hidden_layers` self attention
|
239
|
-
layers. Each layer is a
|
240
|
-
[`Idefics2EncoderLayer`].
|
241
|
-
|
242
|
-
Args:
|
243
|
-
config: Idefics2Config
|
244
|
-
"""
|
245
|
-
|
246
|
-
def __init__(
|
247
|
-
self,
|
248
|
-
config: PretrainedConfig,
|
249
|
-
quant_config: Optional[QuantizationConfig] = None,
|
250
|
-
prefix: str = "",
|
251
|
-
) -> None:
|
252
|
-
super().__init__()
|
253
|
-
|
254
|
-
self.config = config
|
255
|
-
self.layers = nn.ModuleList(
|
256
|
-
[
|
257
|
-
Idefics2EncoderLayer(
|
258
|
-
config,
|
259
|
-
quant_config=quant_config,
|
260
|
-
prefix=add_prefix(f"layers.{i}", prefix),
|
261
|
-
)
|
262
|
-
for i in range(config.num_hidden_layers)
|
263
|
-
]
|
264
|
-
)
|
265
|
-
|
266
|
-
def forward(
|
267
|
-
self,
|
268
|
-
inputs_embeds: torch.Tensor,
|
269
|
-
cu_seqlens: torch.Tensor,
|
270
|
-
) -> torch.Tensor:
|
271
|
-
r"""
|
272
|
-
Args:
|
273
|
-
inputs_embeds (torch.Tensor):
|
274
|
-
Optionally, instead of passing `input_ids` you can choose to
|
275
|
-
directly pass an embedded representation.
|
276
|
-
This is useful if you want more control over how to convert
|
277
|
-
`input_ids` indices into associated vectorsthan the model's
|
278
|
-
internal embedding lookup matrix.
|
279
|
-
"""
|
280
|
-
hidden_states = inputs_embeds
|
281
|
-
for encoder_layer in self.layers:
|
282
|
-
layer_outputs = encoder_layer(
|
283
|
-
hidden_states,
|
284
|
-
cu_seqlens=cu_seqlens,
|
285
|
-
)
|
286
|
-
hidden_states = layer_outputs
|
287
|
-
return hidden_states
|
288
|
-
|
289
|
-
|
290
|
-
class Idefics2VisionEmbeddings(nn.Module):
|
291
|
-
"""
|
292
|
-
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings
|
293
|
-
` to enable images of variable
|
294
|
-
resolution.
|
295
|
-
|
296
|
-
The modifications are adapted from [Patch n' Pack: NaViT, a Vision
|
297
|
-
Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
|
298
|
-
which allows treating images in their native aspect ratio and without the
|
299
|
-
need to resize them to the same fixed size. In particular, we start from the
|
300
|
-
original pre-trained SigLIP model(which uses images of fixed-size square
|
301
|
-
images) and adapt it by training on images of variable resolutions.
|
302
|
-
"""
|
303
|
-
|
304
|
-
def __init__(self, config: PretrainedConfig):
|
305
|
-
super().__init__()
|
306
|
-
self.embed_dim = config.hidden_size
|
307
|
-
self.image_size = config.image_size
|
308
|
-
self.patch_size = config.patch_size
|
309
|
-
self.patch_embedding = nn.Conv2d(
|
310
|
-
in_channels=config.num_channels,
|
311
|
-
out_channels=self.embed_dim,
|
312
|
-
kernel_size=self.patch_size,
|
313
|
-
stride=self.patch_size,
|
314
|
-
padding="valid",
|
315
|
-
)
|
316
|
-
self.num_patches_per_side = self.image_size // self.patch_size
|
317
|
-
self.num_patches = self.num_patches_per_side**2
|
318
|
-
self.num_positions = self.num_patches
|
319
|
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
320
|
-
|
321
|
-
def get_position_ids(
|
322
|
-
self,
|
323
|
-
pixel_values: torch.FloatTensor,
|
324
|
-
patch_attention_mask: torch.BoolTensor,
|
325
|
-
tgt_sizes: Optional[torch.IntTensor] = None,
|
326
|
-
):
|
327
|
-
batch_size, _, max_im_h, max_im_w = pixel_values.shape
|
328
|
-
|
329
|
-
max_nb_patches_h, max_nb_patches_w = (
|
330
|
-
max_im_h // self.patch_size,
|
331
|
-
max_im_w // self.patch_size,
|
332
|
-
)
|
333
|
-
boundaries = torch.arange(
|
334
|
-
1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side
|
335
|
-
)
|
336
|
-
position_ids = torch.full(
|
337
|
-
size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0
|
338
|
-
)
|
339
|
-
|
340
|
-
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
341
|
-
|
342
|
-
if tgt_sizes is not None:
|
343
|
-
nb_patches_h = tgt_sizes[batch_idx][0]
|
344
|
-
nb_patches_w = tgt_sizes[batch_idx][1]
|
345
|
-
else:
|
346
|
-
nb_patches_h = p_attn_mask[:, 0].sum()
|
347
|
-
nb_patches_w = p_attn_mask[0].sum()
|
348
|
-
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
349
|
-
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
350
|
-
bucket_coords_h = torch.bucketize(
|
351
|
-
fractional_coords_h, boundaries, right=True
|
352
|
-
)
|
353
|
-
bucket_coords_w = torch.bucketize(
|
354
|
-
fractional_coords_w, boundaries, right=True
|
355
|
-
)
|
356
|
-
pos_ids = (
|
357
|
-
bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w
|
358
|
-
).flatten()
|
359
|
-
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
360
|
-
position_ids = position_ids.to(self.position_embedding.weight.device)
|
361
|
-
return position_ids
|
362
|
-
|
363
|
-
def forward(
|
364
|
-
self,
|
365
|
-
pixel_values: torch.FloatTensor,
|
366
|
-
patch_attention_mask: torch.BoolTensor,
|
367
|
-
tgt_sizes: Optional[torch.IntTensor] = None,
|
368
|
-
) -> torch.Tensor:
|
369
|
-
target_dtype = self.patch_embedding.weight.dtype
|
370
|
-
pixel_values = pixel_values.to(
|
371
|
-
device=self.patch_embedding.weight.device, dtype=target_dtype
|
372
|
-
)
|
373
|
-
patch_embeds = self.patch_embedding(pixel_values)
|
374
|
-
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
375
|
-
position_ids = self.get_position_ids(
|
376
|
-
pixel_values, patch_attention_mask, tgt_sizes
|
377
|
-
)
|
378
|
-
|
379
|
-
embeddings = embeddings + self.position_embedding(position_ids)
|
380
|
-
return embeddings
|
381
|
-
|
382
|
-
|
383
|
-
class Idefics2VisionTransformer(nn.Module):
|
384
|
-
|
385
|
-
def __init__(
|
386
|
-
self,
|
387
|
-
config: PretrainedConfig,
|
388
|
-
quant_config: Optional[QuantizationConfig] = None,
|
389
|
-
prefix: str = "",
|
390
|
-
) -> None:
|
391
|
-
super().__init__()
|
392
|
-
|
393
|
-
embed_dim = config.hidden_size
|
394
|
-
self.config = config
|
395
|
-
self.embeddings = Idefics2VisionEmbeddings(config)
|
396
|
-
self.encoder = Idefics2Encoder(
|
397
|
-
config=config,
|
398
|
-
quant_config=quant_config,
|
399
|
-
prefix=add_prefix("encoder", prefix),
|
400
|
-
)
|
401
|
-
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
402
|
-
|
403
|
-
def get_input_embeddings(self) -> nn.Embedding:
|
404
|
-
return self.embeddings
|
405
|
-
|
406
|
-
def compute_cu_seqlens(self, tgt_sizes: torch.Tensor) -> torch.Tensor:
|
407
|
-
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1] # shape: (batch_size,)
|
408
|
-
cu_seqlens = torch.cat(
|
409
|
-
[
|
410
|
-
torch.tensor([0], device=patch_len.device, dtype=torch.int32),
|
411
|
-
torch.cumsum(patch_len, dim=0, dtype=torch.int32),
|
412
|
-
],
|
413
|
-
dim=0,
|
414
|
-
).to(tgt_sizes.device)
|
415
|
-
return cu_seqlens
|
416
|
-
|
417
|
-
def forward(
|
418
|
-
self,
|
419
|
-
pixel_values,
|
420
|
-
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
421
|
-
tgt_sizes: Optional[torch.IntTensor] = None,
|
422
|
-
) -> torch.Tensor:
|
423
|
-
hidden_states = self.embeddings(
|
424
|
-
pixel_values=pixel_values,
|
425
|
-
patch_attention_mask=patch_attention_mask,
|
426
|
-
tgt_sizes=tgt_sizes,
|
427
|
-
)
|
428
|
-
cu_seqlens = self.compute_cu_seqlens(tgt_sizes)
|
429
|
-
encoder_outputs = self.encoder(
|
430
|
-
hidden_states,
|
431
|
-
cu_seqlens=cu_seqlens,
|
432
|
-
)
|
433
|
-
last_hidden_state = self.post_layernorm(encoder_outputs)
|
434
|
-
return last_hidden_state
|
435
|
-
|
436
|
-
|
437
145
|
class MiniCPMVImagePixelInputs(TypedDict):
|
438
146
|
type: Literal["pixel_values"]
|
439
147
|
data: List[torch.Tensor]
|