sequenzo 0.1.18__cp310-cp310-win_amd64.whl → 0.1.20__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp310-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp310-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp310-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp310-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp310-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp310-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp310-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp310-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,1959 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_BESSEL_FUNCTIONS_H
11
- #define EIGEN_BESSEL_FUNCTIONS_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
- // Parts of this code are based on the Cephes Math Library.
17
- //
18
- // Cephes Math Library Release 2.8: June, 2000
19
- // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20
- //
21
- // Permission has been kindly provided by the original author
22
- // to incorporate the Cephes software into the Eigen codebase:
23
- //
24
- // From: Stephen Moshier
25
- // To: Eugene Brevdo
26
- // Subject: Re: Permission to wrap several cephes functions in Eigen
27
- //
28
- // Hello Eugene,
29
- //
30
- // Thank you for writing.
31
- //
32
- // If your licensing is similar to BSD, the formal way that has been
33
- // handled is simply to add a statement to the effect that you are incorporating
34
- // the Cephes software by permission of the author.
35
- //
36
- // Good luck with your project,
37
- // Steve
38
-
39
-
40
- /****************************************************************************
41
- * Implementation of Bessel function, based on Cephes *
42
- ****************************************************************************/
43
-
44
- template <typename Scalar>
45
- struct bessel_i0e_retval {
46
- typedef Scalar type;
47
- };
48
-
49
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50
- struct generic_i0e {
51
- EIGEN_DEVICE_FUNC
52
- static EIGEN_STRONG_INLINE T run(const T&) {
53
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54
- THIS_TYPE_IS_NOT_SUPPORTED);
55
- return ScalarType(0);
56
- }
57
- };
58
-
59
- template <typename T>
60
- struct generic_i0e<T, float> {
61
- EIGEN_DEVICE_FUNC
62
- static EIGEN_STRONG_INLINE T run(const T& x) {
63
- /* i0ef.c
64
- *
65
- * Modified Bessel function of order zero,
66
- * exponentially scaled
67
- *
68
- *
69
- *
70
- * SYNOPSIS:
71
- *
72
- * float x, y, i0ef();
73
- *
74
- * y = i0ef( x );
75
- *
76
- *
77
- *
78
- * DESCRIPTION:
79
- *
80
- * Returns exponentially scaled modified Bessel function
81
- * of order zero of the argument.
82
- *
83
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84
- *
85
- *
86
- *
87
- * ACCURACY:
88
- *
89
- * Relative error:
90
- * arithmetic domain # trials peak rms
91
- * IEEE 0,30 100000 3.7e-7 7.0e-8
92
- * See i0f().
93
- *
94
- */
95
-
96
- const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97
- -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98
- -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99
- -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100
- -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101
- -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102
- -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103
- -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104
- -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
-
106
- const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107
- 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108
- 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109
- 8.04490411014108831608E-1f};
110
- T y = pabs(x);
111
- T y_le_eight = internal::pchebevl<T, 18>::run(
112
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113
- T y_gt_eight = pmul(
114
- internal::pchebevl<T, 7>::run(
115
- psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116
- prsqrt(y));
117
- // TODO: Perhaps instead check whether all packet elements are in
118
- // [-8, 8] and evaluate a branch based off of that. It's possible
119
- // in practice most elements are in this region.
120
- return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121
- }
122
- };
123
-
124
- template <typename T>
125
- struct generic_i0e<T, double> {
126
- EIGEN_DEVICE_FUNC
127
- static EIGEN_STRONG_INLINE T run(const T& x) {
128
- /* i0e.c
129
- *
130
- * Modified Bessel function of order zero,
131
- * exponentially scaled
132
- *
133
- *
134
- *
135
- * SYNOPSIS:
136
- *
137
- * double x, y, i0e();
138
- *
139
- * y = i0e( x );
140
- *
141
- *
142
- *
143
- * DESCRIPTION:
144
- *
145
- * Returns exponentially scaled modified Bessel function
146
- * of order zero of the argument.
147
- *
148
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149
- *
150
- *
151
- *
152
- * ACCURACY:
153
- *
154
- * Relative error:
155
- * arithmetic domain # trials peak rms
156
- * IEEE 0,30 30000 5.4e-16 1.2e-16
157
- * See i0().
158
- *
159
- */
160
-
161
- const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176
- const double B[] = {
177
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189
- 8.04490411014108831608E-1};
190
- T y = pabs(x);
191
- T y_le_eight = internal::pchebevl<T, 30>::run(
192
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193
- T y_gt_eight = pmul(
194
- internal::pchebevl<T, 25>::run(
195
- psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196
- prsqrt(y));
197
- // TODO: Perhaps instead check whether all packet elements are in
198
- // [-8, 8] and evaluate a branch based off of that. It's possible
199
- // in practice most elements are in this region.
200
- return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201
- }
202
- };
203
-
204
- template <typename T>
205
- struct bessel_i0e_impl {
206
- EIGEN_DEVICE_FUNC
207
- static EIGEN_STRONG_INLINE T run(const T x) {
208
- return generic_i0e<T>::run(x);
209
- }
210
- };
211
-
212
- template <typename Scalar>
213
- struct bessel_i0_retval {
214
- typedef Scalar type;
215
- };
216
-
217
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218
- struct generic_i0 {
219
- EIGEN_DEVICE_FUNC
220
- static EIGEN_STRONG_INLINE T run(const T& x) {
221
- return pmul(
222
- pexp(pabs(x)),
223
- generic_i0e<T, ScalarType>::run(x));
224
- }
225
- };
226
-
227
- template <typename T>
228
- struct bessel_i0_impl {
229
- EIGEN_DEVICE_FUNC
230
- static EIGEN_STRONG_INLINE T run(const T x) {
231
- return generic_i0<T>::run(x);
232
- }
233
- };
234
-
235
- template <typename Scalar>
236
- struct bessel_i1e_retval {
237
- typedef Scalar type;
238
- };
239
-
240
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241
- struct generic_i1e {
242
- EIGEN_DEVICE_FUNC
243
- static EIGEN_STRONG_INLINE T run(const T&) {
244
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245
- THIS_TYPE_IS_NOT_SUPPORTED);
246
- return ScalarType(0);
247
- }
248
- };
249
-
250
- template <typename T>
251
- struct generic_i1e<T, float> {
252
- EIGEN_DEVICE_FUNC
253
- static EIGEN_STRONG_INLINE T run(const T& x) {
254
- /* i1ef.c
255
- *
256
- * Modified Bessel function of order one,
257
- * exponentially scaled
258
- *
259
- *
260
- *
261
- * SYNOPSIS:
262
- *
263
- * float x, y, i1ef();
264
- *
265
- * y = i1ef( x );
266
- *
267
- *
268
- *
269
- * DESCRIPTION:
270
- *
271
- * Returns exponentially scaled modified Bessel function
272
- * of order one of the argument.
273
- *
274
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275
- *
276
- *
277
- *
278
- * ACCURACY:
279
- *
280
- * Relative error:
281
- * arithmetic domain # trials peak rms
282
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
283
- * See i1().
284
- *
285
- */
286
- const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287
- 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288
- 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289
- 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290
- 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291
- 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292
- 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293
- 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294
- 2.52587186443633654823E-1f};
295
-
296
- const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297
- -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298
- -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299
- 7.78576235018280120474E-1f};
300
-
301
-
302
- T y = pabs(x);
303
- T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305
- T y_gt_eight = pmul(
306
- internal::pchebevl<T, 7>::run(
307
- psub(pdiv(pset1<T>(32.0f), y),
308
- pset1<T>(2.0f)), B),
309
- prsqrt(y));
310
- // TODO: Perhaps instead check whether all packet elements are in
311
- // [-8, 8] and evaluate a branch based off of that. It's possible
312
- // in practice most elements are in this region.
313
- y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314
- return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315
- }
316
- };
317
-
318
- template <typename T>
319
- struct generic_i1e<T, double> {
320
- EIGEN_DEVICE_FUNC
321
- static EIGEN_STRONG_INLINE T run(const T& x) {
322
- /* i1e.c
323
- *
324
- * Modified Bessel function of order one,
325
- * exponentially scaled
326
- *
327
- *
328
- *
329
- * SYNOPSIS:
330
- *
331
- * double x, y, i1e();
332
- *
333
- * y = i1e( x );
334
- *
335
- *
336
- *
337
- * DESCRIPTION:
338
- *
339
- * Returns exponentially scaled modified Bessel function
340
- * of order one of the argument.
341
- *
342
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343
- *
344
- *
345
- *
346
- * ACCURACY:
347
- *
348
- * Relative error:
349
- * arithmetic domain # trials peak rms
350
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
351
- * See i1().
352
- *
353
- */
354
- const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368
- 2.52587186443633654823E-1};
369
- const double B[] = {
370
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382
- 7.78576235018280120474E-1};
383
- T y = pabs(x);
384
- T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386
- T y_gt_eight = pmul(
387
- internal::pchebevl<T, 25>::run(
388
- psub(pdiv(pset1<T>(32.0), y),
389
- pset1<T>(2.0)), B),
390
- prsqrt(y));
391
- // TODO: Perhaps instead check whether all packet elements are in
392
- // [-8, 8] and evaluate a branch based off of that. It's possible
393
- // in practice most elements are in this region.
394
- y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395
- return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396
- }
397
- };
398
-
399
- template <typename T>
400
- struct bessel_i1e_impl {
401
- EIGEN_DEVICE_FUNC
402
- static EIGEN_STRONG_INLINE T run(const T x) {
403
- return generic_i1e<T>::run(x);
404
- }
405
- };
406
-
407
- template <typename T>
408
- struct bessel_i1_retval {
409
- typedef T type;
410
- };
411
-
412
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413
- struct generic_i1 {
414
- EIGEN_DEVICE_FUNC
415
- static EIGEN_STRONG_INLINE T run(const T& x) {
416
- return pmul(
417
- pexp(pabs(x)),
418
- generic_i1e<T, ScalarType>::run(x));
419
- }
420
- };
421
-
422
- template <typename T>
423
- struct bessel_i1_impl {
424
- EIGEN_DEVICE_FUNC
425
- static EIGEN_STRONG_INLINE T run(const T x) {
426
- return generic_i1<T>::run(x);
427
- }
428
- };
429
-
430
- template <typename T>
431
- struct bessel_k0e_retval {
432
- typedef T type;
433
- };
434
-
435
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436
- struct generic_k0e {
437
- EIGEN_DEVICE_FUNC
438
- static EIGEN_STRONG_INLINE T run(const T&) {
439
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440
- THIS_TYPE_IS_NOT_SUPPORTED);
441
- return ScalarType(0);
442
- }
443
- };
444
-
445
- template <typename T>
446
- struct generic_k0e<T, float> {
447
- EIGEN_DEVICE_FUNC
448
- static EIGEN_STRONG_INLINE T run(const T& x) {
449
- /* k0ef.c
450
- * Modified Bessel function, third kind, order zero,
451
- * exponentially scaled
452
- *
453
- *
454
- *
455
- * SYNOPSIS:
456
- *
457
- * float x, y, k0ef();
458
- *
459
- * y = k0ef( x );
460
- *
461
- *
462
- *
463
- * DESCRIPTION:
464
- *
465
- * Returns exponentially scaled modified Bessel function
466
- * of the third kind of order zero of the argument.
467
- *
468
- *
469
- *
470
- * ACCURACY:
471
- *
472
- * Relative error:
473
- * arithmetic domain # trials peak rms
474
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
475
- * See k0().
476
- *
477
- */
478
-
479
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482
- -5.35327393233902768720E-1f};
483
-
484
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490
- const T two = pset1<T>(2.0);
491
- T x_le_two = internal::pchebevl<T, 7>::run(
492
- pmadd(x, x, pset1<T>(-2.0)), A);
493
- x_le_two = pmadd(
494
- generic_i0<T, float>::run(x), pnegate(
495
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
496
- x_le_two = pmul(pexp(x), x_le_two);
497
- T x_gt_two = pmul(
498
- internal::pchebevl<T, 10>::run(
499
- psub(pdiv(pset1<T>(8.0), x), two), B),
500
- prsqrt(x));
501
- return pselect(
502
- pcmp_le(x, pset1<T>(0.0)),
503
- MAXNUM,
504
- pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505
- }
506
- };
507
-
508
- template <typename T>
509
- struct generic_k0e<T, double> {
510
- EIGEN_DEVICE_FUNC
511
- static EIGEN_STRONG_INLINE T run(const T& x) {
512
- /* k0e.c
513
- * Modified Bessel function, third kind, order zero,
514
- * exponentially scaled
515
- *
516
- *
517
- *
518
- * SYNOPSIS:
519
- *
520
- * double x, y, k0e();
521
- *
522
- * y = k0e( x );
523
- *
524
- *
525
- *
526
- * DESCRIPTION:
527
- *
528
- * Returns exponentially scaled modified Bessel function
529
- * of the third kind of order zero of the argument.
530
- *
531
- *
532
- *
533
- * ACCURACY:
534
- *
535
- * Relative error:
536
- * arithmetic domain # trials peak rms
537
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
538
- * See k0().
539
- *
540
- */
541
-
542
- const double A[] = {
543
- 1.37446543561352307156E-16,
544
- 4.25981614279661018399E-14,
545
- 1.03496952576338420167E-11,
546
- 1.90451637722020886025E-9,
547
- 2.53479107902614945675E-7,
548
- 2.28621210311945178607E-5,
549
- 1.26461541144692592338E-3,
550
- 3.59799365153615016266E-2,
551
- 3.44289899924628486886E-1,
552
- -5.35327393233902768720E-1};
553
- const double B[] = {
554
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566
- 2.44030308206595545468E0
567
- };
568
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569
- const T two = pset1<T>(2.0);
570
- T x_le_two = internal::pchebevl<T, 10>::run(
571
- pmadd(x, x, pset1<T>(-2.0)), A);
572
- x_le_two = pmadd(
573
- generic_i0<T, double>::run(x), pmul(
574
- pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575
- x_le_two = pmul(pexp(x), x_le_two);
576
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577
- T x_gt_two = pmul(
578
- internal::pchebevl<T, 25>::run(
579
- psub(pdiv(pset1<T>(8.0), x), two), B),
580
- prsqrt(x));
581
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582
- }
583
- };
584
-
585
- template <typename T>
586
- struct bessel_k0e_impl {
587
- EIGEN_DEVICE_FUNC
588
- static EIGEN_STRONG_INLINE T run(const T x) {
589
- return generic_k0e<T>::run(x);
590
- }
591
- };
592
-
593
- template <typename T>
594
- struct bessel_k0_retval {
595
- typedef T type;
596
- };
597
-
598
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599
- struct generic_k0 {
600
- EIGEN_DEVICE_FUNC
601
- static EIGEN_STRONG_INLINE T run(const T&) {
602
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603
- THIS_TYPE_IS_NOT_SUPPORTED);
604
- return ScalarType(0);
605
- }
606
- };
607
-
608
- template <typename T>
609
- struct generic_k0<T, float> {
610
- EIGEN_DEVICE_FUNC
611
- static EIGEN_STRONG_INLINE T run(const T& x) {
612
- /* k0f.c
613
- * Modified Bessel function, third kind, order zero
614
- *
615
- *
616
- *
617
- * SYNOPSIS:
618
- *
619
- * float x, y, k0f();
620
- *
621
- * y = k0f( x );
622
- *
623
- *
624
- *
625
- * DESCRIPTION:
626
- *
627
- * Returns modified Bessel function of the third kind
628
- * of order zero of the argument.
629
- *
630
- * The range is partitioned into the two intervals [0,8] and
631
- * (8, infinity). Chebyshev polynomial expansions are employed
632
- * in each interval.
633
- *
634
- *
635
- *
636
- * ACCURACY:
637
- *
638
- * Tested at 2000 random points between 0 and 8. Peak absolute
639
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640
- * Relative error:
641
- * arithmetic domain # trials peak rms
642
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
643
- *
644
- * ERROR MESSAGES:
645
- *
646
- * message condition value returned
647
- * K0 domain x <= 0 MAXNUM
648
- *
649
- */
650
-
651
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654
- -5.35327393233902768720E-1f};
655
-
656
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662
- const T two = pset1<T>(2.0);
663
- T x_le_two = internal::pchebevl<T, 7>::run(
664
- pmadd(x, x, pset1<T>(-2.0)), A);
665
- x_le_two = pmadd(
666
- generic_i0<T, float>::run(x), pnegate(
667
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
668
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669
- T x_gt_two = pmul(
670
- pmul(
671
- pexp(pnegate(x)),
672
- internal::pchebevl<T, 10>::run(
673
- psub(pdiv(pset1<T>(8.0), x), two), B)),
674
- prsqrt(x));
675
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676
- }
677
- };
678
-
679
- template <typename T>
680
- struct generic_k0<T, double> {
681
- EIGEN_DEVICE_FUNC
682
- static EIGEN_STRONG_INLINE T run(const T& x) {
683
- /*
684
- *
685
- * Modified Bessel function, third kind, order zero,
686
- * exponentially scaled
687
- *
688
- *
689
- *
690
- * SYNOPSIS:
691
- *
692
- * double x, y, k0();
693
- *
694
- * y = k0( x );
695
- *
696
- *
697
- *
698
- * DESCRIPTION:
699
- *
700
- * Returns exponentially scaled modified Bessel function
701
- * of the third kind of order zero of the argument.
702
- *
703
- *
704
- *
705
- * ACCURACY:
706
- *
707
- * Relative error:
708
- * arithmetic domain # trials peak rms
709
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
710
- * See k0().
711
- *
712
- */
713
- const double A[] = {
714
- 1.37446543561352307156E-16,
715
- 4.25981614279661018399E-14,
716
- 1.03496952576338420167E-11,
717
- 1.90451637722020886025E-9,
718
- 2.53479107902614945675E-7,
719
- 2.28621210311945178607E-5,
720
- 1.26461541144692592338E-3,
721
- 3.59799365153615016266E-2,
722
- 3.44289899924628486886E-1,
723
- -5.35327393233902768720E-1};
724
- const double B[] = {
725
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737
- 2.44030308206595545468E0
738
- };
739
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740
- const T two = pset1<T>(2.0);
741
- T x_le_two = internal::pchebevl<T, 10>::run(
742
- pmadd(x, x, pset1<T>(-2.0)), A);
743
- x_le_two = pmadd(
744
- generic_i0<T, double>::run(x), pnegate(
745
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
746
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747
- T x_gt_two = pmul(
748
- pmul(
749
- pexp(-x),
750
- internal::pchebevl<T, 25>::run(
751
- psub(pdiv(pset1<T>(8.0), x), two), B)),
752
- prsqrt(x));
753
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754
- }
755
- };
756
-
757
- template <typename T>
758
- struct bessel_k0_impl {
759
- EIGEN_DEVICE_FUNC
760
- static EIGEN_STRONG_INLINE T run(const T x) {
761
- return generic_k0<T>::run(x);
762
- }
763
- };
764
-
765
- template <typename T>
766
- struct bessel_k1e_retval {
767
- typedef T type;
768
- };
769
-
770
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771
- struct generic_k1e {
772
- EIGEN_DEVICE_FUNC
773
- static EIGEN_STRONG_INLINE T run(const T&) {
774
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775
- THIS_TYPE_IS_NOT_SUPPORTED);
776
- return ScalarType(0);
777
- }
778
- };
779
-
780
- template <typename T>
781
- struct generic_k1e<T, float> {
782
- EIGEN_DEVICE_FUNC
783
- static EIGEN_STRONG_INLINE T run(const T& x) {
784
- /* k1ef.c
785
- *
786
- * Modified Bessel function, third kind, order one,
787
- * exponentially scaled
788
- *
789
- *
790
- *
791
- * SYNOPSIS:
792
- *
793
- * float x, y, k1ef();
794
- *
795
- * y = k1ef( x );
796
- *
797
- *
798
- *
799
- * DESCRIPTION:
800
- *
801
- * Returns exponentially scaled modified Bessel function
802
- * of the third kind of order one of the argument:
803
- *
804
- * k1e(x) = exp(x) * k1(x).
805
- *
806
- *
807
- *
808
- * ACCURACY:
809
- *
810
- * Relative error:
811
- * arithmetic domain # trials peak rms
812
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
813
- * See k1().
814
- *
815
- */
816
-
817
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820
- 1.52530022733894777053E0f};
821
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827
- const T two = pset1<T>(2.0);
828
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829
- pmadd(x, x, pset1<T>(-2.0)), A), x);
830
- x_le_two = pmadd(
831
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832
- x_le_two = pmul(x_le_two, pexp(x));
833
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834
- T x_gt_two = pmul(
835
- internal::pchebevl<T, 10>::run(
836
- psub(pdiv(pset1<T>(8.0), x), two), B),
837
- prsqrt(x));
838
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839
- }
840
- };
841
-
842
- template <typename T>
843
- struct generic_k1e<T, double> {
844
- EIGEN_DEVICE_FUNC
845
- static EIGEN_STRONG_INLINE T run(const T& x) {
846
- /* k1e.c
847
- *
848
- * Modified Bessel function, third kind, order one,
849
- * exponentially scaled
850
- *
851
- *
852
- *
853
- * SYNOPSIS:
854
- *
855
- * double x, y, k1e();
856
- *
857
- * y = k1e( x );
858
- *
859
- *
860
- *
861
- * DESCRIPTION:
862
- *
863
- * Returns exponentially scaled modified Bessel function
864
- * of the third kind of order one of the argument:
865
- *
866
- * k1e(x) = exp(x) * k1(x).
867
- *
868
- *
869
- *
870
- * ACCURACY:
871
- *
872
- * Relative error:
873
- * arithmetic domain # trials peak rms
874
- * IEEE 0, 30 30000 7.8e-16 1.2e-16
875
- * See k1().
876
- *
877
- */
878
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883
- 1.52530022733894777053E0};
884
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896
- 2.72062619048444266945E0};
897
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898
- const T two = pset1<T>(2.0);
899
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900
- pmadd(x, x, pset1<T>(-2.0)), A), x);
901
- x_le_two = pmadd(
902
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903
- x_le_two = pmul(x_le_two, pexp(x));
904
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905
- T x_gt_two = pmul(
906
- internal::pchebevl<T, 25>::run(
907
- psub(pdiv(pset1<T>(8.0), x), two), B),
908
- prsqrt(x));
909
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910
- }
911
- };
912
-
913
- template <typename T>
914
- struct bessel_k1e_impl {
915
- EIGEN_DEVICE_FUNC
916
- static EIGEN_STRONG_INLINE T run(const T x) {
917
- return generic_k1e<T>::run(x);
918
- }
919
- };
920
-
921
- template <typename T>
922
- struct bessel_k1_retval {
923
- typedef T type;
924
- };
925
-
926
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927
- struct generic_k1 {
928
- EIGEN_DEVICE_FUNC
929
- static EIGEN_STRONG_INLINE T run(const T&) {
930
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931
- THIS_TYPE_IS_NOT_SUPPORTED);
932
- return ScalarType(0);
933
- }
934
- };
935
-
936
- template <typename T>
937
- struct generic_k1<T, float> {
938
- EIGEN_DEVICE_FUNC
939
- static EIGEN_STRONG_INLINE T run(const T& x) {
940
- /* k1f.c
941
- * Modified Bessel function, third kind, order one
942
- *
943
- *
944
- *
945
- * SYNOPSIS:
946
- *
947
- * float x, y, k1f();
948
- *
949
- * y = k1f( x );
950
- *
951
- *
952
- *
953
- * DESCRIPTION:
954
- *
955
- * Computes the modified Bessel function of the third kind
956
- * of order one of the argument.
957
- *
958
- * The range is partitioned into the two intervals [0,2] and
959
- * (2, infinity). Chebyshev polynomial expansions are employed
960
- * in each interval.
961
- *
962
- *
963
- *
964
- * ACCURACY:
965
- *
966
- * Relative error:
967
- * arithmetic domain # trials peak rms
968
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
969
- *
970
- * ERROR MESSAGES:
971
- *
972
- * message condition value returned
973
- * k1 domain x <= 0 MAXNUM
974
- *
975
- */
976
-
977
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980
- 1.52530022733894777053E0f};
981
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987
- const T two = pset1<T>(2.0);
988
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989
- pmadd(x, x, pset1<T>(-2.0)), A), x);
990
- x_le_two = pmadd(
991
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993
- T x_gt_two = pmul(
994
- pexp(pnegate(x)),
995
- pmul(
996
- internal::pchebevl<T, 10>::run(
997
- psub(pdiv(pset1<T>(8.0), x), two), B),
998
- prsqrt(x)));
999
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000
- }
1001
- };
1002
-
1003
- template <typename T>
1004
- struct generic_k1<T, double> {
1005
- EIGEN_DEVICE_FUNC
1006
- static EIGEN_STRONG_INLINE T run(const T& x) {
1007
- /* k1.c
1008
- * Modified Bessel function, third kind, order one
1009
- *
1010
- *
1011
- *
1012
- * SYNOPSIS:
1013
- *
1014
- * float x, y, k1f();
1015
- *
1016
- * y = k1f( x );
1017
- *
1018
- *
1019
- *
1020
- * DESCRIPTION:
1021
- *
1022
- * Computes the modified Bessel function of the third kind
1023
- * of order one of the argument.
1024
- *
1025
- * The range is partitioned into the two intervals [0,2] and
1026
- * (2, infinity). Chebyshev polynomial expansions are employed
1027
- * in each interval.
1028
- *
1029
- *
1030
- *
1031
- * ACCURACY:
1032
- *
1033
- * Relative error:
1034
- * arithmetic domain # trials peak rms
1035
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036
- *
1037
- * ERROR MESSAGES:
1038
- *
1039
- * message condition value returned
1040
- * k1 domain x <= 0 MAXNUM
1041
- *
1042
- */
1043
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048
- 1.52530022733894777053E0};
1049
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061
- 2.72062619048444266945E0};
1062
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063
- const T two = pset1<T>(2.0);
1064
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065
- pmadd(x, x, pset1<T>(-2.0)), A), x);
1066
- x_le_two = pmadd(
1067
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069
- T x_gt_two = pmul(
1070
- pexp(-x),
1071
- pmul(
1072
- internal::pchebevl<T, 25>::run(
1073
- psub(pdiv(pset1<T>(8.0), x), two), B),
1074
- prsqrt(x)));
1075
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076
- }
1077
- };
1078
-
1079
- template <typename T>
1080
- struct bessel_k1_impl {
1081
- EIGEN_DEVICE_FUNC
1082
- static EIGEN_STRONG_INLINE T run(const T x) {
1083
- return generic_k1<T>::run(x);
1084
- }
1085
- };
1086
-
1087
- template <typename T>
1088
- struct bessel_j0_retval {
1089
- typedef T type;
1090
- };
1091
-
1092
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093
- struct generic_j0 {
1094
- EIGEN_DEVICE_FUNC
1095
- static EIGEN_STRONG_INLINE T run(const T&) {
1096
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097
- THIS_TYPE_IS_NOT_SUPPORTED);
1098
- return ScalarType(0);
1099
- }
1100
- };
1101
-
1102
- template <typename T>
1103
- struct generic_j0<T, float> {
1104
- EIGEN_DEVICE_FUNC
1105
- static EIGEN_STRONG_INLINE T run(const T& x) {
1106
- /* j0f.c
1107
- * Bessel function of order zero
1108
- *
1109
- *
1110
- *
1111
- * SYNOPSIS:
1112
- *
1113
- * float x, y, j0f();
1114
- *
1115
- * y = j0f( x );
1116
- *
1117
- *
1118
- *
1119
- * DESCRIPTION:
1120
- *
1121
- * Returns Bessel function of order zero of the argument.
1122
- *
1123
- * The domain is divided into the intervals [0, 2] and
1124
- * (2, infinity). In the first interval the following polynomial
1125
- * approximation is used:
1126
- *
1127
- *
1128
- * 2 2 2
1129
- * (w - r ) (w - r ) (w - r ) P(w)
1130
- * 1 2 3
1131
- *
1132
- * 2
1133
- * where w = x and the three r's are zeros of the function.
1134
- *
1135
- * In the second interval, the modulus and phase are approximated
1136
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138
- *
1139
- * j0(x) = Modulus(x) cos( Phase(x) ).
1140
- *
1141
- *
1142
- *
1143
- * ACCURACY:
1144
- *
1145
- * Absolute error:
1146
- * arithmetic domain # trials peak rms
1147
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149
- *
1150
- */
1151
-
1152
- const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153
- -3.969646342510940E-004f, 1.332913422519003E-002f,
1154
- -1.729150680240724E-001f};
1155
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1157
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1158
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1159
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1161
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1162
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1163
- const T DR1 = pset1<T>(5.78318596294678452118f);
1164
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165
- T y = pabs(x);
1166
- T z = pmul(y, y);
1167
- T y_le_two = pselect(
1168
- pcmp_lt(y, pset1<T>(1.0e-3f)),
1169
- pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170
- pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171
- T q = pdiv(pset1<T>(1.0f), y);
1172
- T w = prsqrt(y);
1173
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174
- w = pmul(q, q);
1175
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177
- return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178
- }
1179
- };
1180
-
1181
- template <typename T>
1182
- struct generic_j0<T, double> {
1183
- EIGEN_DEVICE_FUNC
1184
- static EIGEN_STRONG_INLINE T run(const T& x) {
1185
- /* j0.c
1186
- * Bessel function of order zero
1187
- *
1188
- *
1189
- *
1190
- * SYNOPSIS:
1191
- *
1192
- * double x, y, j0();
1193
- *
1194
- * y = j0( x );
1195
- *
1196
- *
1197
- *
1198
- * DESCRIPTION:
1199
- *
1200
- * Returns Bessel function of order zero of the argument.
1201
- *
1202
- * The domain is divided into the intervals [0, 5] and
1203
- * (5, infinity). In the first interval the following rational
1204
- * approximation is used:
1205
- *
1206
- *
1207
- * 2 2
1208
- * (w - r ) (w - r ) P (w) / Q (w)
1209
- * 1 2 3 8
1210
- *
1211
- * 2
1212
- * where w = x and the two r's are zeros of the function.
1213
- *
1214
- * In the second interval, the Hankel asymptotic expansion
1215
- * is employed with two rational functions of degree 6/6
1216
- * and 7/7.
1217
- *
1218
- *
1219
- *
1220
- * ACCURACY:
1221
- *
1222
- * Absolute error:
1223
- * arithmetic domain # trials peak rms
1224
- * DEC 0, 30 10000 4.4e-17 6.3e-18
1225
- * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226
- *
1227
- */
1228
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1230
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1231
- 9.99999999999999997821E-1};
1232
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1234
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1235
- 1.00000000000000000218E0};
1236
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1238
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1239
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1240
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1242
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1243
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1244
- const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245
- -2.49248344360967716204E14, 9.70862251047306323952E15};
1246
- const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247
- 1.73785401676374683123E5, 4.84409658339962045305E7,
1248
- 1.11855537045356834862E10, 2.11277520115489217587E12,
1249
- 3.10518229857422583814E14, 3.18121955943204943306E16,
1250
- 1.71086294081043136091E18};
1251
- const T DR1 = pset1<T>(5.78318596294678452118E0);
1252
- const T DR2 = pset1<T>(3.04712623436620863991E1);
1253
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
-
1256
- T y = pabs(x);
1257
- T z = pmul(y, y);
1258
- T y_le_five = pselect(
1259
- pcmp_lt(y, pset1<T>(1.0e-5)),
1260
- pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261
- pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262
- pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263
- internal::ppolevl<T, 8>::run(z, RQ))));
1264
- T s = pdiv(pset1<T>(25.0), z);
1265
- T p = pdiv(
1266
- internal::ppolevl<T, 6>::run(s, PP),
1267
- internal::ppolevl<T, 6>::run(s, PQ));
1268
- T q = pdiv(
1269
- internal::ppolevl<T, 7>::run(s, QP),
1270
- internal::ppolevl<T, 7>::run(s, QQ));
1271
- T yn = padd(y, NEG_PIO4);
1272
- T w = pdiv(pset1<T>(-5.0), y);
1273
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276
- }
1277
- };
1278
-
1279
- template <typename T>
1280
- struct bessel_j0_impl {
1281
- EIGEN_DEVICE_FUNC
1282
- static EIGEN_STRONG_INLINE T run(const T x) {
1283
- return generic_j0<T>::run(x);
1284
- }
1285
- };
1286
-
1287
- template <typename T>
1288
- struct bessel_y0_retval {
1289
- typedef T type;
1290
- };
1291
-
1292
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293
- struct generic_y0 {
1294
- EIGEN_DEVICE_FUNC
1295
- static EIGEN_STRONG_INLINE T run(const T&) {
1296
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297
- THIS_TYPE_IS_NOT_SUPPORTED);
1298
- return ScalarType(0);
1299
- }
1300
- };
1301
-
1302
- template <typename T>
1303
- struct generic_y0<T, float> {
1304
- EIGEN_DEVICE_FUNC
1305
- static EIGEN_STRONG_INLINE T run(const T& x) {
1306
- /* j0f.c
1307
- * Bessel function of the second kind, order zero
1308
- *
1309
- *
1310
- *
1311
- * SYNOPSIS:
1312
- *
1313
- * float x, y, y0f();
1314
- *
1315
- * y = y0f( x );
1316
- *
1317
- *
1318
- *
1319
- * DESCRIPTION:
1320
- *
1321
- * Returns Bessel function of the second kind, of order
1322
- * zero, of the argument.
1323
- *
1324
- * The domain is divided into the intervals [0, 2] and
1325
- * (2, infinity). In the first interval a rational approximation
1326
- * R(x) is employed to compute
1327
- *
1328
- * 2 2 2
1329
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330
- * 1 2 3
1331
- *
1332
- * Thus a call to j0() is required. The three zeros are removed
1333
- * from R(x) to improve its numerical stability.
1334
- *
1335
- * In the second interval, the modulus and phase are approximated
1336
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338
- *
1339
- * y0(x) = Modulus(x) sin( Phase(x) ).
1340
- *
1341
- *
1342
- *
1343
- *
1344
- * ACCURACY:
1345
- *
1346
- * Absolute error, when y0(x) < 1; else relative error:
1347
- *
1348
- * arithmetic domain # trials peak rms
1349
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351
- *
1352
- */
1353
-
1354
- const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355
- 5.344486707214273E-004f, -1.584289289821316E-002f,
1356
- 1.707584643733568E-001f};
1357
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1359
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1360
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1361
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1363
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1364
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1365
- const T YZ1 = pset1<T>(0.43221455686510834878f);
1366
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369
- T z = pmul(x, x);
1370
- T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371
- x_le_two = pmadd(
1372
- psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374
- T q = pdiv(pset1<T>(1.0), x);
1375
- T w = prsqrt(x);
1376
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377
- T u = pmul(q, q);
1378
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1380
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381
- }
1382
- };
1383
-
1384
- template <typename T>
1385
- struct generic_y0<T, double> {
1386
- EIGEN_DEVICE_FUNC
1387
- static EIGEN_STRONG_INLINE T run(const T& x) {
1388
- /* j0.c
1389
- * Bessel function of the second kind, order zero
1390
- *
1391
- *
1392
- *
1393
- * SYNOPSIS:
1394
- *
1395
- * double x, y, y0();
1396
- *
1397
- * y = y0( x );
1398
- *
1399
- *
1400
- *
1401
- * DESCRIPTION:
1402
- *
1403
- * Returns Bessel function of the second kind, of order
1404
- * zero, of the argument.
1405
- *
1406
- * The domain is divided into the intervals [0, 5] and
1407
- * (5, infinity). In the first interval a rational approximation
1408
- * R(x) is employed to compute
1409
- * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410
- * Thus a call to j0() is required.
1411
- *
1412
- * In the second interval, the Hankel asymptotic expansion
1413
- * is employed with two rational functions of degree 6/6
1414
- * and 7/7.
1415
- *
1416
- *
1417
- *
1418
- * ACCURACY:
1419
- *
1420
- * Absolute error, when y0(x) < 1; else relative error:
1421
- *
1422
- * arithmetic domain # trials peak rms
1423
- * DEC 0, 30 9400 7.0e-17 7.9e-18
1424
- * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425
- *
1426
- */
1427
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1429
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1430
- 9.99999999999999997821E-1};
1431
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1433
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1434
- 1.00000000000000000218E0};
1435
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1437
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1438
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1439
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1441
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1442
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1443
- const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444
- 5.43526477051876500413E9, -9.82136065717911466409E11,
1445
- 8.75906394395366999549E13, -3.46628303384729719441E15,
1446
- 4.42733268572569800351E16, -1.84950800436986690637E16};
1447
- const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448
- 6.26107330137134956842E5, 2.68919633393814121987E8,
1449
- 8.64002487103935000337E10, 2.02979612750105546709E13,
1450
- 3.17157752842975028269E15, 2.50596256172653059228E17};
1451
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
-
1456
- T z = pmul(x, x);
1457
- T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458
- internal::ppolevl<T, 7>::run(z, YQ));
1459
- x_le_five = pmadd(
1460
- pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462
- T s = pdiv(pset1<T>(25.0), z);
1463
- T p = pdiv(
1464
- internal::ppolevl<T, 6>::run(s, PP),
1465
- internal::ppolevl<T, 6>::run(s, PQ));
1466
- T q = pdiv(
1467
- internal::ppolevl<T, 7>::run(s, QP),
1468
- internal::ppolevl<T, 7>::run(s, QQ));
1469
- T xn = padd(x, NEG_PIO4);
1470
- T w = pdiv(pset1<T>(5.0), x);
1471
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474
- }
1475
- };
1476
-
1477
- template <typename T>
1478
- struct bessel_y0_impl {
1479
- EIGEN_DEVICE_FUNC
1480
- static EIGEN_STRONG_INLINE T run(const T x) {
1481
- return generic_y0<T>::run(x);
1482
- }
1483
- };
1484
-
1485
- template <typename T>
1486
- struct bessel_j1_retval {
1487
- typedef T type;
1488
- };
1489
-
1490
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491
- struct generic_j1 {
1492
- EIGEN_DEVICE_FUNC
1493
- static EIGEN_STRONG_INLINE T run(const T&) {
1494
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495
- THIS_TYPE_IS_NOT_SUPPORTED);
1496
- return ScalarType(0);
1497
- }
1498
- };
1499
-
1500
- template <typename T>
1501
- struct generic_j1<T, float> {
1502
- EIGEN_DEVICE_FUNC
1503
- static EIGEN_STRONG_INLINE T run(const T& x) {
1504
- /* j1f.c
1505
- * Bessel function of order one
1506
- *
1507
- *
1508
- *
1509
- * SYNOPSIS:
1510
- *
1511
- * float x, y, j1f();
1512
- *
1513
- * y = j1f( x );
1514
- *
1515
- *
1516
- *
1517
- * DESCRIPTION:
1518
- *
1519
- * Returns Bessel function of order one of the argument.
1520
- *
1521
- * The domain is divided into the intervals [0, 2] and
1522
- * (2, infinity). In the first interval a polynomial approximation
1523
- * 2
1524
- * (w - r ) x P(w)
1525
- * 1
1526
- * 2
1527
- * is used, where w = x and r is the first zero of the function.
1528
- *
1529
- * In the second interval, the modulus and phase are approximated
1530
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532
- *
1533
- * j0(x) = Modulus(x) cos( Phase(x) ).
1534
- *
1535
- *
1536
- *
1537
- * ACCURACY:
1538
- *
1539
- * Absolute error:
1540
- * arithmetic domain # trials peak rms
1541
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543
- *
1544
- *
1545
- */
1546
-
1547
- const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548
- -4.541343896997497E-005f, 1.937383947804541E-003f,
1549
- -3.405537384615824E-002f};
1550
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1552
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1553
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1554
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1556
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1557
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1558
- const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
-
1561
- T y = pabs(x);
1562
- T z = pmul(y, y);
1563
- T y_le_two = pmul(
1564
- psub(z, Z1),
1565
- pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566
- T q = pdiv(pset1<T>(1.0f), y);
1567
- T w = prsqrt(y);
1568
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569
- w = pmul(q, q);
1570
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572
- // j1 is an odd function. This implementation differs from cephes to
1573
- // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574
- y_gt_two = pselect(
1575
- pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576
- return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577
- }
1578
- };
1579
-
1580
- template <typename T>
1581
- struct generic_j1<T, double> {
1582
- EIGEN_DEVICE_FUNC
1583
- static EIGEN_STRONG_INLINE T run(const T& x) {
1584
- /* j1.c
1585
- * Bessel function of order one
1586
- *
1587
- *
1588
- *
1589
- * SYNOPSIS:
1590
- *
1591
- * double x, y, j1();
1592
- *
1593
- * y = j1( x );
1594
- *
1595
- *
1596
- *
1597
- * DESCRIPTION:
1598
- *
1599
- * Returns Bessel function of order one of the argument.
1600
- *
1601
- * The domain is divided into the intervals [0, 8] and
1602
- * (8, infinity). In the first interval a 24 term Chebyshev
1603
- * expansion is used. In the second, the asymptotic
1604
- * trigonometric representation is employed using two
1605
- * rational functions of degree 5/5.
1606
- *
1607
- *
1608
- *
1609
- * ACCURACY:
1610
- *
1611
- * Absolute error:
1612
- * arithmetic domain # trials peak rms
1613
- * DEC 0, 30 10000 4.0e-17 1.1e-17
1614
- * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615
- *
1616
- */
1617
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1619
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1620
- 1.00000000000000000254E0};
1621
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1623
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1624
- 9.99999999999999997461E-1};
1625
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1627
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1628
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1629
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1631
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1632
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1633
- const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634
- -7.27494245221818276015E13, 3.68295732863852883286E15};
1635
- const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636
- 2.56987256757748830383E5, 8.35146791431949253037E7,
1637
- 2.21511595479792499675E10, 4.74914122079991414898E12,
1638
- 7.84369607876235854894E14, 8.95222336184627338078E16,
1639
- 5.32278620332680085395E18};
1640
- const T Z1 = pset1<T>(1.46819706421238932572E1);
1641
- const T Z2 = pset1<T>(4.92184563216946036703E1);
1642
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644
- T y = pabs(x);
1645
- T z = pmul(y, y);
1646
- T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647
- internal::ppolevl<T, 8>::run(z, RQ));
1648
- y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649
- T s = pdiv(pset1<T>(25.0), z);
1650
- T p = pdiv(
1651
- internal::ppolevl<T, 6>::run(s, PP),
1652
- internal::ppolevl<T, 6>::run(s, PQ));
1653
- T q = pdiv(
1654
- internal::ppolevl<T, 7>::run(s, QP),
1655
- internal::ppolevl<T, 7>::run(s, QQ));
1656
- T yn = padd(y, NEG_THPIO4);
1657
- T w = pdiv(pset1<T>(-5.0), y);
1658
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660
- // j1 is an odd function. This implementation differs from cephes to
1661
- // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662
- y_gt_five = pselect(
1663
- pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665
- }
1666
- };
1667
-
1668
- template <typename T>
1669
- struct bessel_j1_impl {
1670
- EIGEN_DEVICE_FUNC
1671
- static EIGEN_STRONG_INLINE T run(const T x) {
1672
- return generic_j1<T>::run(x);
1673
- }
1674
- };
1675
-
1676
- template <typename T>
1677
- struct bessel_y1_retval {
1678
- typedef T type;
1679
- };
1680
-
1681
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682
- struct generic_y1 {
1683
- EIGEN_DEVICE_FUNC
1684
- static EIGEN_STRONG_INLINE T run(const T&) {
1685
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686
- THIS_TYPE_IS_NOT_SUPPORTED);
1687
- return ScalarType(0);
1688
- }
1689
- };
1690
-
1691
- template <typename T>
1692
- struct generic_y1<T, float> {
1693
- EIGEN_DEVICE_FUNC
1694
- static EIGEN_STRONG_INLINE T run(const T& x) {
1695
- /* j1f.c
1696
- * Bessel function of second kind of order one
1697
- *
1698
- *
1699
- *
1700
- * SYNOPSIS:
1701
- *
1702
- * double x, y, y1();
1703
- *
1704
- * y = y1( x );
1705
- *
1706
- *
1707
- *
1708
- * DESCRIPTION:
1709
- *
1710
- * Returns Bessel function of the second kind of order one
1711
- * of the argument.
1712
- *
1713
- * The domain is divided into the intervals [0, 2] and
1714
- * (2, infinity). In the first interval a rational approximation
1715
- * R(x) is employed to compute
1716
- *
1717
- * 2
1718
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719
- * 1
1720
- *
1721
- * Thus a call to j1() is required.
1722
- *
1723
- * In the second interval, the modulus and phase are approximated
1724
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726
- *
1727
- * y0(x) = Modulus(x) sin( Phase(x) ).
1728
- *
1729
- *
1730
- *
1731
- *
1732
- * ACCURACY:
1733
- *
1734
- * Absolute error:
1735
- * arithmetic domain # trials peak rms
1736
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738
- *
1739
- * (error criterion relative when |y1| > 1).
1740
- *
1741
- */
1742
-
1743
- const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744
- 6.719543806674249E-005f, -2.641785726447862E-003f,
1745
- 4.202369946500099E-002f};
1746
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1748
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1749
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1750
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1752
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1753
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1754
- const T YO1 = pset1<T>(4.66539330185668857532f);
1755
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
-
1759
- T z = pmul(x, x);
1760
- T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761
- x_le_two = pmadd(
1762
- x_le_two, x,
1763
- pmul(TWOOPI, pmadd(
1764
- generic_j1<T, float>::run(x), plog(x),
1765
- pdiv(pset1<T>(-1.0f), x))));
1766
- x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
-
1768
- T q = pdiv(pset1<T>(1.0), x);
1769
- T w = prsqrt(x);
1770
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771
- w = pmul(q, q);
1772
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1774
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775
- }
1776
- };
1777
-
1778
- template <typename T>
1779
- struct generic_y1<T, double> {
1780
- EIGEN_DEVICE_FUNC
1781
- static EIGEN_STRONG_INLINE T run(const T& x) {
1782
- /* j1.c
1783
- * Bessel function of second kind of order one
1784
- *
1785
- *
1786
- *
1787
- * SYNOPSIS:
1788
- *
1789
- * double x, y, y1();
1790
- *
1791
- * y = y1( x );
1792
- *
1793
- *
1794
- *
1795
- * DESCRIPTION:
1796
- *
1797
- * Returns Bessel function of the second kind of order one
1798
- * of the argument.
1799
- *
1800
- * The domain is divided into the intervals [0, 8] and
1801
- * (8, infinity). In the first interval a 25 term Chebyshev
1802
- * expansion is used, and a call to j1() is required.
1803
- * In the second, the asymptotic trigonometric representation
1804
- * is employed using two rational functions of degree 5/5.
1805
- *
1806
- *
1807
- *
1808
- * ACCURACY:
1809
- *
1810
- * Absolute error:
1811
- * arithmetic domain # trials peak rms
1812
- * DEC 0, 30 10000 8.6e-17 1.3e-17
1813
- * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814
- *
1815
- * (error criterion relative when |y1| > 1).
1816
- *
1817
- */
1818
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1820
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1821
- 1.00000000000000000254E0};
1822
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1824
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1825
- 9.99999999999999997461E-1};
1826
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1828
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1829
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1830
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1832
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1833
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1834
- const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835
- 1.14509511541823727583E14, -8.12770255501325109621E15,
1836
- 2.02439475713594898196E17, -7.78877196265950026825E17};
1837
- const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838
- 2.35564092943068577943E5, 7.34811944459721705660E7,
1839
- 1.87601316108706159478E10, 3.88231277496238566008E12,
1840
- 6.20557727146953693363E14, 6.87141087355300489866E16,
1841
- 3.97270608116560655612E18};
1842
- const T SQ2OPI = pset1<T>(.79788456080286535588);
1843
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
-
1847
- T z = pmul(x, x);
1848
- T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849
- internal::ppolevl<T, 8>::run(z, YQ));
1850
- x_le_five = pmadd(
1851
- x_le_five, x, pmul(
1852
- TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853
- pdiv(pset1<T>(-1.0), x))));
1854
-
1855
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856
- T s = pdiv(pset1<T>(25.0), z);
1857
- T p = pdiv(
1858
- internal::ppolevl<T, 6>::run(s, PP),
1859
- internal::ppolevl<T, 6>::run(s, PQ));
1860
- T q = pdiv(
1861
- internal::ppolevl<T, 7>::run(s, QP),
1862
- internal::ppolevl<T, 7>::run(s, QQ));
1863
- T xn = padd(x, NEG_THPIO4);
1864
- T w = pdiv(pset1<T>(5.0), x);
1865
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868
- }
1869
- };
1870
-
1871
- template <typename T>
1872
- struct bessel_y1_impl {
1873
- EIGEN_DEVICE_FUNC
1874
- static EIGEN_STRONG_INLINE T run(const T x) {
1875
- return generic_y1<T>::run(x);
1876
- }
1877
- };
1878
-
1879
- } // end namespace internal
1880
-
1881
- namespace numext {
1882
-
1883
- template <typename Scalar>
1884
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885
- bessel_i0(const Scalar& x) {
1886
- return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887
- }
1888
-
1889
- template <typename Scalar>
1890
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891
- bessel_i0e(const Scalar& x) {
1892
- return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893
- }
1894
-
1895
- template <typename Scalar>
1896
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897
- bessel_i1(const Scalar& x) {
1898
- return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899
- }
1900
-
1901
- template <typename Scalar>
1902
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903
- bessel_i1e(const Scalar& x) {
1904
- return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905
- }
1906
-
1907
- template <typename Scalar>
1908
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909
- bessel_k0(const Scalar& x) {
1910
- return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911
- }
1912
-
1913
- template <typename Scalar>
1914
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915
- bessel_k0e(const Scalar& x) {
1916
- return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917
- }
1918
-
1919
- template <typename Scalar>
1920
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921
- bessel_k1(const Scalar& x) {
1922
- return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923
- }
1924
-
1925
- template <typename Scalar>
1926
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927
- bessel_k1e(const Scalar& x) {
1928
- return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929
- }
1930
-
1931
- template <typename Scalar>
1932
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933
- bessel_j0(const Scalar& x) {
1934
- return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935
- }
1936
-
1937
- template <typename Scalar>
1938
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939
- bessel_y0(const Scalar& x) {
1940
- return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941
- }
1942
-
1943
- template <typename Scalar>
1944
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945
- bessel_j1(const Scalar& x) {
1946
- return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947
- }
1948
-
1949
- template <typename Scalar>
1950
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951
- bessel_y1(const Scalar& x) {
1952
- return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953
- }
1954
-
1955
- } // end namespace numext
1956
-
1957
- } // end namespace Eigen
1958
-
1959
- #endif // EIGEN_BESSEL_FUNCTIONS_H