sequenzo 0.1.18__cp310-cp310-macosx_10_9_universal2.whl → 0.1.19__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,966 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
-
17
- #if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
18
- // Full reducers for GPU, don't vectorize for now
19
-
20
- // Reducer function that enables multiple gpu thread to safely accumulate at the same
21
- // output address. It basically reads the current value of the output variable, and
22
- // attempts to update it with the new value. If in the meantime another gpu thread
23
- // updated the content of the output address it will try again.
24
- template <typename T, typename R>
25
- __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
26
- #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
27
- if (sizeof(T) == 4)
28
- {
29
- unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
30
- unsigned int newval = oldval;
31
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
32
- if (newval == oldval) {
33
- return;
34
- }
35
- unsigned int readback;
36
- while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
37
- oldval = readback;
38
- newval = oldval;
39
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
40
- if (newval == oldval) {
41
- return;
42
- }
43
- }
44
- }
45
- else if (sizeof(T) == 8) {
46
- unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
47
- unsigned long long newval = oldval;
48
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
49
- if (newval == oldval) {
50
- return;
51
- }
52
- unsigned long long readback;
53
- while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
54
- oldval = readback;
55
- newval = oldval;
56
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
57
- if (newval == oldval) {
58
- return;
59
- }
60
- }
61
- }
62
- else {
63
- gpu_assert(0 && "Wordsize not supported");
64
- }
65
- #else // EIGEN_CUDA_ARCH >= 300
66
- gpu_assert(0 && "Shouldn't be called on unsupported device");
67
- #endif // EIGEN_CUDA_ARCH >= 300
68
- }
69
-
70
- // We extend atomicExch to support extra data types
71
- template <typename Type>
72
- __device__ inline Type atomicExchCustom(Type* address, Type val) {
73
- return atomicExch(address, val);
74
- }
75
-
76
- template <>
77
- __device__ inline double atomicExchCustom(double* address, double val) {
78
- unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address);
79
- return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
80
- }
81
-
82
- #ifdef EIGEN_HAS_GPU_FP16
83
- template <typename R>
84
- __device__ inline void atomicReduce(half2* output, half2 accum, R& reducer) {
85
- unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
86
- unsigned int newval = oldval;
87
- reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
88
- if (newval == oldval) {
89
- return;
90
- }
91
- unsigned int readback;
92
- while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
93
- oldval = readback;
94
- newval = oldval;
95
- reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
96
- if (newval == oldval) {
97
- return;
98
- }
99
- }
100
- }
101
- // reduction should be associative since reduction is not atomic in wide vector but atomic in half2 operations
102
- template <typename R>
103
- __device__ inline void atomicReduce(Packet4h2* output, Packet4h2 accum, R& reducer) {
104
- half2* houtput=reinterpret_cast<half2*>(output);
105
- half2* haccum=reinterpret_cast<half2*>(&accum);
106
- for(int i=0;i<4;++i){
107
- atomicReduce(houtput+i,*(haccum+i),reducer);
108
- }
109
- }
110
- #endif // EIGEN_HAS_GPU_FP16
111
-
112
- template <>
113
- __device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
114
- #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
115
- atomicAdd(output, accum);
116
- #else // EIGEN_CUDA_ARCH >= 300
117
- gpu_assert(0 && "Shouldn't be called on unsupported device");
118
- #endif // EIGEN_CUDA_ARCH >= 300
119
- }
120
-
121
-
122
- template <typename CoeffType, typename Index>
123
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
124
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
125
- const Index num_threads = blockDim.x * gridDim.x;
126
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
127
- output[i] = val;
128
- }
129
- }
130
-
131
-
132
- template <int BlockSize, int NumPerThread, typename Self,
133
- typename Reducer, typename Index>
134
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
135
- typename Self::CoeffReturnType* output, unsigned int* semaphore) {
136
- #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
137
- // Initialize the output value
138
- const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
139
- if (gridDim.x == 1) {
140
- if (first_index == 0) {
141
- *output = reducer.initialize();
142
- }
143
- }
144
- else {
145
- if (threadIdx.x == 0) {
146
- unsigned int block = atomicCAS(semaphore, 0u, 1u);
147
- if (block == 0) {
148
- // We're the first block to run, initialize the output value
149
- atomicExchCustom(output, reducer.initialize());
150
- __threadfence();
151
- atomicExch(semaphore, 2u);
152
- }
153
- else {
154
- // Wait for the first block to initialize the output value.
155
- // Use atomicCAS here to ensure that the reads aren't cached
156
- unsigned int val;
157
- do {
158
- val = atomicCAS(semaphore, 2u, 2u);
159
- }
160
- while (val < 2u);
161
- }
162
- }
163
- }
164
-
165
- __syncthreads();
166
-
167
- eigen_assert(gridDim.x == 1 || *semaphore >= 2u);
168
-
169
- typename Self::CoeffReturnType accum = reducer.initialize();
170
- Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
171
- for (Index i = 0; i < max_iter; i+=BlockSize) {
172
- const Index index = first_index + i;
173
- eigen_assert(index < num_coeffs);
174
- typename Self::CoeffReturnType val = input.m_impl.coeff(index);
175
- reducer.reduce(val, &accum);
176
- }
177
-
178
- #pragma unroll
179
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
180
- #if defined(EIGEN_HIPCC)
181
- // use std::is_floating_point to determine the type of reduced_val
182
- // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error
183
- // and list the float and int versions of __shfl_down as the candidate functions.
184
- if (std::is_floating_point<typename Self::CoeffReturnType>::value) {
185
- reducer.reduce(__shfl_down(static_cast<float>(accum), offset, warpSize), &accum);
186
- } else {
187
- reducer.reduce(__shfl_down(static_cast<int>(accum), offset, warpSize), &accum);
188
- }
189
- #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
190
- reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
191
- #else
192
- reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum);
193
- #endif
194
- }
195
-
196
- if ((threadIdx.x & (warpSize - 1)) == 0) {
197
- atomicReduce(output, accum, reducer);
198
- }
199
-
200
- if (gridDim.x > 1 && threadIdx.x == 0) {
201
- // Let the last block reset the semaphore
202
- atomicInc(semaphore, gridDim.x + 1);
203
- #if defined(EIGEN_HIPCC)
204
- __threadfence_system();
205
- #endif
206
- }
207
- #else // EIGEN_CUDA_ARCH >= 300
208
- gpu_assert(0 && "Shouldn't be called on unsupported device");
209
- #endif // EIGEN_CUDA_ARCH >= 300
210
- }
211
-
212
-
213
- #ifdef EIGEN_HAS_GPU_FP16
214
- template <typename Self,
215
- typename Reducer, typename Index>
216
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
217
- packet_traits<Eigen::half>::type* scratch) {
218
- eigen_assert(blockDim.x == 1);
219
- eigen_assert(gridDim.x == 1);
220
- typedef packet_traits<Eigen::half>::type packet_type;
221
- Index packet_remainder =
222
- num_coeffs % Index(unpacket_traits<packet_type>::size);
223
- if (packet_remainder != 0) {
224
- half2* h2scratch = reinterpret_cast<half2*>(scratch);
225
- for (Index i = num_coeffs - packet_remainder; i + 2 <= num_coeffs; i += 2) {
226
- *h2scratch =
227
- __halves2half2(input.m_impl.coeff(i), input.m_impl.coeff(i + 1));
228
- h2scratch++;
229
- }
230
- if ((num_coeffs & 1) != 0) {
231
- half lastCoeff = input.m_impl.coeff(num_coeffs - 1);
232
- *h2scratch = __halves2half2(lastCoeff, reducer.initialize());
233
- }
234
- } else {
235
- *scratch = reducer.template initializePacket<packet_type>();
236
- }
237
- }
238
-
239
- template <typename Self,
240
- typename Reducer, typename Index>
241
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
242
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
243
- const Index num_threads = blockDim.x * gridDim.x;
244
- typedef typename packet_traits<Eigen::half>::type PacketType;
245
-
246
- const Index num_packets =
247
- num_coeffs / Index(unpacket_traits<PacketType>::size);
248
- PacketType* p_output = reinterpret_cast<PacketType*>(output);
249
- for (Index i = thread_id; i < num_packets; i += num_threads) {
250
- p_output[i] = reducer.template initializePacket<PacketType>();
251
- }
252
- Index packet_remainder =
253
- num_coeffs % Index(unpacket_traits<PacketType>::size);
254
- if (thread_id < packet_remainder) {
255
- output[num_coeffs - packet_remainder + thread_id] = reducer.initialize();
256
- }
257
- }
258
-
259
- template <int BlockSize, int NumPerThread, typename Self,
260
- typename Reducer, typename Index>
261
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
262
- half* output, packet_traits<Eigen::half>::type* scratch) {
263
- typedef typename packet_traits<Eigen::half>::type PacketType;
264
- const int packet_width = unpacket_traits<PacketType>::size;
265
- eigen_assert(NumPerThread % packet_width == 0);
266
- const Index first_index =
267
- blockIdx.x * BlockSize * NumPerThread + packet_width * threadIdx.x;
268
-
269
- // Initialize the output value if it wasn't initialized by the ReductionInitKernel
270
-
271
- if (gridDim.x == 1) {
272
- if (first_index == 0) {
273
- int rem = num_coeffs % packet_width;
274
- if (rem != 0) {
275
- half2* p_scratch = reinterpret_cast<half2*>(scratch);
276
- *scratch = reducer.template initializePacket<PacketType>();
277
- for (int i = 0; i < rem / 2; i++) {
278
- *p_scratch = __halves2half2(
279
- input.m_impl.coeff(num_coeffs - packet_width + 2 * i),
280
- input.m_impl.coeff(num_coeffs - packet_width + 2 * i + 1));
281
- p_scratch++;
282
- }
283
- if ((num_coeffs & 1) != 0) {
284
- half last = input.m_impl.coeff(num_coeffs - 1);
285
- *p_scratch = __halves2half2(last, reducer.initialize());
286
- }
287
- } else {
288
- *scratch = reducer.template initializePacket<PacketType>();
289
- }
290
- }
291
- __syncthreads();
292
- }
293
-
294
- PacketType accum = reducer.template initializePacket<PacketType>();
295
- const Index max_iter =
296
- numext::mini<Index>((num_coeffs - first_index) / packet_width,
297
- NumPerThread * BlockSize / packet_width);
298
- for (Index i = 0; i < max_iter; i += BlockSize) {
299
- const Index index = first_index + packet_width * i;
300
- eigen_assert(index + packet_width < num_coeffs);
301
- PacketType val = input.m_impl.template packet<Unaligned>(index);
302
- reducer.reducePacket(val, &accum);
303
- }
304
-
305
- #pragma unroll
306
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
307
- #if defined(EIGEN_HIPCC)
308
- PacketType r1;
309
- half2* hr = reinterpret_cast<half2*>(&r1);
310
- half2* hacc = reinterpret_cast<half2*>(&accum);
311
- for (int i = 0; i < packet_width / 2; i++) {
312
- // FIXME : remove this workaround once we have native half/half2 support for __shfl_down
313
- union { int i; half2 h; } wka_in, wka_out;
314
- wka_in.h = hacc[i];
315
- wka_out.i = __shfl_down(wka_in.i, offset, warpSize);
316
- hr[i] = wka_out.h;
317
- }
318
- reducer.reducePacket(r1, &accum);
319
- #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
320
- PacketType r1;
321
- half2* hr = reinterpret_cast<half2*>(&r1);
322
- half2* hacc = reinterpret_cast<half2*>(&accum);
323
- for (int i = 0; i < packet_width / 2; i++) {
324
- hr[i] = __shfl_down(hacc[i], offset, warpSize);
325
- }
326
- reducer.reducePacket(r1, &accum);
327
- #else
328
- PacketType r1;
329
- half2* hr = reinterpret_cast<half2*>(&r1);
330
- half2* hacc = reinterpret_cast<half2*>(&accum);
331
- for (int i = 0; i < packet_width / 2; i++) {
332
- hr[i] = __shfl_down_sync(0xFFFFFFFF, hacc[i], (unsigned)offset, warpSize);
333
- }
334
- reducer.reducePacket(r1, &accum);
335
-
336
- #endif
337
- }
338
-
339
- if ((threadIdx.x & (warpSize - 1)) == 0) {
340
- atomicReduce(scratch, accum, reducer);
341
- }
342
-
343
- __syncthreads();
344
- half2* rv1 = reinterpret_cast<half2*>(scratch);
345
- if (packet_width > 2) {
346
- reducer.reducePacket(rv1[2], rv1);
347
- reducer.reducePacket(rv1[3], rv1 + 1);
348
- reducer.reducePacket(rv1[1], rv1);
349
- }
350
- if (gridDim.x == 1) {
351
- if (first_index == 0) {
352
- half tmp = __low2half(*rv1);
353
- reducer.reduce(__high2half(*rv1), &tmp);
354
- *output = tmp;
355
- }
356
- }
357
- }
358
-
359
- template <typename Op>
360
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionCleanupKernelHalfFloat(Op reducer, half* output, packet_traits<Eigen::half>::type* scratch) {
361
- eigen_assert(threadIdx.x == 1);
362
- half2* pscratch = reinterpret_cast<half2*>(scratch);
363
- half tmp = __float2half(0.f);
364
- typedef packet_traits<Eigen::half>::type packet_type;
365
- for (int i = 0; i < unpacket_traits<packet_type>::size; i += 2) {
366
- reducer.reduce(__low2half(*pscratch), &tmp);
367
- reducer.reduce(__high2half(*pscratch), &tmp);
368
- pscratch++;
369
- }
370
- *output = tmp;
371
- }
372
-
373
- #endif // EIGEN_HAS_GPU_FP16
374
-
375
- template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
376
- struct FullReductionLauncher {
377
- static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
378
- gpu_assert(false && "Should only be called on doubles, floats and half floats");
379
- }
380
- };
381
-
382
- // Specialization for float and double
383
- template <typename Self, typename Op, typename OutputType, bool PacketAccess>
384
- struct FullReductionLauncher<
385
- Self, Op, OutputType, PacketAccess,
386
- typename internal::enable_if<
387
- internal::is_same<float, OutputType>::value ||
388
- internal::is_same<double, OutputType>::value,
389
- void>::type> {
390
- static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {
391
-
392
- typedef typename Self::Index Index;
393
- const int block_size = 256;
394
- const int num_per_thread = 128;
395
- const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
396
-
397
- unsigned int* semaphore = NULL;
398
- if (num_blocks > 1) {
399
- semaphore = device.semaphore();
400
- }
401
-
402
- LAUNCH_GPU_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
403
- num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
404
- }
405
- };
406
-
407
- #ifdef EIGEN_HAS_GPU_FP16
408
- template <typename Self, typename Op>
409
- struct FullReductionLauncher<Self, Op, Eigen::half, false> {
410
- static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
411
- gpu_assert(false && "Should not be called since there is no packet accessor");
412
- }
413
- };
414
-
415
- template <typename Self, typename Op>
416
- struct FullReductionLauncher<Self, Op, Eigen::half, true> {
417
- static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) {
418
- typedef typename Self::Index Index;
419
- typedef typename packet_traits<Eigen::half>::type PacketType;
420
-
421
- const int block_size = 256;
422
- const int num_per_thread = 128;
423
- const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
424
- PacketType* scratch = static_cast<PacketType*>(device.scratchpad());
425
- // half2* scratch = static_cast<half2*>(device.scratchpad());
426
-
427
- if (num_blocks > 1) {
428
- // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
429
- // won't be a race conditions between multiple thread blocks.
430
- LAUNCH_GPU_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
431
- 1, 1, 0, device, reducer, self, num_coeffs, scratch);
432
- }
433
-
434
- LAUNCH_GPU_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
435
- num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);
436
-
437
- if (num_blocks > 1) {
438
- LAUNCH_GPU_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
439
- 1, 1, 0, device, reducer, output, scratch);
440
- }
441
- }
442
- };
443
- #endif // EIGEN_HAS_GPU_FP16
444
-
445
-
446
- template <typename Self, typename Op, bool Vectorizable>
447
- struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
448
- // Unfortunately nvidia doesn't support well exotic types such as complex,
449
- // so reduce the scope of the optimized version of the code to the simple cases
450
- // of doubles, floats and half floats
451
- #ifdef EIGEN_HAS_GPU_FP16
452
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
453
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
454
- internal::is_same<typename Self::CoeffReturnType, double>::value ||
455
- (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
456
- #else // EIGEN_HAS_GPU_FP16
457
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
458
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
459
- internal::is_same<typename Self::CoeffReturnType, double>::value);
460
- #endif // EIGEN_HAS_GPU_FP16
461
-
462
- template <typename OutputType>
463
- static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
464
- gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
465
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
466
- // Don't crash when we're called with an input tensor of size 0.
467
- if (num_coeffs == 0) {
468
- return;
469
- }
470
-
471
- FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
472
- }
473
- };
474
-
475
-
476
- template <int NumPerThread, typename Self,
477
- typename Reducer, typename Index>
478
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
479
- typename Self::CoeffReturnType* output) {
480
- #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
481
- typedef typename Self::CoeffReturnType Type;
482
- eigen_assert(blockDim.y == 1);
483
- eigen_assert(blockDim.z == 1);
484
- eigen_assert(gridDim.y == 1);
485
- eigen_assert(gridDim.z == 1);
486
-
487
- const int unroll_times = 16;
488
- eigen_assert(NumPerThread % unroll_times == 0);
489
-
490
- const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
491
- const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
492
-
493
- const Index num_threads = blockDim.x * gridDim.x;
494
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
495
-
496
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
497
- if (gridDim.x == 1) {
498
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
499
- output[i] = reducer.initialize();
500
- }
501
- __syncthreads();
502
- }
503
-
504
- for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
505
- const Index row = i / input_col_blocks;
506
-
507
- if (row < num_preserved_coeffs) {
508
- const Index col_block = i % input_col_blocks;
509
- const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
510
-
511
- Type reduced_val = reducer.initialize();
512
-
513
- for (Index j = 0; j < NumPerThread; j += unroll_times) {
514
- const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
515
- if (last_col >= num_coeffs_to_reduce) {
516
- for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
517
- const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
518
- reducer.reduce(val, &reduced_val);
519
- }
520
- break;
521
- } else {
522
- // Faster version of the loop with no branches after unrolling.
523
- #pragma unroll
524
- for (int k = 0; k < unroll_times; ++k) {
525
- const Index col = col_begin + blockDim.x * (j + k);
526
- reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
527
- }
528
- }
529
- }
530
-
531
- #pragma unroll
532
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
533
- #if defined(EIGEN_HIPCC)
534
- // use std::is_floating_point to determine the type of reduced_val
535
- // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error
536
- // and list the float and int versions of __shfl_down as the candidate functions.
537
- if (std::is_floating_point<Type>::value) {
538
- reducer.reduce(__shfl_down(static_cast<float>(reduced_val), offset), &reduced_val);
539
- } else {
540
- reducer.reduce(__shfl_down(static_cast<int>(reduced_val), offset), &reduced_val);
541
- }
542
- #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
543
- reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
544
- #else
545
- reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val);
546
- #endif
547
- }
548
-
549
- if ((threadIdx.x & (warpSize - 1)) == 0) {
550
- atomicReduce(&(output[row]), reduced_val, reducer);
551
- }
552
- }
553
- }
554
- #else // EIGEN_CUDA_ARCH >= 300
555
- gpu_assert(0 && "Shouldn't be called on unsupported device");
556
- #endif // EIGEN_CUDA_ARCH >= 300
557
- }
558
-
559
- #ifdef EIGEN_HAS_GPU_FP16
560
-
561
- template <int NumPerThread, typename Self,
562
- typename Reducer, typename Index>
563
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
564
- half* output) {
565
- eigen_assert(blockDim.y == 1);
566
- eigen_assert(blockDim.z == 1);
567
- eigen_assert(gridDim.y == 1);
568
- eigen_assert(gridDim.z == 1);
569
-
570
- typedef typename packet_traits<Eigen::half>::type PacketType;
571
- const int packet_width = unpacket_traits<PacketType>::size;
572
- const int unroll_times = 16 / packet_width;
573
- eigen_assert(NumPerThread % unroll_times == 0);
574
- eigen_assert(unroll_times % 2 == 0);
575
-
576
- const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
577
- const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
578
-
579
- const Index num_threads = blockDim.x * gridDim.x;
580
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
581
-
582
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
583
- if (gridDim.x == 1) {
584
- Index i = packet_width * thread_id;
585
- for (; i + packet_width <= num_preserved_coeffs;
586
- i += packet_width * num_threads) {
587
- PacketType* poutput = reinterpret_cast<PacketType*>(output + i);
588
- *poutput = reducer.template initializePacket<PacketType>();
589
- }
590
- if (i < num_preserved_coeffs) {
591
- output[i] = reducer.initialize();
592
- }
593
- __syncthreads();
594
- }
595
-
596
- for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
597
- const Index row = 2 * (i / input_col_blocks); // everybody takes 2 rows
598
-
599
- if (row + 1 < num_preserved_coeffs) {
600
- const Index col_block = i % input_col_blocks;
601
- const Index col_begin =
602
- packet_width * (col_block * blockDim.x * NumPerThread + threadIdx.x);
603
-
604
- PacketType reduced_val1 = reducer.template initializePacket<PacketType>();
605
- PacketType reduced_val2 = reducer.template initializePacket<PacketType>();
606
-
607
- for (Index j = 0; j < NumPerThread; j += unroll_times) {
608
- const Index last_col =
609
- col_begin + blockDim.x * (j + unroll_times - 1) * packet_width;
610
- if (last_col >= num_coeffs_to_reduce) {
611
- Index col = col_begin + blockDim.x * j;
612
- for (; col + packet_width <= num_coeffs_to_reduce;
613
- col += blockDim.x) {
614
- const PacketType val1 = input.m_impl.template packet<Unaligned>(
615
- row * num_coeffs_to_reduce + col);
616
- reducer.reducePacket(val1, &reduced_val1);
617
- const PacketType val2 = input.m_impl.template packet<Unaligned>(
618
- (row + 1) * num_coeffs_to_reduce + col);
619
- reducer.reducePacket(val2, &reduced_val2);
620
- }
621
- if (col < num_coeffs_to_reduce) {
622
- PacketType r1 = reducer.template initializePacket<PacketType>();
623
- PacketType r2 = reducer.template initializePacket<PacketType>();
624
- half2* hr1 = reinterpret_cast<half2*>(&r1);
625
- half2* hr2 = reinterpret_cast<half2*>(&r2);
626
- while (col + 1 < num_coeffs_to_reduce) {
627
- *hr1 = __halves2half2(
628
- input.m_impl.coeff(row * num_coeffs_to_reduce + col),
629
- input.m_impl.coeff(row * num_coeffs_to_reduce + col + 1));
630
- *hr2 = __halves2half2(
631
- input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col),
632
- input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col +
633
- 1));
634
- hr1++;
635
- hr2++;
636
- col += 2;
637
- }
638
- if (col < num_coeffs_to_reduce) {
639
- // Peel;
640
- const half last1 =
641
- input.m_impl.coeff(row * num_coeffs_to_reduce + col);
642
- *hr1 = __halves2half2(last1, reducer.initialize());
643
- const half last2 =
644
- input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col);
645
- *hr2 = __halves2half2(last2, reducer.initialize());
646
- }
647
- reducer.reducePacket(r1, &reduced_val1);
648
- reducer.reducePacket(r2, &reduced_val2);
649
- }
650
- break;
651
- } else {
652
- // Faster version of the loop with no branches after unrolling.
653
- #pragma unroll
654
- for (int k = 0; k < unroll_times; ++k) {
655
- const Index col = col_begin + blockDim.x * (j + k) * packet_width;
656
- reducer.reducePacket(input.m_impl.template packet<Unaligned>(
657
- row * num_coeffs_to_reduce + col),
658
- &reduced_val1);
659
- reducer.reducePacket(input.m_impl.template packet<Unaligned>(
660
- (row + 1) * num_coeffs_to_reduce + col),
661
- &reduced_val2);
662
- }
663
- }
664
- }
665
-
666
- #pragma unroll
667
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
668
- #if defined(EIGEN_HIPCC)
669
- PacketType r1;
670
- PacketType r2;
671
- half2* hr1 = reinterpret_cast<half2*>(&r1);
672
- half2* hr2 = reinterpret_cast<half2*>(&r2);
673
- half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
674
- half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
675
- for (int i = 0; i < packet_width / 2; i++) {
676
- // FIXME : remove this workaround once we have native half/half2 support for __shfl_down
677
- union { int i; half2 h; } wka_in1, wka_out1;
678
- wka_in1.h = rv1[i];
679
- wka_out1.i = __shfl_down(wka_in1.i, offset, warpSize);
680
- hr1[i] = wka_out1.h;
681
-
682
- union { int i; half2 h; } wka_in2, wka_out2;
683
- wka_in2.h = rv2[i];
684
- wka_out2.i = __shfl_down(wka_in2.i, offset, warpSize);
685
- hr2[i] = wka_out2.h;
686
- }
687
- reducer.reducePacket(r1, &reduced_val1);
688
- reducer.reducePacket(r2, &reduced_val2);
689
- #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
690
- PacketType r1;
691
- PacketType r2;
692
- half2* hr1 = reinterpret_cast<half2*>(&r1);
693
- half2* hr2 = reinterpret_cast<half2*>(&r2);
694
- half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
695
- half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
696
- for (int i = 0; i < packet_width / 2; i++) {
697
- hr1[i] = __shfl_down(rv1[i], offset, warpSize);
698
- hr2[i] = __shfl_down(rv2[i], offset, warpSize);
699
- }
700
- reducer.reducePacket(r1, &reduced_val1);
701
- reducer.reducePacket(r2, &reduced_val2);
702
- #else
703
- PacketType r1;
704
- PacketType r2;
705
- half2* hr1 = reinterpret_cast<half2*>(&r1);
706
- half2* hr2 = reinterpret_cast<half2*>(&r2);
707
- half2* rr1 = reinterpret_cast<half2*>(&reduced_val1);
708
- half2* rr2 = reinterpret_cast<half2*>(&reduced_val2);
709
- for (int i = 0; i < packet_width / 2; i++) {
710
- hr1[i] =
711
- __shfl_down_sync(0xFFFFFFFF, rr1[i], (unsigned)offset, warpSize);
712
- hr2[i] =
713
- __shfl_down_sync(0xFFFFFFFF, rr2[i], (unsigned)offset, warpSize);
714
- }
715
- reducer.reducePacket(r1, &reduced_val1);
716
- reducer.reducePacket(r2, &reduced_val2);
717
-
718
- #endif
719
- }
720
- half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
721
- half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
722
- half2 val;
723
- if (packet_width > 2) {
724
- reducer.reducePacket(rv1[2], rv1);
725
- reducer.reducePacket(rv1[3], rv1 + 1);
726
- reducer.reducePacket(rv1[1], rv1);
727
- reducer.reducePacket(rv2[2], rv2);
728
- reducer.reducePacket(rv2[3], rv2 + 1);
729
- reducer.reducePacket(rv2[1], rv2);
730
- }
731
- half val1 = __low2half(*rv1);
732
- reducer.reduce(__high2half(*rv1), &val1);
733
- half val2 = __low2half(*rv2);
734
- reducer.reduce(__high2half(*rv2), &val2);
735
- val = __halves2half2(val1, val2);
736
- if ((threadIdx.x & (warpSize - 1)) == 0) {
737
- half* loc = output + row;
738
- atomicReduce((half2*)loc, val, reducer);
739
- }
740
- }
741
- }
742
- }
743
-
744
- #endif // EIGEN_HAS_GPU_FP16
745
-
746
- template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
747
- struct InnerReductionLauncher {
748
- static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
749
- gpu_assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
750
- return true;
751
- }
752
- };
753
-
754
- // Specialization for float and double
755
- template <typename Self, typename Op, typename OutputType, bool PacketAccess>
756
- struct InnerReductionLauncher<
757
- Self, Op, OutputType, PacketAccess,
758
- typename internal::enable_if<
759
- internal::is_same<float, OutputType>::value ||
760
- internal::is_same<double, OutputType>::value,
761
- void>::type> {
762
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
763
- typedef typename Self::Index Index;
764
-
765
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
766
- const int block_size = 256;
767
- const int num_per_thread = 128;
768
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
769
- const int max_blocks = device.getNumGpuMultiProcessors() *
770
- device.maxGpuThreadsPerMultiProcessor() / block_size;
771
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
772
-
773
- if (num_blocks > 1) {
774
- // We initialize the outputs outside the reduction kernel when we can't be sure that there
775
- // won't be a race conditions between multiple thread blocks.
776
- const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
777
- const int max_blocks = device.getNumGpuMultiProcessors() *
778
- device.maxGpuThreadsPerMultiProcessor() / 1024;
779
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
780
- LAUNCH_GPU_KERNEL((ReductionInitKernel<OutputType, Index>),
781
- num_blocks, 1024, 0, device, reducer.initialize(),
782
- num_preserved_vals, output);
783
- }
784
-
785
- LAUNCH_GPU_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
786
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
787
-
788
- return false;
789
- }
790
- };
791
-
792
- #ifdef EIGEN_HAS_GPU_FP16
793
- template <typename Self, typename Op>
794
- struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
795
- static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
796
- gpu_assert(false && "Should not be called since there is no packet accessor");
797
- return true;
798
- }
799
- };
800
-
801
- template <typename Self, typename Op>
802
- struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
803
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
804
- typedef typename Self::Index Index;
805
-
806
- if (num_preserved_vals % 2 != 0) {
807
- // Not supported yet, revert to the slower code path
808
- return true;
809
- }
810
-
811
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
812
- const int block_size = /*256*/128;
813
- const int num_per_thread = /*128*/64;
814
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
815
- const int max_blocks = device.getNumGpuMultiProcessors() *
816
- device.maxGpuThreadsPerMultiProcessor() / block_size;
817
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
818
-
819
- if (num_blocks > 1) {
820
- // We initialize the outputs outside the reduction kernel when we can't be sure that there
821
- // won't be a race conditions between multiple thread blocks.
822
- LAUNCH_GPU_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
823
- 1, 1, 0, device, reducer, self, num_preserved_vals, output);
824
- }
825
-
826
- LAUNCH_GPU_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
827
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
828
-
829
- return false;
830
- }
831
- };
832
- #endif // EIGEN_HAS_GPU_FP16
833
-
834
-
835
- template <typename Self, typename Op>
836
- struct InnerReducer<Self, Op, GpuDevice> {
837
- // Unfortunately nvidia doesn't support well exotic types such as complex,
838
- // so reduce the scope of the optimized version of the code to the simple case
839
- // of floats and half floats.
840
- #ifdef EIGEN_HAS_GPU_FP16
841
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
842
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
843
- internal::is_same<typename Self::CoeffReturnType, double>::value ||
844
- (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
845
- #else // EIGEN_HAS_GPU_FP16
846
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
847
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
848
- internal::is_same<typename Self::CoeffReturnType, double>::value);
849
- #endif // EIGEN_HAS_GPU_FP16
850
-
851
- template <typename OutputType>
852
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
853
- gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
854
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
855
- // Don't crash when we're called with an input tensor of size 0.
856
- if (num_coeffs == 0) {
857
- return true;
858
- }
859
- // It's faster to use the usual code.
860
- if (num_coeffs_to_reduce <= 128) {
861
- return true;
862
- }
863
-
864
- return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
865
- }
866
- };
867
-
868
- template <int NumPerThread, typename Self,
869
- typename Reducer, typename Index>
870
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
871
- typename Self::CoeffReturnType* output) {
872
- const Index num_threads = blockDim.x * gridDim.x;
873
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
874
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
875
- if (gridDim.x == 1) {
876
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
877
- output[i] = reducer.initialize();
878
- }
879
- __syncthreads();
880
- }
881
-
882
- // Do the reduction.
883
- const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
884
- for (Index i = thread_id; i < max_iter; i += num_threads) {
885
- const Index input_col = i % num_preserved_coeffs;
886
- const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
887
- typename Self::CoeffReturnType reduced_val = reducer.initialize();
888
- const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
889
- for (Index j = input_row; j < max_row; j++) {
890
- typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
891
- reducer.reduce(val, &reduced_val);
892
- }
893
- atomicReduce(&(output[input_col]), reduced_val, reducer);
894
- }
895
- }
896
-
897
-
898
- template <typename Self, typename Op>
899
- struct OuterReducer<Self, Op, GpuDevice> {
900
- // Unfortunately nvidia doesn't support well exotic types such as complex,
901
- // so reduce the scope of the optimized version of the code to the simple case
902
- // of floats.
903
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
904
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
905
- internal::is_same<typename Self::CoeffReturnType, double>::value);
906
- template <typename Device, typename OutputType>
907
- static
908
- #if !defined(EIGEN_HIPCC)
909
- // FIXME : leaving this EIGEN_DEVICE_FUNC in, results in the following runtime error
910
- // (in the cxx11_tensor_reduction_gpu test)
911
- //
912
- // terminate called after throwing an instance of 'std::runtime_error'
913
- // what(): No device code available for function: _ZN5Eigen8internal20OuterReductionKernelIL...
914
- //
915
- // don't know why this happens (and why is it a runtime error instead of a compile time error)
916
- //
917
- // this will be fixed by HIP PR#457
918
- EIGEN_DEVICE_FUNC
919
- #endif
920
- bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
921
- gpu_assert(false && "Should only be called to reduce doubles or floats on a gpu device");
922
- return true;
923
- }
924
-
925
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
926
- typedef typename Self::Index Index;
927
-
928
- // It's faster to use the usual code.
929
- if (num_coeffs_to_reduce <= 32) {
930
- return true;
931
- }
932
-
933
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
934
- const int block_size = 256;
935
- const int num_per_thread = 16;
936
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
937
- const int max_blocks = device.getNumGpuMultiProcessors() *
938
- device.maxGpuThreadsPerMultiProcessor() / block_size;
939
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
940
-
941
- if (num_blocks > 1) {
942
- // We initialize the outputs in the reduction kernel itself when we don't have to worry
943
- // about race conditions between multiple thread blocks.
944
- const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
945
- const int max_blocks = device.getNumGpuMultiProcessors() *
946
- device.maxGpuThreadsPerMultiProcessor() / 1024;
947
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
948
- LAUNCH_GPU_KERNEL((ReductionInitKernel<float, Index>),
949
- num_blocks, 1024, 0, device, reducer.initialize(),
950
- num_preserved_vals, output);
951
- }
952
-
953
- LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
954
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
955
-
956
- return false;
957
- }
958
- };
959
-
960
- #endif // defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
961
-
962
-
963
- } // end namespace internal
964
- } // end namespace Eigen
965
-
966
- #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H