sequenzo 0.1.18__cp310-cp310-macosx_10_9_universal2.whl → 0.1.19__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,923 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
- // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
-
12
- #ifndef EIGEN_SPARSE_LU_H
13
- #define EIGEN_SPARSE_LU_H
14
-
15
- namespace Eigen {
16
-
17
- template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
- template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
- template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
-
21
- template <bool Conjugate,class SparseLUType>
22
- class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23
- {
24
- protected:
25
- typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26
- using APIBase::m_isInitialized;
27
- public:
28
- typedef typename SparseLUType::Scalar Scalar;
29
- typedef typename SparseLUType::StorageIndex StorageIndex;
30
- typedef typename SparseLUType::MatrixType MatrixType;
31
- typedef typename SparseLUType::OrderingType OrderingType;
32
-
33
- enum {
34
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36
- };
37
-
38
- SparseLUTransposeView() : m_sparseLU(NULL) {}
39
- SparseLUTransposeView(const SparseLUTransposeView& view) {
40
- this->m_sparseLU = view.m_sparseLU;
41
- }
42
- void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
43
- void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44
- using APIBase::_solve_impl;
45
- template<typename Rhs, typename Dest>
46
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47
- {
48
- Dest& X(X_base.derived());
49
- eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
-
53
-
54
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55
- for(Index j = 0; j < B.cols(); ++j){
56
- X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57
- }
58
- //Forward substitution with transposed or adjoint of U
59
- m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
-
61
- //Backward substitution with transposed or adjoint of L
62
- m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
-
64
- // Permute back the solution
65
- for (Index j = 0; j < B.cols(); ++j)
66
- X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67
- return true;
68
- }
69
- inline Index rows() const { return m_sparseLU->rows(); }
70
- inline Index cols() const { return m_sparseLU->cols(); }
71
-
72
- private:
73
- SparseLUType *m_sparseLU;
74
- SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75
- };
76
-
77
-
78
- /** \ingroup SparseLU_Module
79
- * \class SparseLU
80
- *
81
- * \brief Sparse supernodal LU factorization for general matrices
82
- *
83
- * This class implements the supernodal LU factorization for general matrices.
84
- * It uses the main techniques from the sequential SuperLU package
85
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86
- * and complex arithmetic with single and double precision, depending on the
87
- * scalar type of your input matrix.
88
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
90
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91
- * enable a better optimization from the compiler. For best performance,
92
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93
- *
94
- * An important parameter of this class is the ordering method. It is used to reorder the columns
95
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96
- * numerical factorization. The cheapest method available is COLAMD.
97
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98
- * built-in and external ordering methods.
99
- *
100
- * Simple example with key steps
101
- * \code
102
- * VectorXd x(n), b(n);
103
- * SparseMatrix<double> A;
104
- * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105
- * // fill A and b;
106
- * // Compute the ordering permutation vector from the structural pattern of A
107
- * solver.analyzePattern(A);
108
- * // Compute the numerical factorization
109
- * solver.factorize(A);
110
- * //Use the factors to solve the linear system
111
- * x = solver.solve(b);
112
- * \endcode
113
- *
114
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
115
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116
- *
117
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119
- * If this is the case for your matrices, you can try the basic scaling method at
120
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121
- *
122
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124
- *
125
- * \implsparsesolverconcept
126
- *
127
- * \sa \ref TutorialSparseSolverConcept
128
- * \sa \ref OrderingMethods_Module
129
- */
130
- template <typename _MatrixType, typename _OrderingType>
131
- class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132
- {
133
- protected:
134
- typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135
- using APIBase::m_isInitialized;
136
- public:
137
- using APIBase::_solve_impl;
138
-
139
- typedef _MatrixType MatrixType;
140
- typedef _OrderingType OrderingType;
141
- typedef typename MatrixType::Scalar Scalar;
142
- typedef typename MatrixType::RealScalar RealScalar;
143
- typedef typename MatrixType::StorageIndex StorageIndex;
144
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145
- typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147
- typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148
- typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149
- typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
-
151
- enum {
152
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154
- };
155
-
156
- public:
157
-
158
- SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159
- {
160
- initperfvalues();
161
- }
162
- explicit SparseLU(const MatrixType& matrix)
163
- : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164
- {
165
- initperfvalues();
166
- compute(matrix);
167
- }
168
-
169
- ~SparseLU()
170
- {
171
- // Free all explicit dynamic pointers
172
- }
173
-
174
- void analyzePattern (const MatrixType& matrix);
175
- void factorize (const MatrixType& matrix);
176
- void simplicialfactorize(const MatrixType& matrix);
177
-
178
- /**
179
- * Compute the symbolic and numeric factorization of the input sparse matrix.
180
- * The input matrix should be in column-major storage.
181
- */
182
- void compute (const MatrixType& matrix)
183
- {
184
- // Analyze
185
- analyzePattern(matrix);
186
- //Factorize
187
- factorize(matrix);
188
- }
189
-
190
- /** \returns an expression of the transposed of the factored matrix.
191
- *
192
- * A typical usage is to solve for the transposed problem A^T x = b:
193
- * \code
194
- * solver.compute(A);
195
- * x = solver.transpose().solve(b);
196
- * \endcode
197
- *
198
- * \sa adjoint(), solve()
199
- */
200
- const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201
- {
202
- SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203
- transposeView.setSparseLU(this);
204
- transposeView.setIsInitialized(this->m_isInitialized);
205
- return transposeView;
206
- }
207
-
208
-
209
- /** \returns an expression of the adjoint of the factored matrix
210
- *
211
- * A typical usage is to solve for the adjoint problem A' x = b:
212
- * \code
213
- * solver.compute(A);
214
- * x = solver.adjoint().solve(b);
215
- * \endcode
216
- *
217
- * For real scalar types, this function is equivalent to transpose().
218
- *
219
- * \sa transpose(), solve()
220
- */
221
- const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222
- {
223
- SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224
- adjointView.setSparseLU(this);
225
- adjointView.setIsInitialized(this->m_isInitialized);
226
- return adjointView;
227
- }
228
-
229
- inline Index rows() const { return m_mat.rows(); }
230
- inline Index cols() const { return m_mat.cols(); }
231
- /** Indicate that the pattern of the input matrix is symmetric */
232
- void isSymmetric(bool sym)
233
- {
234
- m_symmetricmode = sym;
235
- }
236
-
237
- /** \returns an expression of the matrix L, internally stored as supernodes
238
- * The only operation available with this expression is the triangular solve
239
- * \code
240
- * y = b; matrixL().solveInPlace(y);
241
- * \endcode
242
- */
243
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244
- {
245
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246
- }
247
- /** \returns an expression of the matrix U,
248
- * The only operation available with this expression is the triangular solve
249
- * \code
250
- * y = b; matrixU().solveInPlace(y);
251
- * \endcode
252
- */
253
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254
- {
255
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256
- }
257
-
258
- /**
259
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260
- * \sa colsPermutation()
261
- */
262
- inline const PermutationType& rowsPermutation() const
263
- {
264
- return m_perm_r;
265
- }
266
- /**
267
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268
- * \sa rowsPermutation()
269
- */
270
- inline const PermutationType& colsPermutation() const
271
- {
272
- return m_perm_c;
273
- }
274
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
275
- void setPivotThreshold(const RealScalar& thresh)
276
- {
277
- m_diagpivotthresh = thresh;
278
- }
279
-
280
- #ifdef EIGEN_PARSED_BY_DOXYGEN
281
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282
- *
283
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284
- *
285
- * \sa compute()
286
- */
287
- template<typename Rhs>
288
- inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289
- #endif // EIGEN_PARSED_BY_DOXYGEN
290
-
291
- /** \brief Reports whether previous computation was successful.
292
- *
293
- * \returns \c Success if computation was successful,
294
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295
- * \c InvalidInput if the input matrix is invalid
296
- *
297
- * \sa iparm()
298
- */
299
- ComputationInfo info() const
300
- {
301
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302
- return m_info;
303
- }
304
-
305
- /**
306
- * \returns A string describing the type of error
307
- */
308
- std::string lastErrorMessage() const
309
- {
310
- return m_lastError;
311
- }
312
-
313
- template<typename Rhs, typename Dest>
314
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315
- {
316
- Dest& X(X_base.derived());
317
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
-
321
- // Permute the right hand side to form X = Pr*B
322
- // on return, X is overwritten by the computed solution
323
- X.resize(B.rows(),B.cols());
324
-
325
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326
- for(Index j = 0; j < B.cols(); ++j)
327
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
-
329
- //Forward substitution with L
330
- this->matrixL().solveInPlace(X);
331
- this->matrixU().solveInPlace(X);
332
-
333
- // Permute back the solution
334
- for (Index j = 0; j < B.cols(); ++j)
335
- X.col(j) = colsPermutation().inverse() * X.col(j);
336
-
337
- return true;
338
- }
339
-
340
- /**
341
- * \returns the absolute value of the determinant of the matrix of which
342
- * *this is the QR decomposition.
343
- *
344
- * \warning a determinant can be very big or small, so for matrices
345
- * of large enough dimension, there is a risk of overflow/underflow.
346
- * One way to work around that is to use logAbsDeterminant() instead.
347
- *
348
- * \sa logAbsDeterminant(), signDeterminant()
349
- */
350
- Scalar absDeterminant()
351
- {
352
- using std::abs;
353
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354
- // Initialize with the determinant of the row matrix
355
- Scalar det = Scalar(1.);
356
- // Note that the diagonal blocks of U are stored in supernodes,
357
- // which are available in the L part :)
358
- for (Index j = 0; j < this->cols(); ++j)
359
- {
360
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361
- {
362
- if(it.index() == j)
363
- {
364
- det *= abs(it.value());
365
- break;
366
- }
367
- }
368
- }
369
- return det;
370
- }
371
-
372
- /** \returns the natural log of the absolute value of the determinant of the matrix
373
- * of which **this is the QR decomposition
374
- *
375
- * \note This method is useful to work around the risk of overflow/underflow that's
376
- * inherent to the determinant computation.
377
- *
378
- * \sa absDeterminant(), signDeterminant()
379
- */
380
- Scalar logAbsDeterminant() const
381
- {
382
- using std::log;
383
- using std::abs;
384
-
385
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386
- Scalar det = Scalar(0.);
387
- for (Index j = 0; j < this->cols(); ++j)
388
- {
389
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390
- {
391
- if(it.row() < j) continue;
392
- if(it.row() == j)
393
- {
394
- det += log(abs(it.value()));
395
- break;
396
- }
397
- }
398
- }
399
- return det;
400
- }
401
-
402
- /** \returns A number representing the sign of the determinant
403
- *
404
- * \sa absDeterminant(), logAbsDeterminant()
405
- */
406
- Scalar signDeterminant()
407
- {
408
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409
- // Initialize with the determinant of the row matrix
410
- Index det = 1;
411
- // Note that the diagonal blocks of U are stored in supernodes,
412
- // which are available in the L part :)
413
- for (Index j = 0; j < this->cols(); ++j)
414
- {
415
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416
- {
417
- if(it.index() == j)
418
- {
419
- if(it.value()<0)
420
- det = -det;
421
- else if(it.value()==0)
422
- return 0;
423
- break;
424
- }
425
- }
426
- }
427
- return det * m_detPermR * m_detPermC;
428
- }
429
-
430
- /** \returns The determinant of the matrix.
431
- *
432
- * \sa absDeterminant(), logAbsDeterminant()
433
- */
434
- Scalar determinant()
435
- {
436
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437
- // Initialize with the determinant of the row matrix
438
- Scalar det = Scalar(1.);
439
- // Note that the diagonal blocks of U are stored in supernodes,
440
- // which are available in the L part :)
441
- for (Index j = 0; j < this->cols(); ++j)
442
- {
443
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444
- {
445
- if(it.index() == j)
446
- {
447
- det *= it.value();
448
- break;
449
- }
450
- }
451
- }
452
- return (m_detPermR * m_detPermC) > 0 ? det : -det;
453
- }
454
-
455
- Index nnzL() const { return m_nnzL; };
456
- Index nnzU() const { return m_nnzU; };
457
-
458
- protected:
459
- // Functions
460
- void initperfvalues()
461
- {
462
- m_perfv.panel_size = 16;
463
- m_perfv.relax = 1;
464
- m_perfv.maxsuper = 128;
465
- m_perfv.rowblk = 16;
466
- m_perfv.colblk = 8;
467
- m_perfv.fillfactor = 20;
468
- }
469
-
470
- // Variables
471
- mutable ComputationInfo m_info;
472
- bool m_factorizationIsOk;
473
- bool m_analysisIsOk;
474
- std::string m_lastError;
475
- NCMatrix m_mat; // The input (permuted ) matrix
476
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477
- MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478
- PermutationType m_perm_c; // Column permutation
479
- PermutationType m_perm_r ; // Row permutation
480
- IndexVector m_etree; // Column elimination tree
481
-
482
- typename Base::GlobalLU_t m_glu;
483
-
484
- // SparseLU options
485
- bool m_symmetricmode;
486
- // values for performance
487
- internal::perfvalues m_perfv;
488
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490
- Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491
- private:
492
- // Disable copy constructor
493
- SparseLU (const SparseLU& );
494
- }; // End class SparseLU
495
-
496
-
497
-
498
- // Functions needed by the anaysis phase
499
- /**
500
- * Compute the column permutation to minimize the fill-in
501
- *
502
- * - Apply this permutation to the input matrix -
503
- *
504
- * - Compute the column elimination tree on the permuted matrix
505
- *
506
- * - Postorder the elimination tree and the column permutation
507
- *
508
- */
509
- template <typename MatrixType, typename OrderingType>
510
- void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511
- {
512
-
513
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
-
515
- // Firstly, copy the whole input matrix.
516
- m_mat = mat;
517
-
518
- // Compute fill-in ordering
519
- OrderingType ord;
520
- ord(m_mat,m_perm_c);
521
-
522
- // Apply the permutation to the column of the input matrix
523
- if (m_perm_c.size())
524
- {
525
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526
- // Then, permute only the column pointers
527
- ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
-
529
- // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530
- if(!mat.isCompressed())
531
- IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
-
533
- // Apply the permutation and compute the nnz per column.
534
- for (Index i = 0; i < mat.cols(); i++)
535
- {
536
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538
- }
539
- }
540
-
541
- // Compute the column elimination tree of the permuted matrix
542
- IndexVector firstRowElt;
543
- internal::coletree(m_mat, m_etree,firstRowElt);
544
-
545
- // In symmetric mode, do not do postorder here
546
- if (!m_symmetricmode) {
547
- IndexVector post, iwork;
548
- // Post order etree
549
- internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
-
551
-
552
- // Renumber etree in postorder
553
- Index m = m_mat.cols();
554
- iwork.resize(m+1);
555
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556
- m_etree = iwork;
557
-
558
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559
- PermutationType post_perm(m);
560
- for (Index i = 0; i < m; i++)
561
- post_perm.indices()(i) = post(i);
562
-
563
- // Combine the two permutations : postorder the permutation for future use
564
- if(m_perm_c.size()) {
565
- m_perm_c = post_perm * m_perm_c;
566
- }
567
-
568
- } // end postordering
569
-
570
- m_analysisIsOk = true;
571
- }
572
-
573
- // Functions needed by the numerical factorization phase
574
-
575
-
576
- /**
577
- * - Numerical factorization
578
- * - Interleaved with the symbolic factorization
579
- * On exit, info is
580
- *
581
- * = 0: successful factorization
582
- *
583
- * > 0: if info = i, and i is
584
- *
585
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
586
- * been completed, but the factor U is exactly singular,
587
- * and division by zero will occur if it is used to solve a
588
- * system of equations.
589
- *
590
- * > A->ncol: number of bytes allocated when memory allocation
591
- * failure occurred, plus A->ncol. If lwork = -1, it is
592
- * the estimated amount of space needed, plus A->ncol.
593
- */
594
- template <typename MatrixType, typename OrderingType>
595
- void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596
- {
597
- using internal::emptyIdxLU;
598
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
-
601
- m_isInitialized = true;
602
-
603
- // Apply the column permutation computed in analyzepattern()
604
- // m_mat = matrix * m_perm_c.inverse();
605
- m_mat = matrix;
606
- if (m_perm_c.size())
607
- {
608
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609
- //Then, permute only the column pointers
610
- const StorageIndex * outerIndexPtr;
611
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612
- else
613
- {
614
- StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616
- outerIndexPtr = outerIndexPtr_t;
617
- }
618
- for (Index i = 0; i < matrix.cols(); i++)
619
- {
620
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622
- }
623
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
624
- }
625
- else
626
- { //FIXME This should not be needed if the empty permutation is handled transparently
627
- m_perm_c.resize(matrix.cols());
628
- for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629
- }
630
-
631
- Index m = m_mat.rows();
632
- Index n = m_mat.cols();
633
- Index nnz = m_mat.nonZeros();
634
- Index maxpanel = m_perfv.panel_size * m;
635
- // Allocate working storage common to the factor routines
636
- Index lwork = 0;
637
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638
- if (info)
639
- {
640
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641
- m_factorizationIsOk = false;
642
- return ;
643
- }
644
-
645
- // Set up pointers for integer working arrays
646
- IndexVector segrep(m); segrep.setZero();
647
- IndexVector parent(m); parent.setZero();
648
- IndexVector xplore(m); xplore.setZero();
649
- IndexVector repfnz(maxpanel);
650
- IndexVector panel_lsub(maxpanel);
651
- IndexVector xprune(n); xprune.setZero();
652
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
-
654
- repfnz.setConstant(-1);
655
- panel_lsub.setConstant(-1);
656
-
657
- // Set up pointers for scalar working arrays
658
- ScalarVector dense;
659
- dense.setZero(maxpanel);
660
- ScalarVector tempv;
661
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
-
663
- // Compute the inverse of perm_c
664
- PermutationType iperm_c(m_perm_c.inverse());
665
-
666
- // Identify initial relaxed snodes
667
- IndexVector relax_end(n);
668
- if ( m_symmetricmode == true )
669
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670
- else
671
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
-
673
-
674
- m_perm_r.resize(m);
675
- m_perm_r.indices().setConstant(-1);
676
- marker.setConstant(-1);
677
- m_detPermR = 1; // Record the determinant of the row permutation
678
-
679
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
-
682
- // Work on one 'panel' at a time. A panel is one of the following :
683
- // (a) a relaxed supernode at the bottom of the etree, or
684
- // (b) panel_size contiguous columns, <panel_size> defined by the user
685
- Index jcol;
686
- Index pivrow; // Pivotal row number in the original row matrix
687
- Index nseg1; // Number of segments in U-column above panel row jcol
688
- Index nseg; // Number of segments in each U-column
689
- Index irep;
690
- Index i, k, jj;
691
- for (jcol = 0; jcol < n; )
692
- {
693
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
695
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696
- {
697
- if (relax_end(k) != emptyIdxLU)
698
- {
699
- panel_size = k - jcol;
700
- break;
701
- }
702
- }
703
- if (k == n)
704
- panel_size = n - jcol;
705
-
706
- // Symbolic outer factorization on a panel of columns
707
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
-
709
- // Numeric sup-panel updates in topological order
710
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
-
712
- // Sparse LU within the panel, and below the panel diagonal
713
- for ( jj = jcol; jj< jcol + panel_size; jj++)
714
- {
715
- k = (jj - jcol) * m; // Column index for w-wide arrays
716
-
717
- nseg = nseg1; // begin after all the panel segments
718
- //Depth-first-search for the current column
719
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722
- if ( info )
723
- {
724
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725
- m_info = NumericalIssue;
726
- m_factorizationIsOk = false;
727
- return;
728
- }
729
- // Numeric updates to this column
730
- VectorBlock<ScalarVector> dense_k(dense, k, m);
731
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733
- if ( info )
734
- {
735
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736
- m_info = NumericalIssue;
737
- m_factorizationIsOk = false;
738
- return;
739
- }
740
-
741
- // Copy the U-segments to ucol(*)
742
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743
- if ( info )
744
- {
745
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746
- m_info = NumericalIssue;
747
- m_factorizationIsOk = false;
748
- return;
749
- }
750
-
751
- // Form the L-segment
752
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753
- if ( info )
754
- {
755
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756
- std::ostringstream returnInfo;
757
- returnInfo << info;
758
- m_lastError += returnInfo.str();
759
- m_info = NumericalIssue;
760
- m_factorizationIsOk = false;
761
- return;
762
- }
763
-
764
- // Update the determinant of the row permutation matrix
765
- // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766
- if (pivrow != jj) m_detPermR = -m_detPermR;
767
-
768
- // Prune columns (0:jj-1) using column jj
769
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
-
771
- // Reset repfnz for this column
772
- for (i = 0; i < nseg; i++)
773
- {
774
- irep = segrep(i);
775
- repfnz_k(irep) = emptyIdxLU;
776
- }
777
- } // end SparseLU within the panel
778
- jcol += panel_size; // Move to the next panel
779
- } // end for -- end elimination
780
-
781
- m_detPermR = m_perm_r.determinant();
782
- m_detPermC = m_perm_c.determinant();
783
-
784
- // Count the number of nonzeros in factors
785
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786
- // Apply permutation to the L subscripts
787
- Base::fixupL(n, m_perm_r.indices(), m_glu);
788
-
789
- // Create supernode matrix L
790
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791
- // Create the column major upper sparse matrix U;
792
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
-
794
- m_info = Success;
795
- m_factorizationIsOk = true;
796
- }
797
-
798
- template<typename MappedSupernodalType>
799
- struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800
- {
801
- typedef typename MappedSupernodalType::Scalar Scalar;
802
- explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803
- { }
804
- Index rows() const { return m_mapL.rows(); }
805
- Index cols() const { return m_mapL.cols(); }
806
- template<typename Dest>
807
- void solveInPlace( MatrixBase<Dest> &X) const
808
- {
809
- m_mapL.solveInPlace(X);
810
- }
811
- template<bool Conjugate, typename Dest>
812
- void solveTransposedInPlace( MatrixBase<Dest> &X) const
813
- {
814
- m_mapL.template solveTransposedInPlace<Conjugate>(X);
815
- }
816
-
817
- const MappedSupernodalType& m_mapL;
818
- };
819
-
820
- template<typename MatrixLType, typename MatrixUType>
821
- struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822
- {
823
- typedef typename MatrixLType::Scalar Scalar;
824
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825
- : m_mapL(mapL),m_mapU(mapU)
826
- { }
827
- Index rows() const { return m_mapL.rows(); }
828
- Index cols() const { return m_mapL.cols(); }
829
-
830
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831
- {
832
- Index nrhs = X.cols();
833
- Index n = X.rows();
834
- // Backward solve with U
835
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
836
- {
837
- Index fsupc = m_mapL.supToCol()[k];
838
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840
- Index luptr = m_mapL.colIndexPtr()[fsupc];
841
-
842
- if (nsupc == 1)
843
- {
844
- for (Index j = 0; j < nrhs; j++)
845
- {
846
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847
- }
848
- }
849
- else
850
- {
851
- // FIXME: the following lines should use Block expressions and not Map!
852
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854
- U = A.template triangularView<Upper>().solve(U);
855
- }
856
-
857
- for (Index j = 0; j < nrhs; ++j)
858
- {
859
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860
- {
861
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
862
- for ( ; it; ++it)
863
- {
864
- Index irow = it.index();
865
- X(irow, j) -= X(jcol, j) * it.value();
866
- }
867
- }
868
- }
869
- } // End For U-solve
870
- }
871
-
872
- template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873
- {
874
- using numext::conj;
875
- Index nrhs = X.cols();
876
- Index n = X.rows();
877
- // Forward solve with U
878
- for (Index k = 0; k <= m_mapL.nsuper(); k++)
879
- {
880
- Index fsupc = m_mapL.supToCol()[k];
881
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883
- Index luptr = m_mapL.colIndexPtr()[fsupc];
884
-
885
- for (Index j = 0; j < nrhs; ++j)
886
- {
887
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888
- {
889
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
890
- for ( ; it; ++it)
891
- {
892
- Index irow = it.index();
893
- X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894
- }
895
- }
896
- }
897
- if (nsupc == 1)
898
- {
899
- for (Index j = 0; j < nrhs; j++)
900
- {
901
- X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902
- }
903
- }
904
- else
905
- {
906
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908
- if(Conjugate)
909
- U = A.adjoint().template triangularView<Lower>().solve(U);
910
- else
911
- U = A.transpose().template triangularView<Lower>().solve(U);
912
- }
913
- }// End For U-solve
914
- }
915
-
916
-
917
- const MatrixLType& m_mapL;
918
- const MatrixUType& m_mapU;
919
- };
920
-
921
- } // End namespace Eigen
922
-
923
- #endif