sglang 0.4.2.post3__py3-none-any.whl → 0.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/check_env.py +1 -0
- sglang/global_config.py +2 -0
- sglang/srt/constrained/outlines_backend.py +4 -1
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/layers/attention/flashinfer_backend.py +265 -147
- sglang/srt/layers/attention/triton_backend.py +358 -72
- sglang/srt/layers/attention/triton_ops/extend_attention.py +4 -4
- sglang/srt/layers/linear.py +12 -5
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +2 -2
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +2 -2
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +178 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +175 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +27 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +2 -0
- sglang/srt/layers/moe/topk.py +1 -1
- sglang/srt/layers/quantization/__init__.py +51 -5
- sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +30 -30
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +29 -29
- sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +33 -33
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +31 -31
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +27 -27
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +31 -31
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +24 -24
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +30 -30
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +42 -42
- sglang/srt/layers/quantization/fp8_kernel.py +123 -17
- sglang/srt/layers/quantization/fp8_utils.py +33 -4
- sglang/srt/lora/backend/__init__.py +25 -5
- sglang/srt/lora/backend/base_backend.py +31 -9
- sglang/srt/lora/backend/flashinfer_backend.py +41 -4
- sglang/srt/lora/backend/triton_backend.py +34 -4
- sglang/srt/lora/layers.py +293 -0
- sglang/srt/lora/lora.py +101 -326
- sglang/srt/lora/lora_manager.py +101 -269
- sglang/srt/lora/mem_pool.py +174 -0
- sglang/srt/lora/triton_ops/__init__.py +7 -1
- sglang/srt/lora/triton_ops/gate_up_lora_b.py +170 -0
- sglang/srt/lora/triton_ops/qkv_lora_b.py +5 -5
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +2 -2
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +2 -2
- sglang/srt/lora/utils.py +141 -0
- sglang/srt/managers/detokenizer_manager.py +1 -0
- sglang/srt/managers/io_struct.py +4 -0
- sglang/srt/managers/schedule_batch.py +16 -3
- sglang/srt/managers/scheduler.py +29 -0
- sglang/srt/managers/tokenizer_manager.py +6 -0
- sglang/srt/managers/tp_worker_overlap_thread.py +4 -0
- sglang/srt/model_executor/cuda_graph_runner.py +16 -1
- sglang/srt/model_executor/model_runner.py +12 -2
- sglang/srt/models/deepseek_v2.py +17 -7
- sglang/srt/server_args.py +20 -1
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +1 -0
- sglang/srt/speculative/eagle_utils.py +64 -21
- sglang/srt/speculative/eagle_worker.py +29 -8
- sglang/srt/utils.py +7 -0
- sglang/version.py +1 -1
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/METADATA +6 -5
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/RECORD +88 -55
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/LICENSE +0 -0
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/WHEEL +0 -0
- {sglang-0.4.2.post3.dist-info → sglang-0.4.3.dist-info}/top_level.txt +0 -0
@@ -1,61 +1,61 @@
|
|
1
1
|
{
|
2
2
|
"1": {
|
3
|
-
"BLOCK_SIZE_M":
|
4
|
-
"BLOCK_SIZE_N":
|
3
|
+
"BLOCK_SIZE_M": 32,
|
4
|
+
"BLOCK_SIZE_N": 32,
|
5
5
|
"BLOCK_SIZE_K": 128,
|
6
|
-
"GROUP_SIZE_M":
|
6
|
+
"GROUP_SIZE_M": 8,
|
7
7
|
"num_warps": 4,
|
8
8
|
"num_stages": 2,
|
9
9
|
"waves_per_eu": 0
|
10
10
|
},
|
11
11
|
"2": {
|
12
|
-
"BLOCK_SIZE_M":
|
13
|
-
"BLOCK_SIZE_N":
|
14
|
-
"BLOCK_SIZE_K":
|
15
|
-
"GROUP_SIZE_M":
|
12
|
+
"BLOCK_SIZE_M": 32,
|
13
|
+
"BLOCK_SIZE_N": 32,
|
14
|
+
"BLOCK_SIZE_K": 64,
|
15
|
+
"GROUP_SIZE_M": 8,
|
16
16
|
"num_warps": 4,
|
17
17
|
"num_stages": 2,
|
18
18
|
"waves_per_eu": 0
|
19
19
|
},
|
20
20
|
"4": {
|
21
|
-
"BLOCK_SIZE_M":
|
22
|
-
"BLOCK_SIZE_N":
|
21
|
+
"BLOCK_SIZE_M": 32,
|
22
|
+
"BLOCK_SIZE_N": 32,
|
23
23
|
"BLOCK_SIZE_K": 128,
|
24
|
-
"GROUP_SIZE_M":
|
24
|
+
"GROUP_SIZE_M": 32,
|
25
25
|
"num_warps": 4,
|
26
26
|
"num_stages": 2,
|
27
27
|
"waves_per_eu": 0
|
28
28
|
},
|
29
29
|
"8": {
|
30
|
-
"BLOCK_SIZE_M":
|
31
|
-
"BLOCK_SIZE_N":
|
30
|
+
"BLOCK_SIZE_M": 32,
|
31
|
+
"BLOCK_SIZE_N": 64,
|
32
32
|
"BLOCK_SIZE_K": 128,
|
33
|
-
"GROUP_SIZE_M":
|
33
|
+
"GROUP_SIZE_M": 16,
|
34
34
|
"num_warps": 4,
|
35
35
|
"num_stages": 2,
|
36
36
|
"waves_per_eu": 0
|
37
37
|
},
|
38
38
|
"16": {
|
39
|
-
"BLOCK_SIZE_M":
|
40
|
-
"BLOCK_SIZE_N":
|
39
|
+
"BLOCK_SIZE_M": 32,
|
40
|
+
"BLOCK_SIZE_N": 32,
|
41
41
|
"BLOCK_SIZE_K": 128,
|
42
|
-
"GROUP_SIZE_M":
|
42
|
+
"GROUP_SIZE_M": 8,
|
43
43
|
"num_warps": 4,
|
44
44
|
"num_stages": 2,
|
45
45
|
"waves_per_eu": 0
|
46
46
|
},
|
47
47
|
"24": {
|
48
|
-
"BLOCK_SIZE_M":
|
49
|
-
"BLOCK_SIZE_N":
|
48
|
+
"BLOCK_SIZE_M": 32,
|
49
|
+
"BLOCK_SIZE_N": 32,
|
50
50
|
"BLOCK_SIZE_K": 128,
|
51
|
-
"GROUP_SIZE_M":
|
51
|
+
"GROUP_SIZE_M": 8,
|
52
52
|
"num_warps": 4,
|
53
53
|
"num_stages": 2,
|
54
54
|
"waves_per_eu": 0
|
55
55
|
},
|
56
56
|
"32": {
|
57
|
-
"BLOCK_SIZE_M":
|
58
|
-
"BLOCK_SIZE_N":
|
57
|
+
"BLOCK_SIZE_M": 32,
|
58
|
+
"BLOCK_SIZE_N": 32,
|
59
59
|
"BLOCK_SIZE_K": 128,
|
60
60
|
"GROUP_SIZE_M": 16,
|
61
61
|
"num_warps": 4,
|
@@ -64,52 +64,52 @@
|
|
64
64
|
},
|
65
65
|
"48": {
|
66
66
|
"BLOCK_SIZE_M": 64,
|
67
|
-
"BLOCK_SIZE_N":
|
67
|
+
"BLOCK_SIZE_N": 32,
|
68
68
|
"BLOCK_SIZE_K": 128,
|
69
|
-
"GROUP_SIZE_M":
|
69
|
+
"GROUP_SIZE_M": 1,
|
70
70
|
"num_warps": 4,
|
71
71
|
"num_stages": 2,
|
72
72
|
"waves_per_eu": 0
|
73
73
|
},
|
74
74
|
"64": {
|
75
75
|
"BLOCK_SIZE_M": 64,
|
76
|
-
"BLOCK_SIZE_N":
|
76
|
+
"BLOCK_SIZE_N": 64,
|
77
77
|
"BLOCK_SIZE_K": 128,
|
78
|
-
"GROUP_SIZE_M":
|
78
|
+
"GROUP_SIZE_M": 4,
|
79
79
|
"num_warps": 4,
|
80
80
|
"num_stages": 2,
|
81
81
|
"waves_per_eu": 0
|
82
82
|
},
|
83
83
|
"96": {
|
84
|
-
"BLOCK_SIZE_M":
|
85
|
-
"BLOCK_SIZE_N":
|
84
|
+
"BLOCK_SIZE_M": 32,
|
85
|
+
"BLOCK_SIZE_N": 128,
|
86
86
|
"BLOCK_SIZE_K": 128,
|
87
|
-
"GROUP_SIZE_M":
|
87
|
+
"GROUP_SIZE_M": 4,
|
88
88
|
"num_warps": 4,
|
89
89
|
"num_stages": 2,
|
90
90
|
"waves_per_eu": 0
|
91
91
|
},
|
92
92
|
"128": {
|
93
|
-
"BLOCK_SIZE_M":
|
93
|
+
"BLOCK_SIZE_M": 128,
|
94
94
|
"BLOCK_SIZE_N": 32,
|
95
95
|
"BLOCK_SIZE_K": 128,
|
96
|
-
"GROUP_SIZE_M":
|
96
|
+
"GROUP_SIZE_M": 16,
|
97
97
|
"num_warps": 4,
|
98
98
|
"num_stages": 2,
|
99
99
|
"waves_per_eu": 0
|
100
100
|
},
|
101
101
|
"256": {
|
102
102
|
"BLOCK_SIZE_M": 64,
|
103
|
-
"BLOCK_SIZE_N":
|
103
|
+
"BLOCK_SIZE_N": 128,
|
104
104
|
"BLOCK_SIZE_K": 128,
|
105
|
-
"GROUP_SIZE_M":
|
105
|
+
"GROUP_SIZE_M": 16,
|
106
106
|
"num_warps": 4,
|
107
107
|
"num_stages": 2,
|
108
108
|
"waves_per_eu": 0
|
109
109
|
},
|
110
110
|
"512": {
|
111
|
-
"BLOCK_SIZE_M":
|
112
|
-
"BLOCK_SIZE_N":
|
111
|
+
"BLOCK_SIZE_M": 64,
|
112
|
+
"BLOCK_SIZE_N": 128,
|
113
113
|
"BLOCK_SIZE_K": 128,
|
114
114
|
"GROUP_SIZE_M": 32,
|
115
115
|
"num_warps": 4,
|
@@ -117,28 +117,28 @@
|
|
117
117
|
"waves_per_eu": 0
|
118
118
|
},
|
119
119
|
"1024": {
|
120
|
-
"BLOCK_SIZE_M":
|
121
|
-
"BLOCK_SIZE_N":
|
120
|
+
"BLOCK_SIZE_M": 32,
|
121
|
+
"BLOCK_SIZE_N": 128,
|
122
122
|
"BLOCK_SIZE_K": 128,
|
123
|
-
"GROUP_SIZE_M":
|
123
|
+
"GROUP_SIZE_M": 8,
|
124
124
|
"num_warps": 4,
|
125
125
|
"num_stages": 2,
|
126
126
|
"waves_per_eu": 0
|
127
127
|
},
|
128
128
|
"1536": {
|
129
129
|
"BLOCK_SIZE_M": 64,
|
130
|
-
"BLOCK_SIZE_N":
|
130
|
+
"BLOCK_SIZE_N": 128,
|
131
131
|
"BLOCK_SIZE_K": 128,
|
132
|
-
"GROUP_SIZE_M":
|
132
|
+
"GROUP_SIZE_M": 4,
|
133
133
|
"num_warps": 4,
|
134
134
|
"num_stages": 2,
|
135
135
|
"waves_per_eu": 0
|
136
136
|
},
|
137
137
|
"2048": {
|
138
|
-
"BLOCK_SIZE_M":
|
138
|
+
"BLOCK_SIZE_M": 32,
|
139
139
|
"BLOCK_SIZE_N": 128,
|
140
140
|
"BLOCK_SIZE_K": 128,
|
141
|
-
"GROUP_SIZE_M":
|
141
|
+
"GROUP_SIZE_M": 4,
|
142
142
|
"num_warps": 4,
|
143
143
|
"num_stages": 2,
|
144
144
|
"waves_per_eu": 0
|
@@ -156,7 +156,7 @@
|
|
156
156
|
"BLOCK_SIZE_M": 64,
|
157
157
|
"BLOCK_SIZE_N": 128,
|
158
158
|
"BLOCK_SIZE_K": 128,
|
159
|
-
"GROUP_SIZE_M":
|
159
|
+
"GROUP_SIZE_M": 4,
|
160
160
|
"num_warps": 4,
|
161
161
|
"num_stages": 2,
|
162
162
|
"waves_per_eu": 0
|
@@ -27,6 +27,10 @@ from sglang.srt.utils import get_device_core_count, get_device_name, is_hip
|
|
27
27
|
is_hip_ = is_hip()
|
28
28
|
fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn
|
29
29
|
|
30
|
+
_is_cuda = torch.cuda.is_available() and torch.version.cuda
|
31
|
+
if _is_cuda:
|
32
|
+
from sgl_kernel import sgl_per_token_group_quant_fp8
|
33
|
+
|
30
34
|
logger = logging.getLogger(__name__)
|
31
35
|
|
32
36
|
|
@@ -72,11 +76,60 @@ def _per_token_group_quant_fp8(
|
|
72
76
|
tl.store(y_s_ptr, y_s)
|
73
77
|
|
74
78
|
|
79
|
+
@triton.jit
|
80
|
+
def _per_token_group_quant_fp8_colmajor(
|
81
|
+
# Pointers to inputs and output
|
82
|
+
y_ptr,
|
83
|
+
y_q_ptr,
|
84
|
+
y_s_ptr,
|
85
|
+
group_size,
|
86
|
+
# Num columns of y
|
87
|
+
y_num_columns,
|
88
|
+
# Stride from one column to the next of y_s
|
89
|
+
y_s_col_stride,
|
90
|
+
# Avoid to divide zero
|
91
|
+
eps,
|
92
|
+
# Information for float8
|
93
|
+
fp8_min,
|
94
|
+
fp8_max,
|
95
|
+
# Meta-parameters
|
96
|
+
BLOCK: tl.constexpr,
|
97
|
+
):
|
98
|
+
"""A Triton-accelerated function to perform per-token-group
|
99
|
+
quantization on a tensor.
|
100
|
+
This function converts the tensor values into float8 values.
|
101
|
+
"""
|
102
|
+
# Map the program id to the row of X and Y it should compute.
|
103
|
+
g_id = tl.program_id(0)
|
104
|
+
y_ptr += g_id * group_size
|
105
|
+
y_q_ptr += g_id * group_size
|
106
|
+
|
107
|
+
# Convert g_id the flattened block coordinate to 2D so we can index
|
108
|
+
# into the output y_scales matrix
|
109
|
+
blocks_per_row = y_num_columns // group_size
|
110
|
+
scale_col = g_id % blocks_per_row
|
111
|
+
scale_row = g_id // blocks_per_row
|
112
|
+
y_s_ptr += scale_col * y_s_col_stride + scale_row
|
113
|
+
|
114
|
+
cols = tl.arange(0, BLOCK) # group_size <= BLOCK
|
115
|
+
mask = cols < group_size
|
116
|
+
|
117
|
+
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
|
118
|
+
# Quant
|
119
|
+
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
|
120
|
+
y_s = _absmax / fp8_max
|
121
|
+
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
|
122
|
+
|
123
|
+
tl.store(y_q_ptr + cols, y_q, mask=mask)
|
124
|
+
tl.store(y_s_ptr, y_s)
|
125
|
+
|
126
|
+
|
75
127
|
def per_token_group_quant_fp8(
|
76
128
|
x: torch.Tensor,
|
77
129
|
group_size: int,
|
78
130
|
eps: float = 1e-10,
|
79
131
|
dtype: torch.dtype = fp8_type_,
|
132
|
+
column_major_scales: bool = False,
|
80
133
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
81
134
|
"""Function to perform per-token-group quantization on an input tensor `x`.
|
82
135
|
|
@@ -108,30 +161,83 @@ def per_token_group_quant_fp8(
|
|
108
161
|
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
|
109
162
|
M = x.numel() // group_size
|
110
163
|
N = group_size
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
164
|
+
if column_major_scales:
|
165
|
+
x_s = torch.empty(
|
166
|
+
(x.shape[-1] // group_size,) + x.shape[:-1],
|
167
|
+
device=x.device,
|
168
|
+
dtype=torch.float32,
|
169
|
+
).permute(-1, -2)
|
170
|
+
else:
|
171
|
+
x_s = torch.empty(
|
172
|
+
x.shape[:-1] + (x.shape[-1] // group_size,),
|
173
|
+
device=x.device,
|
174
|
+
dtype=torch.float32,
|
175
|
+
)
|
116
176
|
|
117
177
|
BLOCK = triton.next_power_of_2(N)
|
118
178
|
# heuristics for number of warps
|
119
179
|
num_warps = min(max(BLOCK // 256, 1), 8)
|
120
180
|
num_stages = 1
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
181
|
+
if column_major_scales:
|
182
|
+
_per_token_group_quant_fp8_colmajor[(M,)](
|
183
|
+
x,
|
184
|
+
x_q,
|
185
|
+
x_s,
|
186
|
+
group_size,
|
187
|
+
x.shape[1],
|
188
|
+
x_s.stride(1),
|
189
|
+
eps,
|
190
|
+
fp8_min=fp8_min,
|
191
|
+
fp8_max=fp8_max,
|
192
|
+
BLOCK=BLOCK,
|
193
|
+
num_warps=num_warps,
|
194
|
+
num_stages=num_stages,
|
195
|
+
)
|
196
|
+
else:
|
197
|
+
_per_token_group_quant_fp8[(M,)](
|
198
|
+
x,
|
199
|
+
x_q,
|
200
|
+
x_s,
|
201
|
+
group_size,
|
202
|
+
N,
|
203
|
+
eps,
|
204
|
+
fp8_min=fp8_min,
|
205
|
+
fp8_max=fp8_max,
|
206
|
+
BLOCK=BLOCK,
|
207
|
+
num_warps=num_warps,
|
208
|
+
num_stages=num_stages,
|
209
|
+
)
|
210
|
+
|
211
|
+
return x_q, x_s
|
212
|
+
|
213
|
+
|
214
|
+
def sglang_per_token_group_quant_fp8(
|
215
|
+
x: torch.Tensor,
|
216
|
+
group_size: int,
|
217
|
+
eps: float = 1e-10,
|
218
|
+
dtype: torch.dtype = fp8_type_,
|
219
|
+
):
|
220
|
+
assert (
|
221
|
+
x.shape[-1] % group_size == 0
|
222
|
+
), "the last dimension of `x` cannot be divisible by `group_size`"
|
223
|
+
assert x.is_contiguous(), "`x` is not contiguous"
|
224
|
+
|
225
|
+
finfo = torch.finfo(dtype)
|
226
|
+
fp8_max = finfo.max
|
227
|
+
|
228
|
+
fp8_min = -fp8_max
|
229
|
+
|
230
|
+
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
|
231
|
+
M = x.numel() // group_size
|
232
|
+
N = group_size
|
233
|
+
x_s = torch.empty(
|
234
|
+
x.shape[:-1] + (x.shape[-1] // group_size,),
|
235
|
+
device=x.device,
|
236
|
+
dtype=torch.float32,
|
133
237
|
)
|
134
238
|
|
239
|
+
sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max)
|
240
|
+
|
135
241
|
return x_q, x_s
|
136
242
|
|
137
243
|
|
@@ -10,6 +10,9 @@ from sglang.srt.layers.quantization.fp8_kernel import (
|
|
10
10
|
from sglang.srt.utils import is_hip
|
11
11
|
|
12
12
|
is_hip_ = is_hip()
|
13
|
+
_is_cuda = torch.cuda.is_available() and torch.version.cuda
|
14
|
+
if _is_cuda:
|
15
|
+
from sgl_kernel import fp8_blockwise_scaled_mm
|
13
16
|
|
14
17
|
|
15
18
|
def normalize_e4m3fn_to_e4m3fnuz(
|
@@ -36,6 +39,19 @@ def normalize_e4m3fn_to_e4m3fnuz(
|
|
36
39
|
return weight, weight_scale, input_scale
|
37
40
|
|
38
41
|
|
42
|
+
def cutlass_block_fp8_supported() -> bool:
|
43
|
+
if _is_cuda:
|
44
|
+
major, minor = torch.cuda.get_device_capability()
|
45
|
+
sm_version = major * 10 + minor
|
46
|
+
cuda_version = tuple(map(int, torch.version.cuda.split(".")))
|
47
|
+
if cuda_version >= (12, 0) and sm_version >= 90:
|
48
|
+
return True
|
49
|
+
return False
|
50
|
+
|
51
|
+
|
52
|
+
CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()
|
53
|
+
|
54
|
+
|
39
55
|
def apply_w8a8_block_fp8_linear(
|
40
56
|
input: torch.Tensor,
|
41
57
|
weight: torch.Tensor,
|
@@ -48,11 +64,24 @@ def apply_w8a8_block_fp8_linear(
|
|
48
64
|
# View input as 2D matrix for fp8 methods
|
49
65
|
input_2d = input.view(-1, input.shape[-1])
|
50
66
|
output_shape = [*input.shape[:-1], weight.shape[0]]
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
q_input, weight, x_scale, weight_scale, block_size, output_dtype=input.dtype
|
67
|
+
# TODO: add more robust shape check here
|
68
|
+
shape_supported_by_cutlass = (
|
69
|
+
weight.shape[0] % 128 == 0 and weight.shape[1] % 128 == 0
|
55
70
|
)
|
71
|
+
if CUTLASS_BLOCK_FP8_SUPPORTED and shape_supported_by_cutlass:
|
72
|
+
q_input, x_scale = per_token_group_quant_fp8(
|
73
|
+
input_2d, block_size[1], column_major_scales=True
|
74
|
+
)
|
75
|
+
output = fp8_blockwise_scaled_mm(
|
76
|
+
q_input, weight.T, x_scale, weight_scale.T, out_dtype=input.dtype
|
77
|
+
)
|
78
|
+
else:
|
79
|
+
q_input, x_scale = per_token_group_quant_fp8(
|
80
|
+
input_2d, block_size[1], column_major_scales=False
|
81
|
+
)
|
82
|
+
output = w8a8_block_fp8_matmul(
|
83
|
+
q_input, weight, x_scale, weight_scale, block_size, output_dtype=input.dtype
|
84
|
+
)
|
56
85
|
|
57
86
|
if bias is not None:
|
58
87
|
output = output + bias
|
@@ -1,8 +1,28 @@
|
|
1
|
-
from .base_backend import
|
2
|
-
from .flashinfer_backend import
|
3
|
-
from .triton_backend import
|
1
|
+
from .base_backend import BaseLoRABackend
|
2
|
+
from .flashinfer_backend import FlashInferLoRABackend
|
3
|
+
from .triton_backend import TritonLoRABackend
|
4
|
+
|
5
|
+
|
6
|
+
def get_backend_from_name(name: str) -> BaseLoRABackend:
|
7
|
+
"""
|
8
|
+
Get corresponding backend class from backend's name
|
9
|
+
"""
|
10
|
+
backend_mapping = {
|
11
|
+
"triton": TritonLoRABackend,
|
12
|
+
"flashinfer": FlashInferLoRABackend,
|
13
|
+
}
|
14
|
+
|
15
|
+
if name in backend_mapping:
|
16
|
+
return backend_mapping[name]
|
17
|
+
|
18
|
+
raise Exception(
|
19
|
+
f"No supported lora backend called {name}. It should be one of {list(backend_mapping.keys())}"
|
20
|
+
)
|
21
|
+
|
4
22
|
|
5
23
|
__all__ = [
|
6
|
-
"
|
7
|
-
"
|
24
|
+
"BaseLoRABackend",
|
25
|
+
"FlashInferLoRABackend",
|
26
|
+
"TritonLoRABackend",
|
27
|
+
"get_backend_from_name",
|
8
28
|
]
|
@@ -2,7 +2,7 @@ from typing import Tuple, Union
|
|
2
2
|
|
3
3
|
import torch
|
4
4
|
|
5
|
-
from sglang.srt.lora.
|
5
|
+
from sglang.srt.lora.utils import LoRABatchInfo
|
6
6
|
|
7
7
|
|
8
8
|
def get_fuse_output_scaling_add_from_name(name: str) -> bool:
|
@@ -13,7 +13,7 @@ def get_fuse_output_scaling_add_from_name(name: str) -> bool:
|
|
13
13
|
return mapping.get(name, False)
|
14
14
|
|
15
15
|
|
16
|
-
def
|
16
|
+
def get_fuse_stacked_lora_b_from_name(name: str) -> bool:
|
17
17
|
mapping = {
|
18
18
|
"triton": True,
|
19
19
|
"flashinfer": False,
|
@@ -21,7 +21,7 @@ def get_fuse_qkv_lora_b_from_name(name: str) -> bool:
|
|
21
21
|
return mapping.get(name, False)
|
22
22
|
|
23
23
|
|
24
|
-
class
|
24
|
+
class BaseLoRABackend:
|
25
25
|
"""Base class for different Lora backends.
|
26
26
|
Each backend has its own implementation of Lora kernels.
|
27
27
|
|
@@ -32,11 +32,11 @@ class BaseLoraBackend:
|
|
32
32
|
and the operation of scaling and adding will be fused into kernel
|
33
33
|
"""
|
34
34
|
|
35
|
-
def __init__(self, name: str, batch_info:
|
35
|
+
def __init__(self, name: str, batch_info: LoRABatchInfo = None):
|
36
36
|
self.name = name
|
37
37
|
self.batch_info = batch_info
|
38
38
|
self.fuse_output_scaling_add = get_fuse_output_scaling_add_from_name(name)
|
39
|
-
self.
|
39
|
+
self.fuse_stacked_lora_b = get_fuse_stacked_lora_b_from_name(name)
|
40
40
|
|
41
41
|
def run_lora_a_sgemm(
|
42
42
|
self, x: torch.Tensor, weights: torch.Tensor, *args, **kwargs
|
@@ -46,10 +46,11 @@ class BaseLoraBackend:
|
|
46
46
|
|
47
47
|
Args:
|
48
48
|
x: input matrix with shape (s, input_dim), here s is the sum of all sequence lengths
|
49
|
-
weights: a set of lora weights with shape (num_lora, r, input_dim),
|
49
|
+
weights: a set of lora weights with shape (num_lora, c * r, input_dim),
|
50
|
+
here r is lora rank, c is a multiplier for stacked modules (e.g., c=3 for qkv_proj, c=2 for gate_up_proj)
|
50
51
|
usually input_dim is much larger than r
|
51
52
|
Returns:
|
52
|
-
result with shape (s, r)
|
53
|
+
result with shape (s, c * r)
|
53
54
|
"""
|
54
55
|
pass
|
55
56
|
|
@@ -83,7 +84,7 @@ class BaseLoraBackend:
|
|
83
84
|
qkv_lora_a: lora_a module for qkv, with shape (num_lora, 3 * r, input_dim)
|
84
85
|
qkv_lora_b: lora_b module for qkv.
|
85
86
|
If passed in as a tensor, its shape should be (num_lora,output_dim_q + 2 * output_dim_kv, r)
|
86
|
-
If passed in as a tuple of two tensors
|
87
|
+
If passed in as a tuple of two tensors, it should contain:
|
87
88
|
a lora_b module for q, with shape (1, num_lora, output_dim_q, r)
|
88
89
|
and a combined lora_b module for kv, with shape (2, num_lora, output_dim_kv, r)
|
89
90
|
Returns:
|
@@ -91,5 +92,26 @@ class BaseLoraBackend:
|
|
91
92
|
"""
|
92
93
|
pass
|
93
94
|
|
94
|
-
def
|
95
|
+
def run_gate_up_lora(
|
96
|
+
self,
|
97
|
+
x: torch.Tensor,
|
98
|
+
gate_up_lora_a: torch.Tensor,
|
99
|
+
gate_up_lora_b: Union[torch.Tensor, Tuple[torch.Tensor]],
|
100
|
+
*args,
|
101
|
+
**kwargs
|
102
|
+
) -> torch.Tensor:
|
103
|
+
"""Run the lora pass for gate_up_proj, usually attached to MergedColumnParallelLayer.
|
104
|
+
|
105
|
+
Args:
|
106
|
+
x: input matrix with shape (s, input_dim), here s is the sum of all sequence lengths
|
107
|
+
gate_up_lora_a: lora_a module for gate_up_proj, with shape (num_lora, 2 * r, input_dim)
|
108
|
+
gate_up_lora_b: lora_b module for qkv.
|
109
|
+
If passed in as a tensor, its shape should be (num_lora, 2 * output_dim, r)
|
110
|
+
If passed in as a tuple, it should contain two tensors with shape (num_lora, output_dim, r)
|
111
|
+
Returns:
|
112
|
+
result with shape (s, 2 * output_dim)
|
113
|
+
"""
|
114
|
+
pass
|
115
|
+
|
116
|
+
def set_batch_info(self, batch_info: LoRABatchInfo):
|
95
117
|
self.batch_info = batch_info
|
@@ -2,17 +2,17 @@ from typing import Tuple
|
|
2
2
|
|
3
3
|
import torch
|
4
4
|
|
5
|
-
from sglang.srt.lora.backend import
|
6
|
-
from sglang.srt.lora.
|
5
|
+
from sglang.srt.lora.backend import BaseLoRABackend
|
6
|
+
from sglang.srt.lora.utils import LoRABatchInfo
|
7
7
|
from sglang.srt.utils import is_flashinfer_available
|
8
8
|
|
9
9
|
if is_flashinfer_available():
|
10
10
|
from flashinfer import SegmentGEMMWrapper
|
11
11
|
|
12
12
|
|
13
|
-
class
|
13
|
+
class FlashInferLoRABackend(BaseLoRABackend):
|
14
14
|
|
15
|
-
def __init__(self, name: str, batch_info:
|
15
|
+
def __init__(self, name: str, batch_info: LoRABatchInfo = None):
|
16
16
|
super().__init__(name, batch_info)
|
17
17
|
|
18
18
|
# Set up SGemm Wrapper from flashinfer
|
@@ -55,6 +55,8 @@ class FlashInferLoraBackend(BaseLoraBackend):
|
|
55
55
|
**kwargs,
|
56
56
|
) -> torch.Tensor:
|
57
57
|
|
58
|
+
assert isinstance(qkv_lora_b, tuple) and len(qkv_lora_b) == 2
|
59
|
+
|
58
60
|
# Shape of lora_a_output: (s, 3 * r)
|
59
61
|
lora_a_output = self.run_lora_a_sgemm(x=x, weights=qkv_lora_a)
|
60
62
|
|
@@ -89,3 +91,38 @@ class FlashInferLoraBackend(BaseLoraBackend):
|
|
89
91
|
)
|
90
92
|
|
91
93
|
return lora_output
|
94
|
+
|
95
|
+
def run_gate_up_lora(
|
96
|
+
self,
|
97
|
+
x: torch.Tensor,
|
98
|
+
gate_up_lora_a: torch.Tensor,
|
99
|
+
gate_up_lora_b: Tuple[torch.Tensor],
|
100
|
+
*args,
|
101
|
+
**kwargs,
|
102
|
+
) -> torch.Tensor:
|
103
|
+
|
104
|
+
assert isinstance(gate_up_lora_b, tuple) and len(gate_up_lora_b) == 2
|
105
|
+
lora_rank = gate_up_lora_b[0].shape[-1]
|
106
|
+
output_dim = gate_up_lora_b[0].shape[-2]
|
107
|
+
|
108
|
+
# Shape of lora_a_output: (s, 2 * r)
|
109
|
+
lora_a_output = self.run_lora_a_sgemm(x=x, weights=gate_up_lora_a)
|
110
|
+
|
111
|
+
lora_output = torch.empty(
|
112
|
+
(x.shape[0], 2 * output_dim),
|
113
|
+
device=x.device,
|
114
|
+
dtype=x.dtype,
|
115
|
+
)
|
116
|
+
|
117
|
+
# Compute lora for gate and up proj respectively
|
118
|
+
lora_output[:, :output_dim] = self.run_lora_b_sgemm(
|
119
|
+
x=lora_a_output[:, :lora_rank].contiguous(),
|
120
|
+
weights=gate_up_lora_b[0],
|
121
|
+
)
|
122
|
+
|
123
|
+
lora_output[:, output_dim:] = self.run_lora_b_sgemm(
|
124
|
+
x=lora_a_output[:, lora_rank:].contiguous(),
|
125
|
+
weights=gate_up_lora_b[1],
|
126
|
+
)
|
127
|
+
|
128
|
+
return lora_output
|
@@ -1,17 +1,18 @@
|
|
1
1
|
import torch
|
2
2
|
|
3
|
-
from sglang.srt.lora.backend import
|
4
|
-
from sglang.srt.lora.lora import LoraBatchInfo
|
3
|
+
from sglang.srt.lora.backend import BaseLoRABackend
|
5
4
|
from sglang.srt.lora.triton_ops import (
|
5
|
+
gate_up_lora_b_fwd,
|
6
6
|
qkv_lora_b_fwd,
|
7
7
|
sgemm_lora_a_fwd,
|
8
8
|
sgemm_lora_b_fwd,
|
9
9
|
)
|
10
|
+
from sglang.srt.lora.utils import LoRABatchInfo
|
10
11
|
|
11
12
|
|
12
|
-
class
|
13
|
+
class TritonLoRABackend(BaseLoRABackend):
|
13
14
|
|
14
|
-
def __init__(self, name: str, batch_info:
|
15
|
+
def __init__(self, name: str, batch_info: LoRABatchInfo = None):
|
15
16
|
super().__init__(name, batch_info)
|
16
17
|
|
17
18
|
def run_lora_a_sgemm(
|
@@ -59,3 +60,32 @@ class TritonLoraBackend(BaseLoraBackend):
|
|
59
60
|
scaling,
|
60
61
|
)
|
61
62
|
return lora_output
|
63
|
+
|
64
|
+
def run_gate_up_lora(
|
65
|
+
self,
|
66
|
+
x: torch.Tensor,
|
67
|
+
gate_up_lora_a: torch.Tensor,
|
68
|
+
gate_up_lora_b: torch.Tensor,
|
69
|
+
base_output: torch.Tensor = None,
|
70
|
+
scaling: float = 1.0,
|
71
|
+
*args,
|
72
|
+
**kwargs
|
73
|
+
) -> torch.Tensor:
|
74
|
+
|
75
|
+
# x: (s, input_dim)
|
76
|
+
# gate_up_lora_a: (num_lora, 2 * r, input_dim)
|
77
|
+
# gate_up_lora_b: (num_lora, 2 * output_dim, r)
|
78
|
+
assert isinstance(gate_up_lora_b, torch.Tensor)
|
79
|
+
output_dim = gate_up_lora_b.shape[-2] // 2
|
80
|
+
|
81
|
+
# lora_a_output: (s, 2 * r)
|
82
|
+
lora_a_output = sgemm_lora_a_fwd(x, gate_up_lora_a, self.batch_info)
|
83
|
+
lora_output = gate_up_lora_b_fwd(
|
84
|
+
lora_a_output,
|
85
|
+
gate_up_lora_b,
|
86
|
+
self.batch_info,
|
87
|
+
output_dim,
|
88
|
+
base_output,
|
89
|
+
scaling,
|
90
|
+
)
|
91
|
+
return lora_output
|