sglang 0.4.2.post3__py3-none-any.whl → 0.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/check_env.py +1 -0
- sglang/global_config.py +2 -0
- sglang/srt/constrained/outlines_backend.py +4 -1
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/layers/attention/flashinfer_backend.py +265 -147
- sglang/srt/layers/attention/triton_backend.py +358 -72
- sglang/srt/layers/attention/triton_ops/extend_attention.py +4 -4
- sglang/srt/layers/linear.py +12 -5
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +2 -2
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +2 -2
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +178 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +175 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +27 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +2 -0
- sglang/srt/layers/moe/topk.py +1 -1
- sglang/srt/layers/quantization/__init__.py +51 -5
- sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +30 -30
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +29 -29
- sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +33 -33
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +31 -31
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +27 -27
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +31 -31
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +24 -24
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +30 -30
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +42 -42
- sglang/srt/layers/quantization/fp8_kernel.py +123 -17
- sglang/srt/layers/quantization/fp8_utils.py +33 -4
- sglang/srt/lora/backend/__init__.py +25 -5
- sglang/srt/lora/backend/base_backend.py +31 -9
- sglang/srt/lora/backend/flashinfer_backend.py +41 -4
- sglang/srt/lora/backend/triton_backend.py +34 -4
- sglang/srt/lora/layers.py +293 -0
- sglang/srt/lora/lora.py +101 -326
- sglang/srt/lora/lora_manager.py +101 -269
- sglang/srt/lora/mem_pool.py +174 -0
- sglang/srt/lora/triton_ops/__init__.py +7 -1
- sglang/srt/lora/triton_ops/gate_up_lora_b.py +170 -0
- sglang/srt/lora/triton_ops/qkv_lora_b.py +5 -5
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +2 -2
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +2 -2
- sglang/srt/lora/utils.py +141 -0
- sglang/srt/managers/detokenizer_manager.py +1 -0
- sglang/srt/managers/io_struct.py +4 -0
- sglang/srt/managers/schedule_batch.py +16 -3
- sglang/srt/managers/scheduler.py +29 -0
- sglang/srt/managers/tokenizer_manager.py +6 -0
- sglang/srt/managers/tp_worker_overlap_thread.py +4 -0
- sglang/srt/model_executor/cuda_graph_runner.py +16 -1
- sglang/srt/model_executor/model_runner.py +12 -2
- sglang/srt/models/deepseek_v2.py +17 -7
- sglang/srt/server_args.py +20 -1
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +1 -0
- sglang/srt/speculative/eagle_utils.py +64 -21
- sglang/srt/speculative/eagle_worker.py +29 -8
- sglang/srt/utils.py +7 -0
- sglang/version.py +1 -1
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/METADATA +6 -5
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/RECORD +88 -55
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/LICENSE +0 -0
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/WHEEL +0 -0
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,293 @@
|
|
1
|
+
import torch
|
2
|
+
from torch import nn
|
3
|
+
|
4
|
+
from sglang.srt.distributed import (
|
5
|
+
get_tensor_model_parallel_rank,
|
6
|
+
split_tensor_along_last_dim,
|
7
|
+
tensor_model_parallel_all_gather,
|
8
|
+
tensor_model_parallel_all_reduce,
|
9
|
+
)
|
10
|
+
from sglang.srt.layers.linear import (
|
11
|
+
ColumnParallelLinear,
|
12
|
+
MergedColumnParallelLinear,
|
13
|
+
QKVParallelLinear,
|
14
|
+
RowParallelLinear,
|
15
|
+
)
|
16
|
+
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
17
|
+
from sglang.srt.lora.backend import BaseLoRABackend
|
18
|
+
|
19
|
+
|
20
|
+
class BaseLayerWithLoRA(nn.Module):
|
21
|
+
def __init__(
|
22
|
+
self,
|
23
|
+
base_layer: nn.Module,
|
24
|
+
lora_rank: int,
|
25
|
+
scaling: float,
|
26
|
+
lora_backend: BaseLoRABackend,
|
27
|
+
):
|
28
|
+
super().__init__()
|
29
|
+
self.base_layer: nn.Module = base_layer
|
30
|
+
self.lora_rank: int = lora_rank
|
31
|
+
self.scaling: float = scaling
|
32
|
+
self.set_lora: bool = False
|
33
|
+
self.lora_backend: BaseLoRABackend = lora_backend
|
34
|
+
|
35
|
+
def forward(self, x: torch.Tensor):
|
36
|
+
return self.base_layer.forward(x)
|
37
|
+
|
38
|
+
def set_lora_info(self, *args):
|
39
|
+
pass
|
40
|
+
|
41
|
+
|
42
|
+
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
|
43
|
+
def __init__(
|
44
|
+
self,
|
45
|
+
base_layer: VocabParallelEmbedding,
|
46
|
+
lora_rank: int,
|
47
|
+
scaling: float,
|
48
|
+
lora_backend: BaseLoRABackend,
|
49
|
+
) -> None:
|
50
|
+
super().__init__(base_layer, lora_rank, scaling, lora_backend)
|
51
|
+
self.weight = base_layer.weight
|
52
|
+
|
53
|
+
|
54
|
+
class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
|
55
|
+
def __init__(
|
56
|
+
self,
|
57
|
+
base_layer: ColumnParallelLinear,
|
58
|
+
lora_rank: int,
|
59
|
+
scaling: float,
|
60
|
+
lora_backend: BaseLoRABackend,
|
61
|
+
) -> None:
|
62
|
+
super().__init__(base_layer, lora_rank, scaling, lora_backend)
|
63
|
+
|
64
|
+
def set_lora_info(
|
65
|
+
self,
|
66
|
+
A_buffer: torch.Tensor,
|
67
|
+
B_buffer: torch.Tensor,
|
68
|
+
):
|
69
|
+
self.set_lora = True
|
70
|
+
self.A_buffer = A_buffer
|
71
|
+
self.B_buffer = B_buffer
|
72
|
+
|
73
|
+
def apply_lora(self, base_output: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
74
|
+
backend_kwargs = {"base_output": base_output, "scaling": self.scaling}
|
75
|
+
lora_a_output = self.lora_backend.run_lora_a_sgemm(x, self.A_buffer)
|
76
|
+
lora_output = self.lora_backend.run_lora_b_sgemm(
|
77
|
+
lora_a_output,
|
78
|
+
self.B_buffer[0],
|
79
|
+
**backend_kwargs,
|
80
|
+
)
|
81
|
+
return (
|
82
|
+
lora_output
|
83
|
+
if self.lora_backend.fuse_output_scaling_add
|
84
|
+
else base_output + lora_output * self.scaling
|
85
|
+
)
|
86
|
+
|
87
|
+
def forward(self, input_: torch.Tensor):
|
88
|
+
# duplicate the logic in ColumnParallelLinear
|
89
|
+
bias = self.base_layer.bias if not self.base_layer.skip_bias_add else None
|
90
|
+
output_parallel = self.base_layer.quant_method.apply(
|
91
|
+
self.base_layer, input_, bias
|
92
|
+
)
|
93
|
+
|
94
|
+
if self.set_lora:
|
95
|
+
output_parallel = self.apply_lora(output_parallel, input_)
|
96
|
+
|
97
|
+
if self.base_layer.gather_output:
|
98
|
+
output = tensor_model_parallel_all_gather(output_parallel)
|
99
|
+
else:
|
100
|
+
output = output_parallel
|
101
|
+
output_bias = self.base_layer.bias if self.base_layer.skip_bias_add else None
|
102
|
+
return output, output_bias
|
103
|
+
|
104
|
+
|
105
|
+
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
|
106
|
+
def __init__(
|
107
|
+
self,
|
108
|
+
base_layer: MergedColumnParallelLinear,
|
109
|
+
lora_rank: int,
|
110
|
+
scaling: float,
|
111
|
+
lora_backend: BaseLoRABackend,
|
112
|
+
) -> None:
|
113
|
+
super().__init__(base_layer, lora_rank, scaling, lora_backend)
|
114
|
+
|
115
|
+
def set_lora_info(
|
116
|
+
self,
|
117
|
+
A_buffer: torch.Tensor,
|
118
|
+
B_buffer: torch.Tensor,
|
119
|
+
):
|
120
|
+
self.set_lora = True
|
121
|
+
self.A_buffer_gate_up = A_buffer
|
122
|
+
if self.lora_backend.fuse_stacked_lora_b:
|
123
|
+
# B_buffer_gate_up: (num_lora, 2 * output_dim, r)
|
124
|
+
self.B_buffer_gate_up = torch.cat(
|
125
|
+
(B_buffer[0], B_buffer[1]), dim=-2
|
126
|
+
).contiguous()
|
127
|
+
else:
|
128
|
+
self.B_buffer_gate_up = (B_buffer[0], B_buffer[1])
|
129
|
+
|
130
|
+
def apply_lora(self, base_output: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
131
|
+
backend_kwargs = {"base_output": base_output, "scaling": self.scaling}
|
132
|
+
|
133
|
+
lora_output = self.lora_backend.run_gate_up_lora(
|
134
|
+
x,
|
135
|
+
self.A_buffer_gate_up,
|
136
|
+
self.B_buffer_gate_up,
|
137
|
+
**backend_kwargs,
|
138
|
+
)
|
139
|
+
return (
|
140
|
+
lora_output
|
141
|
+
if self.lora_backend.fuse_output_scaling_add
|
142
|
+
else base_output + lora_output * self.scaling
|
143
|
+
)
|
144
|
+
|
145
|
+
|
146
|
+
class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
|
147
|
+
def init__(
|
148
|
+
self,
|
149
|
+
base_layer: QKVParallelLinear,
|
150
|
+
lora_rank: int,
|
151
|
+
scaling: float,
|
152
|
+
lora_backend: BaseLoRABackend,
|
153
|
+
) -> None:
|
154
|
+
super().__init__(base_layer, lora_rank, scaling, lora_backend)
|
155
|
+
|
156
|
+
def set_lora_info(
|
157
|
+
self,
|
158
|
+
A_buffer_qkv: torch.Tensor,
|
159
|
+
B_buffer_q: torch.Tensor,
|
160
|
+
B_buffer_kv: torch.Tensor,
|
161
|
+
):
|
162
|
+
self.set_lora = True
|
163
|
+
self.A_buffer_qkv = A_buffer_qkv
|
164
|
+
|
165
|
+
if self.lora_backend.fuse_stacked_lora_b:
|
166
|
+
assert (
|
167
|
+
B_buffer_q.shape[-1] == B_buffer_kv.shape[-1]
|
168
|
+
), "The lora rank of q and kv should be the same when enabling fusion of qkv lora_b"
|
169
|
+
output_dim_q, output_dim_kv = B_buffer_q.shape[-2], B_buffer_kv.shape[-2]
|
170
|
+
|
171
|
+
# B_buffer_qkv: (num_lora, output_dim_q + 2 * output_dim_kv, r)
|
172
|
+
self.B_buffer_qkv = torch.cat(
|
173
|
+
(B_buffer_q[0], B_buffer_kv[0], B_buffer_kv[1]), dim=-2
|
174
|
+
).contiguous()
|
175
|
+
|
176
|
+
# Offsets of q/k/v in output dimension
|
177
|
+
self.output_offset = torch.tensor(
|
178
|
+
[
|
179
|
+
0,
|
180
|
+
output_dim_q,
|
181
|
+
output_dim_q + output_dim_kv,
|
182
|
+
output_dim_q + 2 * output_dim_kv,
|
183
|
+
],
|
184
|
+
dtype=torch.int32,
|
185
|
+
device=B_buffer_q.device,
|
186
|
+
)
|
187
|
+
# For computing number of launched blocks
|
188
|
+
self.max_qkv_out_dim = max(output_dim_q, output_dim_kv)
|
189
|
+
else:
|
190
|
+
self.B_buffer_qkv = (
|
191
|
+
B_buffer_q,
|
192
|
+
B_buffer_kv,
|
193
|
+
)
|
194
|
+
|
195
|
+
def apply_lora(self, base_output: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
196
|
+
backend_kwargs = {"base_output": base_output, "scaling": self.scaling}
|
197
|
+
if self.lora_backend.fuse_stacked_lora_b:
|
198
|
+
backend_kwargs["output_offset"] = self.output_offset
|
199
|
+
backend_kwargs["max_qkv_out_dim"] = self.max_qkv_out_dim
|
200
|
+
|
201
|
+
lora_output = self.lora_backend.run_qkv_lora(
|
202
|
+
x,
|
203
|
+
self.A_buffer_qkv,
|
204
|
+
self.B_buffer_qkv,
|
205
|
+
**backend_kwargs,
|
206
|
+
)
|
207
|
+
return (
|
208
|
+
lora_output
|
209
|
+
if self.lora_backend.fuse_output_scaling_add
|
210
|
+
else base_output + lora_output * self.scaling
|
211
|
+
)
|
212
|
+
|
213
|
+
|
214
|
+
class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
|
215
|
+
def __init__(
|
216
|
+
self,
|
217
|
+
base_layer: RowParallelLinear,
|
218
|
+
lora_rank: int,
|
219
|
+
scaling: float,
|
220
|
+
lora_backend: BaseLoRABackend,
|
221
|
+
) -> None:
|
222
|
+
super().__init__(base_layer, lora_rank, scaling, lora_backend)
|
223
|
+
|
224
|
+
def set_lora_info(self, A_buffer: torch.Tensor, B_buffer: torch.Tensor):
|
225
|
+
self.set_lora = True
|
226
|
+
self.A_buffer = A_buffer
|
227
|
+
self.B_buffer = B_buffer
|
228
|
+
|
229
|
+
def apply_lora(self, base_output: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
230
|
+
backend_kwargs = {"base_output": base_output, "scaling": self.scaling}
|
231
|
+
lora_a_output = self.lora_backend.run_lora_a_sgemm(x, self.A_buffer)
|
232
|
+
lora_output = self.lora_backend.run_lora_b_sgemm(
|
233
|
+
lora_a_output,
|
234
|
+
self.B_buffer[0],
|
235
|
+
**backend_kwargs,
|
236
|
+
)
|
237
|
+
return (
|
238
|
+
lora_output
|
239
|
+
if self.lora_backend.fuse_output_scaling_add
|
240
|
+
else base_output + lora_output * self.scaling
|
241
|
+
)
|
242
|
+
|
243
|
+
def forward(self, input_: torch.Tensor):
|
244
|
+
# duplicate the logic in RowParallelLinear
|
245
|
+
if self.base_layer.input_is_parallel:
|
246
|
+
input_parallel = input_
|
247
|
+
else:
|
248
|
+
tp_rank = get_tensor_model_parallel_rank()
|
249
|
+
splitted_input = split_tensor_along_last_dim(
|
250
|
+
input_, num_partitions=self.base_layer.tp_size
|
251
|
+
)
|
252
|
+
input_parallel = splitted_input[tp_rank].contiguous()
|
253
|
+
output_parallel = self.base_layer.quant_method.apply(
|
254
|
+
self.base_layer, input_parallel
|
255
|
+
)
|
256
|
+
|
257
|
+
if self.set_lora:
|
258
|
+
output_parallel = self.apply_lora(output_parallel, input_parallel)
|
259
|
+
|
260
|
+
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
|
261
|
+
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
262
|
+
else:
|
263
|
+
output_ = output_parallel
|
264
|
+
|
265
|
+
if not self.base_layer.skip_bias_add:
|
266
|
+
output = (
|
267
|
+
output_ + self.base_layer.bias
|
268
|
+
if self.base_layer.bias is not None
|
269
|
+
else output_
|
270
|
+
)
|
271
|
+
output_bias = None
|
272
|
+
else:
|
273
|
+
output = output_
|
274
|
+
output_bias = self.base_layer.bias
|
275
|
+
return output, output_bias
|
276
|
+
|
277
|
+
|
278
|
+
def get_lora_layer(
|
279
|
+
layer: nn.Module, lora_rank: int, scaling: int, lora_backend: BaseLoRABackend
|
280
|
+
) -> BaseLayerWithLoRA:
|
281
|
+
supported_layer_types = {
|
282
|
+
# the order matters
|
283
|
+
VocabParallelEmbedding: VocabParallelEmbeddingWithLoRA,
|
284
|
+
QKVParallelLinear: QKVParallelLinearWithLoRA,
|
285
|
+
MergedColumnParallelLinear: MergedColumnParallelLinearWithLoRA,
|
286
|
+
ColumnParallelLinear: ColumnParallelLinearWithLoRA,
|
287
|
+
RowParallelLinear: RowParallelLinearWithLoRA,
|
288
|
+
}
|
289
|
+
for src_layer_type, lora_layer_type in supported_layer_types.items():
|
290
|
+
if isinstance(layer, src_layer_type): # pylint: disable=unidiomatic-typecheck
|
291
|
+
ret = lora_layer_type(layer, lora_rank, scaling, lora_backend)
|
292
|
+
return ret
|
293
|
+
raise Exception(f"No corresponding LoRA layer supported for {type(layer)}.")
|