senoquant 1.0.0b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. senoquant/__init__.py +6 -0
  2. senoquant/_reader.py +7 -0
  3. senoquant/_widget.py +33 -0
  4. senoquant/napari.yaml +83 -0
  5. senoquant/reader/__init__.py +5 -0
  6. senoquant/reader/core.py +369 -0
  7. senoquant/tabs/__init__.py +15 -0
  8. senoquant/tabs/batch/__init__.py +10 -0
  9. senoquant/tabs/batch/backend.py +641 -0
  10. senoquant/tabs/batch/config.py +270 -0
  11. senoquant/tabs/batch/frontend.py +1283 -0
  12. senoquant/tabs/batch/io.py +326 -0
  13. senoquant/tabs/batch/layers.py +86 -0
  14. senoquant/tabs/quantification/__init__.py +1 -0
  15. senoquant/tabs/quantification/backend.py +228 -0
  16. senoquant/tabs/quantification/features/__init__.py +80 -0
  17. senoquant/tabs/quantification/features/base.py +142 -0
  18. senoquant/tabs/quantification/features/marker/__init__.py +5 -0
  19. senoquant/tabs/quantification/features/marker/config.py +69 -0
  20. senoquant/tabs/quantification/features/marker/dialog.py +437 -0
  21. senoquant/tabs/quantification/features/marker/export.py +879 -0
  22. senoquant/tabs/quantification/features/marker/feature.py +119 -0
  23. senoquant/tabs/quantification/features/marker/morphology.py +285 -0
  24. senoquant/tabs/quantification/features/marker/rows.py +654 -0
  25. senoquant/tabs/quantification/features/marker/thresholding.py +46 -0
  26. senoquant/tabs/quantification/features/roi.py +346 -0
  27. senoquant/tabs/quantification/features/spots/__init__.py +5 -0
  28. senoquant/tabs/quantification/features/spots/config.py +62 -0
  29. senoquant/tabs/quantification/features/spots/dialog.py +477 -0
  30. senoquant/tabs/quantification/features/spots/export.py +1292 -0
  31. senoquant/tabs/quantification/features/spots/feature.py +112 -0
  32. senoquant/tabs/quantification/features/spots/morphology.py +279 -0
  33. senoquant/tabs/quantification/features/spots/rows.py +241 -0
  34. senoquant/tabs/quantification/frontend.py +815 -0
  35. senoquant/tabs/segmentation/__init__.py +1 -0
  36. senoquant/tabs/segmentation/backend.py +131 -0
  37. senoquant/tabs/segmentation/frontend.py +1009 -0
  38. senoquant/tabs/segmentation/models/__init__.py +5 -0
  39. senoquant/tabs/segmentation/models/base.py +146 -0
  40. senoquant/tabs/segmentation/models/cpsam/details.json +65 -0
  41. senoquant/tabs/segmentation/models/cpsam/model.py +150 -0
  42. senoquant/tabs/segmentation/models/default_2d/details.json +69 -0
  43. senoquant/tabs/segmentation/models/default_2d/model.py +664 -0
  44. senoquant/tabs/segmentation/models/default_3d/details.json +69 -0
  45. senoquant/tabs/segmentation/models/default_3d/model.py +682 -0
  46. senoquant/tabs/segmentation/models/hf.py +71 -0
  47. senoquant/tabs/segmentation/models/nuclear_dilation/__init__.py +1 -0
  48. senoquant/tabs/segmentation/models/nuclear_dilation/details.json +26 -0
  49. senoquant/tabs/segmentation/models/nuclear_dilation/model.py +96 -0
  50. senoquant/tabs/segmentation/models/perinuclear_rings/__init__.py +1 -0
  51. senoquant/tabs/segmentation/models/perinuclear_rings/details.json +34 -0
  52. senoquant/tabs/segmentation/models/perinuclear_rings/model.py +132 -0
  53. senoquant/tabs/segmentation/stardist_onnx_utils/__init__.py +2 -0
  54. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/__init__.py +3 -0
  55. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/__init__.py +6 -0
  56. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/generate.py +470 -0
  57. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/prepare.py +273 -0
  58. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/rawdata.py +112 -0
  59. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/transform.py +384 -0
  60. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/__init__.py +0 -0
  61. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/blocks.py +184 -0
  62. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/losses.py +79 -0
  63. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/nets.py +165 -0
  64. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/predict.py +467 -0
  65. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/probability.py +67 -0
  66. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/train.py +148 -0
  67. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/io/__init__.py +163 -0
  68. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/__init__.py +52 -0
  69. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/base_model.py +329 -0
  70. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_isotropic.py +160 -0
  71. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_projection.py +178 -0
  72. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_standard.py +446 -0
  73. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_upsampling.py +54 -0
  74. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/config.py +254 -0
  75. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/pretrained.py +119 -0
  76. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/__init__.py +0 -0
  77. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/care_predict.py +180 -0
  78. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/__init__.py +5 -0
  79. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/plot_utils.py +159 -0
  80. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/six.py +18 -0
  81. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/tf.py +644 -0
  82. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/utils.py +272 -0
  83. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/version.py +1 -0
  84. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/docs/source/conf.py +368 -0
  85. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/setup.py +68 -0
  86. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_datagen.py +169 -0
  87. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_models.py +462 -0
  88. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_utils.py +166 -0
  89. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tools/create_zip_contents.py +34 -0
  90. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/__init__.py +30 -0
  91. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/big.py +624 -0
  92. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/bioimageio_utils.py +494 -0
  93. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/data/__init__.py +39 -0
  94. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/__init__.py +10 -0
  95. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom2d.py +215 -0
  96. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom3d.py +349 -0
  97. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/matching.py +483 -0
  98. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/__init__.py +28 -0
  99. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/base.py +1217 -0
  100. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model2d.py +594 -0
  101. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model3d.py +696 -0
  102. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/nms.py +384 -0
  103. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/__init__.py +2 -0
  104. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/plot.py +74 -0
  105. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/render.py +298 -0
  106. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/rays3d.py +373 -0
  107. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/sample_patches.py +65 -0
  108. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/__init__.py +0 -0
  109. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict2d.py +90 -0
  110. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict3d.py +93 -0
  111. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/utils.py +408 -0
  112. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/version.py +1 -0
  113. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/__init__.py +45 -0
  114. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/__init__.py +17 -0
  115. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/cli.py +55 -0
  116. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/core.py +285 -0
  117. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/__init__.py +15 -0
  118. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/cli.py +36 -0
  119. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/divisibility.py +193 -0
  120. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/probe.py +100 -0
  121. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/receptive_field.py +182 -0
  122. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/rf_cli.py +48 -0
  123. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/valid_sizes.py +278 -0
  124. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/__init__.py +8 -0
  125. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/core.py +157 -0
  126. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/__init__.py +17 -0
  127. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/core.py +226 -0
  128. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/__init__.py +5 -0
  129. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/core.py +401 -0
  130. senoquant/tabs/settings/__init__.py +1 -0
  131. senoquant/tabs/settings/backend.py +29 -0
  132. senoquant/tabs/settings/frontend.py +19 -0
  133. senoquant/tabs/spots/__init__.py +1 -0
  134. senoquant/tabs/spots/backend.py +139 -0
  135. senoquant/tabs/spots/frontend.py +800 -0
  136. senoquant/tabs/spots/models/__init__.py +5 -0
  137. senoquant/tabs/spots/models/base.py +94 -0
  138. senoquant/tabs/spots/models/rmp/details.json +61 -0
  139. senoquant/tabs/spots/models/rmp/model.py +499 -0
  140. senoquant/tabs/spots/models/udwt/details.json +103 -0
  141. senoquant/tabs/spots/models/udwt/model.py +482 -0
  142. senoquant/utils.py +25 -0
  143. senoquant-1.0.0b1.dist-info/METADATA +193 -0
  144. senoquant-1.0.0b1.dist-info/RECORD +148 -0
  145. senoquant-1.0.0b1.dist-info/WHEEL +5 -0
  146. senoquant-1.0.0b1.dist-info/entry_points.txt +2 -0
  147. senoquant-1.0.0b1.dist-info/licenses/LICENSE +28 -0
  148. senoquant-1.0.0b1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,483 @@
1
+ import numpy as np
2
+
3
+ from numba import jit
4
+ from tqdm import tqdm
5
+ from scipy.optimize import linear_sum_assignment
6
+ from skimage.measure import regionprops
7
+ from collections import namedtuple
8
+ from csbdeep.utils import _raise
9
+
10
+ matching_criteria = dict()
11
+
12
+
13
+ def label_are_sequential(y):
14
+ """ returns true if y has only sequential labels from 1... """
15
+ labels = np.unique(y)
16
+ return (set(labels)-{0}) == set(range(1,1+labels.max()))
17
+
18
+
19
+ def is_array_of_integers(y):
20
+ return isinstance(y,np.ndarray) and np.issubdtype(y.dtype, np.integer)
21
+
22
+
23
+ def _check_label_array(y, name=None, check_sequential=False):
24
+ err = ValueError("{label} must be an array of {integers}.".format(
25
+ label = 'labels' if name is None else name,
26
+ integers = ('sequential ' if check_sequential else '') + 'non-negative integers',
27
+ ))
28
+ is_array_of_integers(y) or _raise(err)
29
+ if len(y) == 0:
30
+ return True
31
+ if check_sequential:
32
+ label_are_sequential(y) or _raise(err)
33
+ else:
34
+ y.min() >= 0 or _raise(err)
35
+ return True
36
+
37
+
38
+ def label_overlap(x, y, check=True):
39
+ if check:
40
+ _check_label_array(x,'x',True)
41
+ _check_label_array(y,'y',True)
42
+ x.shape == y.shape or _raise(ValueError("x and y must have the same shape"))
43
+ return _label_overlap(x, y)
44
+
45
+ @jit(nopython=True)
46
+ def _label_overlap(x, y):
47
+ x = x.ravel()
48
+ y = y.ravel()
49
+ overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)
50
+ for i in range(len(x)):
51
+ overlap[x[i],y[i]] += 1
52
+ return overlap
53
+
54
+
55
+ def _safe_divide(x,y, eps=1e-10):
56
+ """computes a safe divide which returns 0 if y is zero"""
57
+ if np.isscalar(x) and np.isscalar(y):
58
+ return x/y if np.abs(y)>eps else 0.0
59
+ else:
60
+ out = np.zeros(np.broadcast(x,y).shape, np.float32)
61
+ np.divide(x,y, out=out, where=np.abs(y)>eps)
62
+ return out
63
+
64
+
65
+ def intersection_over_union(overlap):
66
+ _check_label_array(overlap,'overlap')
67
+ if np.sum(overlap) == 0:
68
+ return overlap
69
+ n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
70
+ n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
71
+ return _safe_divide(overlap, (n_pixels_pred + n_pixels_true - overlap))
72
+
73
+ matching_criteria['iou'] = intersection_over_union
74
+
75
+
76
+ def intersection_over_true(overlap):
77
+ _check_label_array(overlap,'overlap')
78
+ if np.sum(overlap) == 0:
79
+ return overlap
80
+ n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
81
+ return _safe_divide(overlap, n_pixels_true)
82
+
83
+ matching_criteria['iot'] = intersection_over_true
84
+
85
+
86
+ def intersection_over_pred(overlap):
87
+ _check_label_array(overlap,'overlap')
88
+ if np.sum(overlap) == 0:
89
+ return overlap
90
+ n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
91
+ return _safe_divide(overlap, n_pixels_pred)
92
+
93
+ matching_criteria['iop'] = intersection_over_pred
94
+
95
+
96
+ def precision(tp,fp,fn):
97
+ return tp/(tp+fp) if tp > 0 else 0
98
+ def recall(tp,fp,fn):
99
+ return tp/(tp+fn) if tp > 0 else 0
100
+ def accuracy(tp,fp,fn):
101
+ # also known as "average precision" (?)
102
+ # -> https://www.kaggle.com/c/data-science-bowl-2018#evaluation
103
+ return tp/(tp+fp+fn) if tp > 0 else 0
104
+ def f1(tp,fp,fn):
105
+ # also known as "dice coefficient"
106
+ return (2*tp)/(2*tp+fp+fn) if tp > 0 else 0
107
+
108
+
109
+ def matching(y_true, y_pred, thresh=0.5, criterion='iou', report_matches=False):
110
+ """Calculate detection/instance segmentation metrics between ground truth and predicted label images.
111
+
112
+ Currently, the following metrics are implemented:
113
+
114
+ 'fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'
115
+
116
+ Corresponding objects of y_true and y_pred are counted as true positives (tp), false positives (fp), and false negatives (fn)
117
+ whether their intersection over union (IoU) >= thresh (for criterion='iou', which can be changed)
118
+
119
+ * mean_matched_score is the mean IoUs of matched true positives
120
+
121
+ * mean_true_score is the mean IoUs of matched true positives but normalized by the total number of GT objects
122
+
123
+ * panoptic_quality defined as in Eq. 1 of Kirillov et al. "Panoptic Segmentation", CVPR 2019
124
+
125
+ Parameters
126
+ ----------
127
+ y_true: ndarray
128
+ ground truth label image (integer valued)
129
+ y_pred: ndarray
130
+ predicted label image (integer valued)
131
+ thresh: float
132
+ threshold for matching criterion (default 0.5)
133
+ criterion: string
134
+ matching criterion (default IoU)
135
+ report_matches: bool
136
+ if True, additionally calculate matched_pairs and matched_scores (note, that this returns even gt-pred pairs whose scores are below 'thresh')
137
+
138
+ Returns
139
+ -------
140
+ Matching object with different metrics as attributes
141
+
142
+ Examples
143
+ --------
144
+ >>> y_true = np.zeros((100,100), np.uint16)
145
+ >>> y_true[10:20,10:20] = 1
146
+ >>> y_pred = np.roll(y_true,5,axis = 0)
147
+
148
+ >>> stats = matching(y_true, y_pred)
149
+ >>> print(stats)
150
+ Matching(criterion='iou', thresh=0.5, fp=1, tp=0, fn=1, precision=0, recall=0, accuracy=0, f1=0, n_true=1, n_pred=1, mean_true_score=0.0, mean_matched_score=0.0, panoptic_quality=0.0)
151
+
152
+ """
153
+ _check_label_array(y_true,'y_true')
154
+ _check_label_array(y_pred,'y_pred')
155
+ y_true.shape == y_pred.shape or _raise(ValueError("y_true ({y_true.shape}) and y_pred ({y_pred.shape}) have different shapes".format(y_true=y_true, y_pred=y_pred)))
156
+ criterion in matching_criteria or _raise(ValueError("Matching criterion '%s' not supported." % criterion))
157
+ if thresh is None: thresh = 0
158
+ thresh = float(thresh) if np.isscalar(thresh) else map(float,thresh)
159
+
160
+ y_true, _, map_rev_true = relabel_sequential(y_true)
161
+ y_pred, _, map_rev_pred = relabel_sequential(y_pred)
162
+
163
+ overlap = label_overlap(y_true, y_pred, check=False)
164
+ scores = matching_criteria[criterion](overlap)
165
+ assert 0 <= np.min(scores) <= np.max(scores) <= 1
166
+
167
+ # ignoring background
168
+ scores = scores[1:,1:]
169
+ n_true, n_pred = scores.shape
170
+ n_matched = min(n_true, n_pred)
171
+
172
+ def _single(thr):
173
+ # not_trivial = n_matched > 0 and np.any(scores >= thr)
174
+ not_trivial = n_matched > 0
175
+ if not_trivial:
176
+ # compute optimal matching with scores as tie-breaker
177
+ costs = -(scores >= thr).astype(float) - scores / (2*n_matched)
178
+ true_ind, pred_ind = linear_sum_assignment(costs)
179
+ assert n_matched == len(true_ind) == len(pred_ind)
180
+ match_ok = scores[true_ind,pred_ind] >= thr
181
+ tp = np.count_nonzero(match_ok)
182
+ else:
183
+ tp = 0
184
+ fp = n_pred - tp
185
+ fn = n_true - tp
186
+ # assert tp+fp == n_pred
187
+ # assert tp+fn == n_true
188
+
189
+ # the score sum over all matched objects (tp)
190
+ sum_matched_score = np.sum(scores[true_ind,pred_ind][match_ok]) if not_trivial else 0.0
191
+
192
+ # the score average over all matched objects (tp)
193
+ mean_matched_score = _safe_divide(sum_matched_score, tp)
194
+ # the score average over all gt/true objects
195
+ mean_true_score = _safe_divide(sum_matched_score, n_true)
196
+ panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
197
+
198
+ stats_dict = dict (
199
+ criterion = criterion,
200
+ thresh = thr,
201
+ fp = fp,
202
+ tp = tp,
203
+ fn = fn,
204
+ precision = precision(tp,fp,fn),
205
+ recall = recall(tp,fp,fn),
206
+ accuracy = accuracy(tp,fp,fn),
207
+ f1 = f1(tp,fp,fn),
208
+ n_true = n_true,
209
+ n_pred = n_pred,
210
+ mean_true_score = mean_true_score,
211
+ mean_matched_score = mean_matched_score,
212
+ panoptic_quality = panoptic_quality,
213
+ )
214
+ if bool(report_matches):
215
+ if not_trivial:
216
+ stats_dict.update (
217
+ # int() to be json serializable
218
+ matched_pairs = tuple((int(map_rev_true[i]),int(map_rev_pred[j])) for i,j in zip(1+true_ind,1+pred_ind)),
219
+ matched_scores = tuple(scores[true_ind,pred_ind]),
220
+ matched_tps = tuple(map(int,np.flatnonzero(match_ok))),
221
+ )
222
+ else:
223
+ stats_dict.update (
224
+ matched_pairs = (),
225
+ matched_scores = (),
226
+ matched_tps = (),
227
+ )
228
+ return namedtuple('Matching',stats_dict.keys())(*stats_dict.values())
229
+
230
+ return _single(thresh) if np.isscalar(thresh) else tuple(map(_single,thresh))
231
+
232
+
233
+
234
+ def matching_dataset(y_true, y_pred, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
235
+ """matching metrics for list of images, see `stardist.matching.matching`
236
+ """
237
+ len(y_true) == len(y_pred) or _raise(ValueError("y_true and y_pred must have the same length."))
238
+ return matching_dataset_lazy (
239
+ tuple(zip(y_true,y_pred)), thresh=thresh, criterion=criterion, by_image=by_image, show_progress=show_progress, parallel=parallel,
240
+ )
241
+
242
+
243
+
244
+ def matching_dataset_lazy(y_gen, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
245
+
246
+ expected_keys = set(('fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'))
247
+
248
+ single_thresh = False
249
+ if np.isscalar(thresh):
250
+ single_thresh = True
251
+ thresh = (thresh,)
252
+
253
+ tqdm_kwargs = {}
254
+ tqdm_kwargs['disable'] = not bool(show_progress)
255
+ if int(show_progress) > 1:
256
+ tqdm_kwargs['total'] = int(show_progress)
257
+
258
+ # compute matching stats for every pair of label images
259
+ if parallel:
260
+ from concurrent.futures import ThreadPoolExecutor
261
+ fn = lambda pair: matching(*pair, thresh=thresh, criterion=criterion, report_matches=False)
262
+ with ThreadPoolExecutor() as pool:
263
+ stats_all = tuple(pool.map(fn, tqdm(y_gen,**tqdm_kwargs)))
264
+ else:
265
+ stats_all = tuple (
266
+ matching(y_t, y_p, thresh=thresh, criterion=criterion, report_matches=False)
267
+ for y_t,y_p in tqdm(y_gen,**tqdm_kwargs)
268
+ )
269
+
270
+ # accumulate results over all images for each threshold separately
271
+ n_images, n_threshs = len(stats_all), len(thresh)
272
+ accumulate = [{} for _ in range(n_threshs)]
273
+ for stats in stats_all:
274
+ for i,s in enumerate(stats):
275
+ acc = accumulate[i]
276
+ for k,v in s._asdict().items():
277
+ if k == 'mean_true_score' and not bool(by_image):
278
+ # convert mean_true_score to "sum_matched_score"
279
+ acc[k] = acc.setdefault(k,0) + v * s.n_true
280
+ else:
281
+ try:
282
+ acc[k] = acc.setdefault(k,0) + v
283
+ except TypeError:
284
+ pass
285
+
286
+ # normalize/compute 'precision', 'recall', 'accuracy', 'f1'
287
+ for thr,acc in zip(thresh,accumulate):
288
+ set(acc.keys()) == expected_keys or _raise(ValueError("unexpected keys"))
289
+ acc['criterion'] = criterion
290
+ acc['thresh'] = thr
291
+ acc['by_image'] = bool(by_image)
292
+ if bool(by_image):
293
+ for k in ('precision', 'recall', 'accuracy', 'f1', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'):
294
+ acc[k] /= n_images
295
+ else:
296
+ tp, fp, fn, n_true = acc['tp'], acc['fp'], acc['fn'], acc['n_true']
297
+ sum_matched_score = acc['mean_true_score']
298
+
299
+ mean_matched_score = _safe_divide(sum_matched_score, tp)
300
+ mean_true_score = _safe_divide(sum_matched_score, n_true)
301
+ panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
302
+
303
+ acc.update(
304
+ precision = precision(tp,fp,fn),
305
+ recall = recall(tp,fp,fn),
306
+ accuracy = accuracy(tp,fp,fn),
307
+ f1 = f1(tp,fp,fn),
308
+ mean_true_score = mean_true_score,
309
+ mean_matched_score = mean_matched_score,
310
+ panoptic_quality = panoptic_quality,
311
+ )
312
+
313
+ accumulate = tuple(namedtuple('DatasetMatching',acc.keys())(*acc.values()) for acc in accumulate)
314
+ return accumulate[0] if single_thresh else accumulate
315
+
316
+
317
+
318
+ # copied from scikit-image master for now (remove when part of a release)
319
+ def relabel_sequential(label_field, offset=1):
320
+ """Relabel arbitrary labels to {`offset`, ... `offset` + number_of_labels}.
321
+
322
+ This function also returns the forward map (mapping the original labels to
323
+ the reduced labels) and the inverse map (mapping the reduced labels back
324
+ to the original ones).
325
+
326
+ Parameters
327
+ ----------
328
+ label_field : numpy array of int, arbitrary shape
329
+ An array of labels, which must be non-negative integers.
330
+ offset : int, optional
331
+ The return labels will start at `offset`, which should be
332
+ strictly positive.
333
+
334
+ Returns
335
+ -------
336
+ relabeled : numpy array of int, same shape as `label_field`
337
+ The input label field with labels mapped to
338
+ {offset, ..., number_of_labels + offset - 1}.
339
+ The data type will be the same as `label_field`, except when
340
+ offset + number_of_labels causes overflow of the current data type.
341
+ forward_map : numpy array of int, shape ``(label_field.max() + 1,)``
342
+ The map from the original label space to the returned label
343
+ space. Can be used to re-apply the same mapping. See examples
344
+ for usage. The data type will be the same as `relabeled`.
345
+ inverse_map : 1D numpy array of int, of length offset + number of labels
346
+ The map from the new label space to the original space. This
347
+ can be used to reconstruct the original label field from the
348
+ relabeled one. The data type will be the same as `relabeled`.
349
+
350
+ Notes
351
+ -----
352
+ The label 0 is assumed to denote the background and is never remapped.
353
+
354
+ The forward map can be extremely big for some inputs, since its
355
+ length is given by the maximum of the label field. However, in most
356
+ situations, ``label_field.max()`` is much smaller than
357
+ ``label_field.size``, and in these cases the forward map is
358
+ guaranteed to be smaller than either the input or output images.
359
+
360
+ Examples
361
+ --------
362
+ >>> from skimage.segmentation import relabel_sequential
363
+ >>> label_field = np.array([1, 1, 5, 5, 8, 99, 42])
364
+ >>> relab, fw, inv = relabel_sequential(label_field)
365
+ >>> relab
366
+ array([1, 1, 2, 2, 3, 5, 4])
367
+ >>> fw
368
+ array([0, 1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
369
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
370
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
371
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
372
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5])
373
+ >>> inv
374
+ array([ 0, 1, 5, 8, 42, 99])
375
+ >>> (fw[label_field] == relab).all()
376
+ True
377
+ >>> (inv[relab] == label_field).all()
378
+ True
379
+ >>> relab, fw, inv = relabel_sequential(label_field, offset=5)
380
+ >>> relab
381
+ array([5, 5, 6, 6, 7, 9, 8])
382
+ """
383
+ offset = int(offset)
384
+ if offset <= 0:
385
+ raise ValueError("Offset must be strictly positive.")
386
+ if np.min(label_field) < 0:
387
+ raise ValueError("Cannot relabel array that contains negative values.")
388
+ max_label = int(label_field.max()) # Ensure max_label is an integer
389
+ if not np.issubdtype(label_field.dtype, np.integer):
390
+ new_type = np.min_scalar_type(max_label)
391
+ label_field = label_field.astype(new_type)
392
+ labels = np.unique(label_field)
393
+ labels0 = labels[labels != 0]
394
+ new_max_label = offset - 1 + len(labels0)
395
+ new_labels0 = np.arange(offset, new_max_label + 1)
396
+ output_type = label_field.dtype
397
+ required_type = np.min_scalar_type(new_max_label)
398
+ if np.dtype(required_type).itemsize > np.dtype(label_field.dtype).itemsize:
399
+ output_type = required_type
400
+ forward_map = np.zeros(max_label + 1, dtype=output_type)
401
+ forward_map[labels0] = new_labels0
402
+ inverse_map = np.zeros(new_max_label + 1, dtype=output_type)
403
+ inverse_map[offset:] = labels0
404
+ relabeled = forward_map[label_field]
405
+ return relabeled, forward_map, inverse_map
406
+
407
+
408
+
409
+ def group_matching_labels(ys, thresh=1e-10, criterion='iou'):
410
+ """
411
+ Group matching objects (i.e. assign the same label id) in a
412
+ list of label images (e.g. consecutive frames of a time-lapse).
413
+
414
+ Uses function `matching` (with provided `criterion` and `thresh`) to
415
+ iteratively/greedily match and group objects/labels in consecutive images of `ys`.
416
+ To that end, matching objects are grouped together by assigning the same label id,
417
+ whereas unmatched objects are assigned a new label id.
418
+ At the end of this process, each label group will have been assigned a unique id.
419
+
420
+ Note that the label images `ys` will not be modified. Instead, they will initially
421
+ be duplicated and converted to data type `np.int32` before objects are grouped and the result
422
+ is returned. (Note that `np.int32` limits the number of label groups to at most 2147483647.)
423
+
424
+ Example
425
+ -------
426
+ import numpy as np
427
+ from stardist.data import test_image_nuclei_2d
428
+ from stardist.matching import group_matching_labels
429
+
430
+ _y = test_image_nuclei_2d(return_mask=True)[1]
431
+ labels = np.stack([_y, 2*np.roll(_y,10)], axis=0)
432
+
433
+ labels_new = group_matching_labels(labels)
434
+
435
+ Parameters
436
+ ----------
437
+ ys : np.ndarray or list/tuple of np.ndarray
438
+ list/array of integer labels (2D or 3D)
439
+
440
+ """
441
+ # check 'ys' without making a copy
442
+ len(ys) > 1 or _raise(ValueError("'ys' must have 2 or more entries"))
443
+ if isinstance(ys, np.ndarray):
444
+ _check_label_array(ys, 'ys')
445
+ ys.ndim > 1 or _raise(ValueError("'ys' must be at least 2-dimensional"))
446
+ ys_grouped = np.empty_like(ys, dtype=np.int32)
447
+ else:
448
+ all(_check_label_array(y, 'ys') for y in ys) or _raise(ValueError("'ys' must be a list of label images"))
449
+ all(y.shape==ys[0].shape for y in ys) or _raise(ValueError("all label images must have the same shape"))
450
+ ys_grouped = np.empty((len(ys),)+ys[0].shape, dtype=np.int32)
451
+
452
+ def _match_single(y_prev, y, next_id):
453
+ y = y.astype(np.int32, copy=False)
454
+ res = matching(y_prev, y, report_matches=True, thresh=thresh, criterion=criterion)
455
+ # relabel dict (for matching labels) that maps label ids from y -> y_prev
456
+ relabel = dict(reversed(res.matched_pairs[i]) for i in res.matched_tps)
457
+ y_grouped = np.zeros_like(y)
458
+ for r in regionprops(y):
459
+ m = (y[r.slice] == r.label)
460
+ if r.label in relabel:
461
+ y_grouped[r.slice][m] = relabel[r.label]
462
+ else:
463
+ y_grouped[r.slice][m] = next_id
464
+ next_id += 1
465
+ return y_grouped, next_id
466
+
467
+ ys_grouped[0] = ys[0]
468
+ next_id = ys_grouped[0].max() + 1
469
+ for i in range(len(ys)-1):
470
+ ys_grouped[i+1], next_id = _match_single(ys_grouped[i], ys[i+1], next_id)
471
+ return ys_grouped
472
+
473
+
474
+
475
+ def _shuffle_labels(y):
476
+ _check_label_array(y, 'y')
477
+ y2 = np.zeros_like(y)
478
+ ids = tuple(set(np.unique(y)) - {0})
479
+ relabel = dict(zip(ids,np.random.permutation(ids)))
480
+ for r in regionprops(y):
481
+ m = (y[r.slice] == r.label)
482
+ y2[r.slice][m] = relabel[r.label]
483
+ return y2
@@ -0,0 +1,28 @@
1
+ from __future__ import absolute_import, print_function
2
+
3
+ from .model2d import Config2D, StarDist2D, StarDistData2D
4
+ from .model3d import Config3D, StarDist3D, StarDistData3D
5
+
6
+ from csbdeep.utils import backend_channels_last
7
+ from csbdeep.utils.tf import BACKEND as K
8
+ if not backend_channels_last():
9
+ raise NotImplementedError(
10
+ "Keras is configured to use the '%s' image data format, which is currently not supported. "
11
+ "Please change it to use 'channels_last' instead: "
12
+ "https://keras.io/getting-started/faq/#where-is-the-keras-configuration-file-stored" % K.image_data_format()
13
+ )
14
+ del backend_channels_last, K
15
+
16
+ from csbdeep.models import register_model, register_aliases, clear_models_and_aliases
17
+ # register pre-trained models and aliases (TODO: replace with updatable solution)
18
+ clear_models_and_aliases(StarDist2D, StarDist3D)
19
+ register_model(StarDist2D, '2D_versatile_fluo', 'https://github.com/stardist/stardist-models/releases/download/v0.1/python_2D_versatile_fluo.zip', '4ad678d0758eed6e55625f1b5ae30771e59adb79f1239e09b9772eac8846c3dd')
20
+ register_model(StarDist2D, '2D_versatile_he', 'https://github.com/stardist/stardist-models/releases/download/v0.1/python_2D_versatile_he.zip', 'f1696ef0631bd7e1c0e5c0d3017e2b4c6a95e284c6aab9c22fc2f08317817b28')
21
+ register_model(StarDist2D, '2D_paper_dsb2018', 'https://github.com/stardist/stardist-models/releases/download/v0.1/python_2D_paper_dsb2018.zip', '4c11cf68512341d9e8ce3d1278c64ceb8ac400582739f85fcab079a2e82840d2')
22
+ register_model(StarDist2D, '2D_demo', 'https://github.com/stardist/stardist-models/releases/download/v0.1/python_2D_demo.zip', 'a1efaebd7103db6236655bf158b6e21cf5b38d58ec77a509802244a89a260fa4')
23
+ register_model(StarDist3D, '3D_demo', 'https://github.com/stardist/stardist-models/releases/download/v0.1/python_3D_demo.zip', 'ea05831eb5acc8a2fd31eaa23f4460a196a9af53b14f40affb9d80885f699f90')
24
+
25
+ register_aliases(StarDist2D, '2D_paper_dsb2018', 'DSB 2018 (from StarDist 2D paper)')
26
+ register_aliases(StarDist2D, '2D_versatile_fluo', 'Versatile (fluorescent nuclei)')
27
+ register_aliases(StarDist2D, '2D_versatile_he', 'Versatile (H&E nuclei)')
28
+ del register_model, register_aliases, clear_models_and_aliases