senoquant 1.0.0b1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- senoquant/__init__.py +6 -0
- senoquant/_reader.py +7 -0
- senoquant/_widget.py +33 -0
- senoquant/napari.yaml +83 -0
- senoquant/reader/__init__.py +5 -0
- senoquant/reader/core.py +369 -0
- senoquant/tabs/__init__.py +15 -0
- senoquant/tabs/batch/__init__.py +10 -0
- senoquant/tabs/batch/backend.py +641 -0
- senoquant/tabs/batch/config.py +270 -0
- senoquant/tabs/batch/frontend.py +1283 -0
- senoquant/tabs/batch/io.py +326 -0
- senoquant/tabs/batch/layers.py +86 -0
- senoquant/tabs/quantification/__init__.py +1 -0
- senoquant/tabs/quantification/backend.py +228 -0
- senoquant/tabs/quantification/features/__init__.py +80 -0
- senoquant/tabs/quantification/features/base.py +142 -0
- senoquant/tabs/quantification/features/marker/__init__.py +5 -0
- senoquant/tabs/quantification/features/marker/config.py +69 -0
- senoquant/tabs/quantification/features/marker/dialog.py +437 -0
- senoquant/tabs/quantification/features/marker/export.py +879 -0
- senoquant/tabs/quantification/features/marker/feature.py +119 -0
- senoquant/tabs/quantification/features/marker/morphology.py +285 -0
- senoquant/tabs/quantification/features/marker/rows.py +654 -0
- senoquant/tabs/quantification/features/marker/thresholding.py +46 -0
- senoquant/tabs/quantification/features/roi.py +346 -0
- senoquant/tabs/quantification/features/spots/__init__.py +5 -0
- senoquant/tabs/quantification/features/spots/config.py +62 -0
- senoquant/tabs/quantification/features/spots/dialog.py +477 -0
- senoquant/tabs/quantification/features/spots/export.py +1292 -0
- senoquant/tabs/quantification/features/spots/feature.py +112 -0
- senoquant/tabs/quantification/features/spots/morphology.py +279 -0
- senoquant/tabs/quantification/features/spots/rows.py +241 -0
- senoquant/tabs/quantification/frontend.py +815 -0
- senoquant/tabs/segmentation/__init__.py +1 -0
- senoquant/tabs/segmentation/backend.py +131 -0
- senoquant/tabs/segmentation/frontend.py +1009 -0
- senoquant/tabs/segmentation/models/__init__.py +5 -0
- senoquant/tabs/segmentation/models/base.py +146 -0
- senoquant/tabs/segmentation/models/cpsam/details.json +65 -0
- senoquant/tabs/segmentation/models/cpsam/model.py +150 -0
- senoquant/tabs/segmentation/models/default_2d/details.json +69 -0
- senoquant/tabs/segmentation/models/default_2d/model.py +664 -0
- senoquant/tabs/segmentation/models/default_3d/details.json +69 -0
- senoquant/tabs/segmentation/models/default_3d/model.py +682 -0
- senoquant/tabs/segmentation/models/hf.py +71 -0
- senoquant/tabs/segmentation/models/nuclear_dilation/__init__.py +1 -0
- senoquant/tabs/segmentation/models/nuclear_dilation/details.json +26 -0
- senoquant/tabs/segmentation/models/nuclear_dilation/model.py +96 -0
- senoquant/tabs/segmentation/models/perinuclear_rings/__init__.py +1 -0
- senoquant/tabs/segmentation/models/perinuclear_rings/details.json +34 -0
- senoquant/tabs/segmentation/models/perinuclear_rings/model.py +132 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/__init__.py +2 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/__init__.py +3 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/__init__.py +6 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/generate.py +470 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/prepare.py +273 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/rawdata.py +112 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/transform.py +384 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/__init__.py +0 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/blocks.py +184 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/losses.py +79 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/nets.py +165 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/predict.py +467 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/probability.py +67 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/train.py +148 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/io/__init__.py +163 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/__init__.py +52 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/base_model.py +329 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_isotropic.py +160 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_projection.py +178 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_standard.py +446 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_upsampling.py +54 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/config.py +254 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/pretrained.py +119 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/__init__.py +0 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/care_predict.py +180 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/__init__.py +5 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/plot_utils.py +159 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/six.py +18 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/tf.py +644 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/utils.py +272 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/version.py +1 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/docs/source/conf.py +368 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/setup.py +68 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_datagen.py +169 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_models.py +462 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_utils.py +166 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tools/create_zip_contents.py +34 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/__init__.py +30 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/big.py +624 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/bioimageio_utils.py +494 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/data/__init__.py +39 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/__init__.py +10 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom2d.py +215 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom3d.py +349 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/matching.py +483 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/__init__.py +28 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/base.py +1217 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model2d.py +594 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model3d.py +696 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/nms.py +384 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/__init__.py +2 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/plot.py +74 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/render.py +298 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/rays3d.py +373 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/sample_patches.py +65 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/__init__.py +0 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict2d.py +90 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict3d.py +93 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/utils.py +408 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/version.py +1 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/__init__.py +45 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/__init__.py +17 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/cli.py +55 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/core.py +285 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/__init__.py +15 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/cli.py +36 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/divisibility.py +193 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/probe.py +100 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/receptive_field.py +182 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/rf_cli.py +48 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/valid_sizes.py +278 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/__init__.py +8 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/core.py +157 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/__init__.py +17 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/core.py +226 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/__init__.py +5 -0
- senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/core.py +401 -0
- senoquant/tabs/settings/__init__.py +1 -0
- senoquant/tabs/settings/backend.py +29 -0
- senoquant/tabs/settings/frontend.py +19 -0
- senoquant/tabs/spots/__init__.py +1 -0
- senoquant/tabs/spots/backend.py +139 -0
- senoquant/tabs/spots/frontend.py +800 -0
- senoquant/tabs/spots/models/__init__.py +5 -0
- senoquant/tabs/spots/models/base.py +94 -0
- senoquant/tabs/spots/models/rmp/details.json +61 -0
- senoquant/tabs/spots/models/rmp/model.py +499 -0
- senoquant/tabs/spots/models/udwt/details.json +103 -0
- senoquant/tabs/spots/models/udwt/model.py +482 -0
- senoquant/utils.py +25 -0
- senoquant-1.0.0b1.dist-info/METADATA +193 -0
- senoquant-1.0.0b1.dist-info/RECORD +148 -0
- senoquant-1.0.0b1.dist-info/WHEEL +5 -0
- senoquant-1.0.0b1.dist-info/entry_points.txt +2 -0
- senoquant-1.0.0b1.dist-info/licenses/LICENSE +28 -0
- senoquant-1.0.0b1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,594 @@
|
|
|
1
|
+
from __future__ import print_function, unicode_literals, absolute_import, division
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import warnings
|
|
5
|
+
import math
|
|
6
|
+
from tqdm import tqdm
|
|
7
|
+
|
|
8
|
+
from csbdeep.models import BaseConfig
|
|
9
|
+
from csbdeep.internals.blocks import unet_block
|
|
10
|
+
from csbdeep.utils import _raise, backend_channels_last, axes_check_and_normalize, axes_dict
|
|
11
|
+
from csbdeep.utils.tf import keras_import, IS_TF_1, CARETensorBoard, CARETensorBoardImage, IS_KERAS_3_PLUS, BACKEND as K
|
|
12
|
+
from skimage.segmentation import clear_border
|
|
13
|
+
from skimage.measure import regionprops
|
|
14
|
+
from scipy.ndimage import zoom
|
|
15
|
+
from packaging.version import Version
|
|
16
|
+
|
|
17
|
+
keras = keras_import()
|
|
18
|
+
Input, Conv2D, MaxPooling2D = keras_import('layers', 'Input', 'Conv2D', 'MaxPooling2D')
|
|
19
|
+
Model = keras_import('models', 'Model')
|
|
20
|
+
|
|
21
|
+
from .base import StarDistBase, StarDistDataBase, _tf_version_at_least
|
|
22
|
+
from ..sample_patches import sample_patches
|
|
23
|
+
from ..utils import edt_prob, _normalize_grid, mask_to_categorical
|
|
24
|
+
from ..geometry import star_dist, dist_to_coord, polygons_to_label
|
|
25
|
+
from ..nms import non_maximum_suppression, non_maximum_suppression_sparse
|
|
26
|
+
|
|
27
|
+
_gen_rtype = list if IS_TF_1 else tuple
|
|
28
|
+
|
|
29
|
+
class StarDistData2D(StarDistDataBase):
|
|
30
|
+
|
|
31
|
+
def __init__(self, X, Y, batch_size, n_rays, length,
|
|
32
|
+
n_classes=None, classes=None,
|
|
33
|
+
patch_size=(256,256), b=32, grid=(1,1), shape_completion=False, augmenter=None, foreground_prob=0, **kwargs):
|
|
34
|
+
|
|
35
|
+
super().__init__(X=X, Y=Y, n_rays=n_rays, grid=grid,
|
|
36
|
+
n_classes=n_classes, classes=classes,
|
|
37
|
+
batch_size=batch_size, patch_size=patch_size, length=length,
|
|
38
|
+
augmenter=augmenter, foreground_prob=foreground_prob, **kwargs)
|
|
39
|
+
|
|
40
|
+
self.shape_completion = bool(shape_completion)
|
|
41
|
+
if self.shape_completion and b > 0:
|
|
42
|
+
if not all(b % g == 0 for g in self.grid):
|
|
43
|
+
raise ValueError(f"'shape_completion' requires that crop size {b} ('train_completion_crop' in config) is evenly divisible by all grid values {self.grid}")
|
|
44
|
+
self.b = slice(b,-b),slice(b,-b)
|
|
45
|
+
else:
|
|
46
|
+
self.b = slice(None),slice(None)
|
|
47
|
+
|
|
48
|
+
self.sd_mode = 'opencl' if self.use_gpu else 'cpp'
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def __getitem__(self, i):
|
|
52
|
+
idx = self.batch(i)
|
|
53
|
+
arrays = [sample_patches((self.Y[k],) + self.channels_as_tuple(self.X[k]),
|
|
54
|
+
patch_size=self.patch_size, n_samples=1,
|
|
55
|
+
valid_inds=self.get_valid_inds(k)) for k in idx]
|
|
56
|
+
|
|
57
|
+
if self.n_channel is None:
|
|
58
|
+
X, Y = list(zip(*[(x[0][self.b],y[0]) for y,x in arrays]))
|
|
59
|
+
else:
|
|
60
|
+
X, Y = list(zip(*[(np.stack([_x[0] for _x in x],axis=-1)[self.b], y[0]) for y,*x in arrays]))
|
|
61
|
+
|
|
62
|
+
X, Y = tuple(zip(*tuple(self.augmenter(_x, _y) for _x, _y in zip(X,Y))))
|
|
63
|
+
|
|
64
|
+
mask_neg_labels = tuple(y[self.b][self.ss_grid[1:3]] < 0 for y in Y)
|
|
65
|
+
has_neg_labels = any(m.any() for m in mask_neg_labels)
|
|
66
|
+
if has_neg_labels:
|
|
67
|
+
mask_neg_labels = np.stack(mask_neg_labels)
|
|
68
|
+
# set negative label pixels to 0 (background)
|
|
69
|
+
Y = tuple(np.maximum(y, 0) for y in Y)
|
|
70
|
+
|
|
71
|
+
prob = np.stack([edt_prob(lbl[self.b][self.ss_grid[1:3]]) for lbl in Y])
|
|
72
|
+
# prob = np.stack([edt_prob(lbl[self.b]) for lbl in Y])
|
|
73
|
+
# prob = prob[self.ss_grid]
|
|
74
|
+
|
|
75
|
+
if self.shape_completion:
|
|
76
|
+
Y_cleared = [clear_border(lbl) for lbl in Y]
|
|
77
|
+
_dist = np.stack([star_dist(lbl,self.n_rays,mode=self.sd_mode)[self.b+(slice(None),)] for lbl in Y_cleared])
|
|
78
|
+
dist = _dist[self.ss_grid]
|
|
79
|
+
dist_mask = np.stack([edt_prob(lbl[self.b][self.ss_grid[1:3]]) for lbl in Y_cleared])
|
|
80
|
+
else:
|
|
81
|
+
# directly subsample with grid
|
|
82
|
+
dist = np.stack([star_dist(lbl,self.n_rays,mode=self.sd_mode, grid=self.grid) for lbl in Y])
|
|
83
|
+
dist_mask = prob
|
|
84
|
+
|
|
85
|
+
X = np.stack(X)
|
|
86
|
+
if X.ndim == 3: # input image has no channel axis
|
|
87
|
+
X = np.expand_dims(X,-1)
|
|
88
|
+
prob = np.expand_dims(prob,-1)
|
|
89
|
+
dist_mask = np.expand_dims(dist_mask,-1)
|
|
90
|
+
|
|
91
|
+
# subsample wth given grid
|
|
92
|
+
# dist_mask = dist_mask[self.ss_grid]
|
|
93
|
+
# prob = prob[self.ss_grid]
|
|
94
|
+
|
|
95
|
+
# append dist_mask to dist as additional channel
|
|
96
|
+
# dist_and_mask = np.concatenate([dist,dist_mask],axis=-1)
|
|
97
|
+
# faster than concatenate
|
|
98
|
+
dist_and_mask = np.empty(dist.shape[:-1]+(self.n_rays+1,), np.float32)
|
|
99
|
+
dist_and_mask[...,:-1] = dist
|
|
100
|
+
dist_and_mask[...,-1:] = dist_mask
|
|
101
|
+
|
|
102
|
+
if has_neg_labels:
|
|
103
|
+
prob[mask_neg_labels] = -1 # set to -1 to disable loss
|
|
104
|
+
|
|
105
|
+
# note: must return tuples in keras 3 (cf. https://stackoverflow.com/a/78158487)
|
|
106
|
+
if self.n_classes is None:
|
|
107
|
+
return _gen_rtype((X,)), _gen_rtype((prob,dist_and_mask))
|
|
108
|
+
else:
|
|
109
|
+
prob_class = np.stack(tuple((mask_to_categorical(y[self.b], self.n_classes, self.classes[k]) for y,k in zip(Y, idx))))
|
|
110
|
+
|
|
111
|
+
# TODO: investigate downsampling via simple indexing vs. using 'zoom'
|
|
112
|
+
# prob_class = prob_class[self.ss_grid]
|
|
113
|
+
# 'zoom' might lead to better registered maps (especially if upscaled later)
|
|
114
|
+
prob_class = zoom(prob_class, (1,)+tuple(1/g for g in self.grid)+(1,), order=0)
|
|
115
|
+
|
|
116
|
+
if has_neg_labels:
|
|
117
|
+
prob_class[mask_neg_labels] = -1 # set to -1 to disable loss
|
|
118
|
+
|
|
119
|
+
return _gen_rtype((X,)), _gen_rtype((prob,dist_and_mask, prob_class))
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
class Config2D(BaseConfig):
|
|
124
|
+
"""Configuration for a :class:`StarDist2D` model.
|
|
125
|
+
|
|
126
|
+
Parameters
|
|
127
|
+
----------
|
|
128
|
+
axes : str or None
|
|
129
|
+
Axes of the input images.
|
|
130
|
+
n_rays : int
|
|
131
|
+
Number of radial directions for the star-convex polygon.
|
|
132
|
+
Recommended to use a power of 2 (default: 32).
|
|
133
|
+
n_channel_in : int
|
|
134
|
+
Number of channels of given input image (default: 1).
|
|
135
|
+
grid : (int,int)
|
|
136
|
+
Subsampling factors (must be powers of 2) for each of the axes.
|
|
137
|
+
Model will predict on a subsampled grid for increased efficiency and larger field of view.
|
|
138
|
+
n_classes : None or int
|
|
139
|
+
Number of object classes to use for multi-class prediction (use None to disable)
|
|
140
|
+
backbone : str
|
|
141
|
+
Name of the neural network architecture to be used as backbone.
|
|
142
|
+
kwargs : dict
|
|
143
|
+
Overwrite (or add) configuration attributes (see below).
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
Attributes
|
|
147
|
+
----------
|
|
148
|
+
unet_n_depth : int
|
|
149
|
+
Number of U-Net resolution levels (down/up-sampling layers).
|
|
150
|
+
unet_kernel_size : (int,int)
|
|
151
|
+
Convolution kernel size for all (U-Net) convolution layers.
|
|
152
|
+
unet_n_filter_base : int
|
|
153
|
+
Number of convolution kernels (feature channels) for first U-Net layer.
|
|
154
|
+
Doubled after each down-sampling layer.
|
|
155
|
+
unet_pool : (int,int)
|
|
156
|
+
Maxpooling size for all (U-Net) convolution layers.
|
|
157
|
+
net_conv_after_unet : int
|
|
158
|
+
Number of filters of the extra convolution layer after U-Net (0 to disable).
|
|
159
|
+
unet_* : *
|
|
160
|
+
Additional parameters for U-net backbone.
|
|
161
|
+
train_shape_completion : bool
|
|
162
|
+
Train model to predict complete shapes for partially visible objects at image boundary.
|
|
163
|
+
train_completion_crop : int
|
|
164
|
+
If 'train_shape_completion' is set to True, specify number of pixels to crop at boundary of training patches.
|
|
165
|
+
Should be chosen based on (largest) object sizes.
|
|
166
|
+
train_patch_size : (int,int)
|
|
167
|
+
Size of patches to be cropped from provided training images.
|
|
168
|
+
train_background_reg : float
|
|
169
|
+
Regularizer to encourage distance predictions on background regions to be 0.
|
|
170
|
+
train_foreground_only : float
|
|
171
|
+
Fraction (0..1) of patches that will only be sampled from regions that contain foreground pixels.
|
|
172
|
+
train_sample_cache : bool
|
|
173
|
+
Activate caching of valid patch regions for all training images (disable to save memory for large datasets)
|
|
174
|
+
train_dist_loss : str
|
|
175
|
+
Training loss for star-convex polygon distances ('mse' or 'mae').
|
|
176
|
+
train_loss_weights : tuple of float
|
|
177
|
+
Weights for losses relating to (probability, distance)
|
|
178
|
+
train_epochs : int
|
|
179
|
+
Number of training epochs.
|
|
180
|
+
train_steps_per_epoch : int
|
|
181
|
+
Number of parameter update steps per epoch.
|
|
182
|
+
train_learning_rate : float
|
|
183
|
+
Learning rate for training.
|
|
184
|
+
train_batch_size : int
|
|
185
|
+
Batch size for training.
|
|
186
|
+
train_n_val_patches : int
|
|
187
|
+
Number of patches to be extracted from validation images (``None`` = one patch per image).
|
|
188
|
+
train_tensorboard : bool
|
|
189
|
+
Enable TensorBoard for monitoring training progress.
|
|
190
|
+
train_reduce_lr : dict
|
|
191
|
+
Parameter :class:`dict` of ReduceLROnPlateau_ callback; set to ``None`` to disable.
|
|
192
|
+
use_gpu : bool
|
|
193
|
+
Indicate that the data generator should use OpenCL to do computations on the GPU.
|
|
194
|
+
|
|
195
|
+
.. _ReduceLROnPlateau: https://keras.io/api/callbacks/reduce_lr_on_plateau/
|
|
196
|
+
"""
|
|
197
|
+
|
|
198
|
+
def __init__(self, axes='YX', n_rays=32, n_channel_in=1, grid=(1,1), n_classes=None, backbone='unet', **kwargs):
|
|
199
|
+
"""See class docstring."""
|
|
200
|
+
|
|
201
|
+
super().__init__(axes=axes, n_channel_in=n_channel_in, n_channel_out=1+n_rays)
|
|
202
|
+
|
|
203
|
+
# directly set by parameters
|
|
204
|
+
self.n_rays = int(n_rays)
|
|
205
|
+
self.grid = _normalize_grid(grid,2)
|
|
206
|
+
self.backbone = str(backbone).lower()
|
|
207
|
+
self.n_classes = None if n_classes is None else int(n_classes)
|
|
208
|
+
|
|
209
|
+
# default config (can be overwritten by kwargs below)
|
|
210
|
+
if self.backbone == 'unet':
|
|
211
|
+
self.unet_n_depth = 3
|
|
212
|
+
self.unet_kernel_size = 3,3
|
|
213
|
+
self.unet_n_filter_base = 32
|
|
214
|
+
self.unet_n_conv_per_depth = 2
|
|
215
|
+
self.unet_pool = 2,2
|
|
216
|
+
self.unet_activation = 'relu'
|
|
217
|
+
self.unet_last_activation = 'relu'
|
|
218
|
+
self.unet_batch_norm = False
|
|
219
|
+
self.unet_dropout = 0.0
|
|
220
|
+
self.unet_expansion = 2
|
|
221
|
+
self.unet_prefix = ''
|
|
222
|
+
self.net_conv_after_unet = 128
|
|
223
|
+
else:
|
|
224
|
+
# TODO: resnet backbone for 2D model?
|
|
225
|
+
raise ValueError("backbone '%s' not supported." % self.backbone)
|
|
226
|
+
|
|
227
|
+
# net_mask_shape not needed but kept for legacy reasons
|
|
228
|
+
if backend_channels_last():
|
|
229
|
+
self.net_input_shape = None,None,self.n_channel_in
|
|
230
|
+
self.net_mask_shape = None,None,1
|
|
231
|
+
else:
|
|
232
|
+
self.net_input_shape = self.n_channel_in,None,None
|
|
233
|
+
self.net_mask_shape = 1,None,None
|
|
234
|
+
|
|
235
|
+
self.train_shape_completion = False
|
|
236
|
+
self.train_completion_crop = 32
|
|
237
|
+
self.train_patch_size = 256,256
|
|
238
|
+
self.train_background_reg = 1e-4
|
|
239
|
+
self.train_foreground_only = 0.9
|
|
240
|
+
self.train_sample_cache = True
|
|
241
|
+
|
|
242
|
+
self.train_dist_loss = 'mae'
|
|
243
|
+
self.train_loss_weights = (1,0.2) if self.n_classes is None else (1,0.2,1)
|
|
244
|
+
self.train_class_weights = (1,1) if self.n_classes is None else (1,)*(self.n_classes+1)
|
|
245
|
+
self.train_epochs = 400
|
|
246
|
+
self.train_steps_per_epoch = 100
|
|
247
|
+
self.train_learning_rate = 0.0003
|
|
248
|
+
self.train_batch_size = 4
|
|
249
|
+
self.train_n_val_patches = None
|
|
250
|
+
self.train_tensorboard = True
|
|
251
|
+
# the parameter 'min_delta' was called 'epsilon' for keras<=2.1.5
|
|
252
|
+
# keras.__version__ was removed in tensorflow 2.13.0
|
|
253
|
+
min_delta_key = 'epsilon' if Version(getattr(keras, '__version__', '9.9.9'))<=Version('2.1.5') else 'min_delta'
|
|
254
|
+
self.train_reduce_lr = {'factor': 0.5, 'patience': 40, min_delta_key: 0}
|
|
255
|
+
|
|
256
|
+
self.use_gpu = False
|
|
257
|
+
|
|
258
|
+
# remove derived attributes that shouldn't be overwritten
|
|
259
|
+
for k in ('n_dim', 'n_channel_out'):
|
|
260
|
+
try: del kwargs[k]
|
|
261
|
+
except KeyError: pass
|
|
262
|
+
|
|
263
|
+
self.update_parameters(False, **kwargs)
|
|
264
|
+
|
|
265
|
+
# FIXME: put into is_valid()
|
|
266
|
+
if not len(self.train_loss_weights) == (2 if self.n_classes is None else 3):
|
|
267
|
+
raise ValueError(f"train_loss_weights {self.train_loss_weights} not compatible with n_classes ({self.n_classes}): must be 3 weights if n_classes is not None, otherwise 2")
|
|
268
|
+
|
|
269
|
+
if not len(self.train_class_weights) == (2 if self.n_classes is None else self.n_classes+1):
|
|
270
|
+
raise ValueError(f"train_class_weights {self.train_class_weights} not compatible with n_classes ({self.n_classes}): must be 'n_classes + 1' weights if n_classes is not None, otherwise 2")
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
class StarDist2D(StarDistBase):
|
|
275
|
+
"""StarDist2D model.
|
|
276
|
+
|
|
277
|
+
Parameters
|
|
278
|
+
----------
|
|
279
|
+
config : :class:`Config` or None
|
|
280
|
+
Will be saved to disk as JSON (``config.json``).
|
|
281
|
+
If set to ``None``, will be loaded from disk (must exist).
|
|
282
|
+
name : str or None
|
|
283
|
+
Model name. Uses a timestamp if set to ``None`` (default).
|
|
284
|
+
basedir : str
|
|
285
|
+
Directory that contains (or will contain) a folder with the given model name.
|
|
286
|
+
|
|
287
|
+
Raises
|
|
288
|
+
------
|
|
289
|
+
FileNotFoundError
|
|
290
|
+
If ``config=None`` and config cannot be loaded from disk.
|
|
291
|
+
ValueError
|
|
292
|
+
Illegal arguments, including invalid configuration.
|
|
293
|
+
|
|
294
|
+
Attributes
|
|
295
|
+
----------
|
|
296
|
+
config : :class:`Config`
|
|
297
|
+
Configuration, as provided during instantiation.
|
|
298
|
+
keras_model : `Keras model <https://keras.io/getting-started/functional-api-guide/>`_
|
|
299
|
+
Keras neural network model.
|
|
300
|
+
name : str
|
|
301
|
+
Model name.
|
|
302
|
+
logdir : :class:`pathlib.Path`
|
|
303
|
+
Path to model folder (which stores configuration, weights, etc.)
|
|
304
|
+
"""
|
|
305
|
+
|
|
306
|
+
def __init__(self, config=Config2D(), name=None, basedir='.'):
|
|
307
|
+
"""See class docstring."""
|
|
308
|
+
super().__init__(config, name=name, basedir=basedir)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
def _build(self):
|
|
312
|
+
self.config.backbone == 'unet' or _raise(NotImplementedError())
|
|
313
|
+
unet_kwargs = {k[len('unet_'):]:v for (k,v) in vars(self.config).items() if k.startswith('unet_')}
|
|
314
|
+
|
|
315
|
+
input_img = Input(self.config.net_input_shape, name='input')
|
|
316
|
+
|
|
317
|
+
# maxpool input image to grid size
|
|
318
|
+
pooled = np.array([1,1])
|
|
319
|
+
pooled_img = input_img
|
|
320
|
+
while tuple(pooled) != tuple(self.config.grid):
|
|
321
|
+
pool = 1 + (np.asarray(self.config.grid) > pooled)
|
|
322
|
+
pooled *= pool
|
|
323
|
+
for _ in range(self.config.unet_n_conv_per_depth):
|
|
324
|
+
pooled_img = Conv2D(self.config.unet_n_filter_base, self.config.unet_kernel_size,
|
|
325
|
+
padding='same', activation=self.config.unet_activation)(pooled_img)
|
|
326
|
+
pooled_img = MaxPooling2D(pool)(pooled_img)
|
|
327
|
+
|
|
328
|
+
unet_base = unet_block(**unet_kwargs)(pooled_img)
|
|
329
|
+
|
|
330
|
+
if self.config.net_conv_after_unet > 0:
|
|
331
|
+
unet = Conv2D(self.config.net_conv_after_unet, self.config.unet_kernel_size,
|
|
332
|
+
name='features', padding='same', activation=self.config.unet_activation)(unet_base)
|
|
333
|
+
else:
|
|
334
|
+
unet = unet_base
|
|
335
|
+
|
|
336
|
+
output_prob = Conv2D( 1, (1,1), name='prob', padding='same', activation='sigmoid')(unet)
|
|
337
|
+
output_dist = Conv2D(self.config.n_rays, (1,1), name='dist', padding='same', activation='linear')(unet)
|
|
338
|
+
|
|
339
|
+
# attach extra classification head when self.n_classes is given
|
|
340
|
+
if self._is_multiclass():
|
|
341
|
+
if self.config.net_conv_after_unet > 0:
|
|
342
|
+
unet_class = Conv2D(self.config.net_conv_after_unet, self.config.unet_kernel_size,
|
|
343
|
+
name='features_class', padding='same', activation=self.config.unet_activation)(unet_base)
|
|
344
|
+
else:
|
|
345
|
+
unet_class = unet_base
|
|
346
|
+
|
|
347
|
+
output_prob_class = Conv2D(self.config.n_classes+1, (1,1), name='prob_class', padding='same', activation='softmax')(unet_class)
|
|
348
|
+
return Model([input_img], [output_prob,output_dist,output_prob_class])
|
|
349
|
+
else:
|
|
350
|
+
return Model([input_img], [output_prob,output_dist])
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
def train(self, X, Y, validation_data, classes='auto', augmenter=None, seed=None, epochs=None, steps_per_epoch=None, workers=1):
|
|
354
|
+
"""Train the neural network with the given data.
|
|
355
|
+
|
|
356
|
+
Parameters
|
|
357
|
+
----------
|
|
358
|
+
X : tuple, list, `numpy.ndarray`, `keras.utils.Sequence`
|
|
359
|
+
Input images
|
|
360
|
+
Y : tuple, list, `numpy.ndarray`, `keras.utils.Sequence`
|
|
361
|
+
Label masks
|
|
362
|
+
Positive pixel values denote object instance ids (0 for background).
|
|
363
|
+
Negative values can be used to turn off all losses for the corresponding pixels (e.g. for regions that haven't been labeled).
|
|
364
|
+
classes (optional): 'auto' or iterable of same length as X
|
|
365
|
+
label id -> class id mapping for each label mask of Y if multiclass prediction is activated (n_classes > 0)
|
|
366
|
+
list of dicts with label id -> class id (1,...,n_classes)
|
|
367
|
+
'auto' -> all objects will be assigned to the first non-background class,
|
|
368
|
+
or will be ignored if config.n_classes is None
|
|
369
|
+
validation_data : tuple(:class:`numpy.ndarray`, :class:`numpy.ndarray`) or triple (if multiclass)
|
|
370
|
+
Tuple (triple if multiclass) of X,Y,[classes] validation data.
|
|
371
|
+
augmenter : None or callable
|
|
372
|
+
Function with expected signature ``xt, yt = augmenter(x, y)``
|
|
373
|
+
that takes in a single pair of input/label image (x,y) and returns
|
|
374
|
+
the transformed images (xt, yt) for the purpose of data augmentation
|
|
375
|
+
during training. Not applied to validation images.
|
|
376
|
+
Example:
|
|
377
|
+
def simple_augmenter(x,y):
|
|
378
|
+
x = x + 0.05*np.random.normal(0,1,x.shape)
|
|
379
|
+
return x,y
|
|
380
|
+
seed : int
|
|
381
|
+
Convenience to set ``np.random.seed(seed)``. (To obtain reproducible validation patches, etc.)
|
|
382
|
+
epochs : int
|
|
383
|
+
Optional argument to use instead of the value from ``config``.
|
|
384
|
+
steps_per_epoch : int
|
|
385
|
+
Optional argument to use instead of the value from ``config``.
|
|
386
|
+
|
|
387
|
+
Returns
|
|
388
|
+
-------
|
|
389
|
+
``History`` object
|
|
390
|
+
See `Keras training history <https://keras.io/models/model/#fit>`_.
|
|
391
|
+
|
|
392
|
+
"""
|
|
393
|
+
if seed is not None:
|
|
394
|
+
# https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
|
|
395
|
+
np.random.seed(seed)
|
|
396
|
+
if epochs is None:
|
|
397
|
+
epochs = self.config.train_epochs
|
|
398
|
+
if steps_per_epoch is None:
|
|
399
|
+
steps_per_epoch = self.config.train_steps_per_epoch
|
|
400
|
+
|
|
401
|
+
classes = self._parse_classes_arg(classes, len(X))
|
|
402
|
+
|
|
403
|
+
if not self._is_multiclass() and classes is not None:
|
|
404
|
+
warnings.warn("Ignoring given classes as n_classes is set to None")
|
|
405
|
+
|
|
406
|
+
isinstance(validation_data,(list,tuple)) or _raise(ValueError())
|
|
407
|
+
if self._is_multiclass() and len(validation_data) == 2:
|
|
408
|
+
validation_data = tuple(validation_data) + ('auto',)
|
|
409
|
+
((len(validation_data) == (3 if self._is_multiclass() else 2))
|
|
410
|
+
or _raise(ValueError(f'len(validation_data) = {len(validation_data)}, but should be {3 if self._is_multiclass() else 2}')))
|
|
411
|
+
|
|
412
|
+
patch_size = self.config.train_patch_size
|
|
413
|
+
axes = self.config.axes.replace('C','')
|
|
414
|
+
b = self.config.train_completion_crop if self.config.train_shape_completion else 0
|
|
415
|
+
div_by = self._axes_div_by(axes)
|
|
416
|
+
[(p-2*b) % d == 0 or _raise(ValueError(
|
|
417
|
+
"'train_patch_size' - 2*'train_completion_crop' must be divisible by {d} along axis '{a}'".format(a=a,d=d) if self.config.train_shape_completion else
|
|
418
|
+
"'train_patch_size' must be divisible by {d} along axis '{a}'".format(a=a,d=d)
|
|
419
|
+
)) for p,d,a in zip(patch_size,div_by,axes)]
|
|
420
|
+
|
|
421
|
+
if not self._model_prepared:
|
|
422
|
+
self.prepare_for_training()
|
|
423
|
+
|
|
424
|
+
data_kwargs = dict (
|
|
425
|
+
n_rays = self.config.n_rays,
|
|
426
|
+
patch_size = self.config.train_patch_size,
|
|
427
|
+
grid = self.config.grid,
|
|
428
|
+
shape_completion = self.config.train_shape_completion,
|
|
429
|
+
b = self.config.train_completion_crop,
|
|
430
|
+
use_gpu = self.config.use_gpu,
|
|
431
|
+
foreground_prob = self.config.train_foreground_only,
|
|
432
|
+
n_classes = self.config.n_classes,
|
|
433
|
+
sample_ind_cache = self.config.train_sample_cache,
|
|
434
|
+
)
|
|
435
|
+
worker_kwargs = dict(workers=workers, use_multiprocessing=workers>1)
|
|
436
|
+
if IS_KERAS_3_PLUS:
|
|
437
|
+
data_kwargs['keras_kwargs'] = worker_kwargs
|
|
438
|
+
fit_kwargs = {}
|
|
439
|
+
else:
|
|
440
|
+
fit_kwargs = worker_kwargs
|
|
441
|
+
|
|
442
|
+
# generate validation data and store in numpy arrays
|
|
443
|
+
n_data_val = len(validation_data[0])
|
|
444
|
+
classes_val = self._parse_classes_arg(validation_data[2], n_data_val) if self._is_multiclass() else None
|
|
445
|
+
n_take = self.config.train_n_val_patches if self.config.train_n_val_patches is not None else n_data_val
|
|
446
|
+
_data_val = StarDistData2D(validation_data[0],validation_data[1], classes=classes_val, batch_size=n_take, length=1, **data_kwargs)
|
|
447
|
+
data_val = _data_val[0]
|
|
448
|
+
|
|
449
|
+
# expose data generator as member for general diagnostics
|
|
450
|
+
self.data_train = StarDistData2D(X, Y, classes=classes, batch_size=self.config.train_batch_size,
|
|
451
|
+
augmenter=augmenter, length=epochs*steps_per_epoch, **data_kwargs)
|
|
452
|
+
|
|
453
|
+
if self.config.train_tensorboard:
|
|
454
|
+
# show dist for three rays
|
|
455
|
+
_n = min(3, self.config.n_rays)
|
|
456
|
+
channel = axes_dict(self.config.axes)['C']
|
|
457
|
+
output_slices = [[slice(None)]*4,[slice(None)]*4]
|
|
458
|
+
output_slices[1][1+channel] = slice(0,(self.config.n_rays//_n)*_n, self.config.n_rays//_n)
|
|
459
|
+
if self._is_multiclass():
|
|
460
|
+
_n = min(3, self.config.n_classes)
|
|
461
|
+
output_slices += [[slice(None)]*4]
|
|
462
|
+
output_slices[2][1+channel] = slice(1,1+(self.config.n_classes//_n)*_n, self.config.n_classes//_n)
|
|
463
|
+
|
|
464
|
+
if IS_TF_1:
|
|
465
|
+
for cb in self.callbacks:
|
|
466
|
+
if isinstance(cb,CARETensorBoard):
|
|
467
|
+
cb.output_slices = output_slices
|
|
468
|
+
# target image for dist includes dist_mask and thus has more channels than dist output
|
|
469
|
+
cb.output_target_shapes = [None,[None]*4,None]
|
|
470
|
+
cb.output_target_shapes[1][1+channel] = data_val[1][1].shape[1+channel]
|
|
471
|
+
elif self.basedir is not None and not any(isinstance(cb,CARETensorBoardImage) for cb in self.callbacks):
|
|
472
|
+
self.callbacks.append(CARETensorBoardImage(model=self.keras_model, data=data_val, log_dir=str(self.logdir/'logs'/'images'),
|
|
473
|
+
n_images=3, prob_out=False, output_slices=output_slices))
|
|
474
|
+
|
|
475
|
+
fit = self.keras_model.fit_generator if (IS_TF_1 and not IS_KERAS_3_PLUS) else self.keras_model.fit
|
|
476
|
+
history = fit(iter(self.data_train), validation_data=data_val,
|
|
477
|
+
epochs=epochs, steps_per_epoch=steps_per_epoch,
|
|
478
|
+
**fit_kwargs,
|
|
479
|
+
callbacks=self.callbacks, verbose=1,
|
|
480
|
+
# set validation batchsize to training batchsize (only works for tf >= 2.2)
|
|
481
|
+
**(dict(validation_batch_size = self.config.train_batch_size) if _tf_version_at_least("2.2.0") else {}))
|
|
482
|
+
self._training_finished()
|
|
483
|
+
|
|
484
|
+
return history
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
# def _instances_from_prediction_old(self, img_shape, prob, dist,points = None, prob_class = None, prob_thresh=None, nms_thresh=None, overlap_label = None, **nms_kwargs):
|
|
488
|
+
# from stardist.geometry.geom2d import _polygons_to_label_old, _dist_to_coord_old
|
|
489
|
+
# from stardist.nms import _non_maximum_suppression_old
|
|
490
|
+
|
|
491
|
+
# if prob_thresh is None: prob_thresh = self.thresholds.prob
|
|
492
|
+
# if nms_thresh is None: nms_thresh = self.thresholds.nms
|
|
493
|
+
# if overlap_label is not None: raise NotImplementedError("overlap_label not supported for 2D yet!")
|
|
494
|
+
|
|
495
|
+
# coord = _dist_to_coord_old(dist, grid=self.config.grid)
|
|
496
|
+
# inds = _non_maximum_suppression_old(coord, prob, grid=self.config.grid,
|
|
497
|
+
# prob_thresh=prob_thresh, nms_thresh=nms_thresh, **nms_kwargs)
|
|
498
|
+
# labels = _polygons_to_label_old(coord, prob, inds, shape=img_shape)
|
|
499
|
+
# # sort 'inds' such that ids in 'labels' map to entries in polygon dictionary entries
|
|
500
|
+
# inds = inds[np.argsort(prob[inds[:,0],inds[:,1]])]
|
|
501
|
+
# # adjust for grid
|
|
502
|
+
# points = inds*np.array(self.config.grid)
|
|
503
|
+
|
|
504
|
+
# res_dict = dict(coord=coord[inds[:,0],inds[:,1]], points=points, prob=prob[inds[:,0],inds[:,1]])
|
|
505
|
+
|
|
506
|
+
# if prob_class is not None:
|
|
507
|
+
# prob_class = np.asarray(prob_class)
|
|
508
|
+
# res_dict.update(dict(class_prob = prob_class))
|
|
509
|
+
|
|
510
|
+
# return labels, res_dict
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
def _instances_from_prediction(self, img_shape, prob, dist, points=None, prob_class=None, prob_thresh=None, nms_thresh=None, overlap_label=None, return_labels=True, scale=None, **nms_kwargs):
|
|
514
|
+
"""
|
|
515
|
+
if points is None -> dense prediction
|
|
516
|
+
if points is not None -> sparse prediction
|
|
517
|
+
|
|
518
|
+
if prob_class is None -> single class prediction
|
|
519
|
+
if prob_class is not None -> multi class prediction
|
|
520
|
+
"""
|
|
521
|
+
if prob_thresh is None: prob_thresh = self.thresholds.prob
|
|
522
|
+
if nms_thresh is None: nms_thresh = self.thresholds.nms
|
|
523
|
+
if overlap_label is not None: raise NotImplementedError("overlap_label not supported for 2D yet!")
|
|
524
|
+
|
|
525
|
+
# sparse prediction
|
|
526
|
+
if points is not None:
|
|
527
|
+
points, probi, disti, indsi = non_maximum_suppression_sparse(dist, prob, points, nms_thresh=nms_thresh, **nms_kwargs)
|
|
528
|
+
if prob_class is not None:
|
|
529
|
+
prob_class = prob_class[indsi]
|
|
530
|
+
|
|
531
|
+
# dense prediction
|
|
532
|
+
else:
|
|
533
|
+
points, probi, disti = non_maximum_suppression(dist, prob, grid=self.config.grid,
|
|
534
|
+
prob_thresh=prob_thresh, nms_thresh=nms_thresh, **nms_kwargs)
|
|
535
|
+
if prob_class is not None:
|
|
536
|
+
inds = tuple(p//g for p,g in zip(points.T, self.config.grid))
|
|
537
|
+
prob_class = prob_class[inds]
|
|
538
|
+
|
|
539
|
+
if scale is not None:
|
|
540
|
+
# need to undo the scaling given by the scale dict, e.g. scale = dict(X=0.5,Y=0.5):
|
|
541
|
+
# 1. re-scale points (origins of polygons)
|
|
542
|
+
# 2. re-scale coordinates (computed from distances) of (zero-origin) polygons
|
|
543
|
+
if not (isinstance(scale,dict) and 'X' in scale and 'Y' in scale):
|
|
544
|
+
raise ValueError("scale must be a dictionary with entries for 'X' and 'Y'")
|
|
545
|
+
rescale = (1/scale['Y'],1/scale['X'])
|
|
546
|
+
points = points * np.array(rescale).reshape(1,2)
|
|
547
|
+
else:
|
|
548
|
+
rescale = (1,1)
|
|
549
|
+
|
|
550
|
+
if return_labels:
|
|
551
|
+
labels = polygons_to_label(disti, points, prob=probi, shape=img_shape, scale_dist=rescale)
|
|
552
|
+
else:
|
|
553
|
+
labels = None
|
|
554
|
+
|
|
555
|
+
coord = dist_to_coord(disti, points, scale_dist=rescale)
|
|
556
|
+
res_dict = dict(coord=coord, points=points, prob=probi)
|
|
557
|
+
|
|
558
|
+
# multi class prediction
|
|
559
|
+
if prob_class is not None:
|
|
560
|
+
prob_class = np.asarray(prob_class)
|
|
561
|
+
class_id = np.argmax(prob_class, axis=-1)
|
|
562
|
+
res_dict.update(dict(class_prob=prob_class, class_id=class_id))
|
|
563
|
+
|
|
564
|
+
return labels, res_dict
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
def _axes_div_by(self, query_axes):
|
|
568
|
+
self.config.backbone == 'unet' or _raise(NotImplementedError())
|
|
569
|
+
query_axes = axes_check_and_normalize(query_axes)
|
|
570
|
+
assert len(self.config.unet_pool) == len(self.config.grid)
|
|
571
|
+
div_by = dict(zip(
|
|
572
|
+
self.config.axes.replace('C',''),
|
|
573
|
+
tuple(p**self.config.unet_n_depth * g for p,g in zip(self.config.unet_pool,self.config.grid))
|
|
574
|
+
))
|
|
575
|
+
return tuple(div_by.get(a,1) for a in query_axes)
|
|
576
|
+
|
|
577
|
+
|
|
578
|
+
# def _axes_tile_overlap(self, query_axes):
|
|
579
|
+
# self.config.backbone == 'unet' or _raise(NotImplementedError())
|
|
580
|
+
# query_axes = axes_check_and_normalize(query_axes)
|
|
581
|
+
# assert len(self.config.unet_pool) == len(self.config.grid) == len(self.config.unet_kernel_size)
|
|
582
|
+
# # TODO: compute this properly when any value of grid > 1
|
|
583
|
+
# # all(g==1 for g in self.config.grid) or warnings.warn('FIXME')
|
|
584
|
+
# overlap = dict(zip(
|
|
585
|
+
# self.config.axes.replace('C',''),
|
|
586
|
+
# tuple(tile_overlap(self.config.unet_n_depth + int(np.log2(g)), k, p)
|
|
587
|
+
# for p,k,g in zip(self.config.unet_pool,self.config.unet_kernel_size,self.config.grid))
|
|
588
|
+
# ))
|
|
589
|
+
# return tuple(overlap.get(a,0) for a in query_axes)
|
|
590
|
+
|
|
591
|
+
|
|
592
|
+
@property
|
|
593
|
+
def _config_class(self):
|
|
594
|
+
return Config2D
|