senoquant 1.0.0b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. senoquant/__init__.py +6 -0
  2. senoquant/_reader.py +7 -0
  3. senoquant/_widget.py +33 -0
  4. senoquant/napari.yaml +83 -0
  5. senoquant/reader/__init__.py +5 -0
  6. senoquant/reader/core.py +369 -0
  7. senoquant/tabs/__init__.py +15 -0
  8. senoquant/tabs/batch/__init__.py +10 -0
  9. senoquant/tabs/batch/backend.py +641 -0
  10. senoquant/tabs/batch/config.py +270 -0
  11. senoquant/tabs/batch/frontend.py +1283 -0
  12. senoquant/tabs/batch/io.py +326 -0
  13. senoquant/tabs/batch/layers.py +86 -0
  14. senoquant/tabs/quantification/__init__.py +1 -0
  15. senoquant/tabs/quantification/backend.py +228 -0
  16. senoquant/tabs/quantification/features/__init__.py +80 -0
  17. senoquant/tabs/quantification/features/base.py +142 -0
  18. senoquant/tabs/quantification/features/marker/__init__.py +5 -0
  19. senoquant/tabs/quantification/features/marker/config.py +69 -0
  20. senoquant/tabs/quantification/features/marker/dialog.py +437 -0
  21. senoquant/tabs/quantification/features/marker/export.py +879 -0
  22. senoquant/tabs/quantification/features/marker/feature.py +119 -0
  23. senoquant/tabs/quantification/features/marker/morphology.py +285 -0
  24. senoquant/tabs/quantification/features/marker/rows.py +654 -0
  25. senoquant/tabs/quantification/features/marker/thresholding.py +46 -0
  26. senoquant/tabs/quantification/features/roi.py +346 -0
  27. senoquant/tabs/quantification/features/spots/__init__.py +5 -0
  28. senoquant/tabs/quantification/features/spots/config.py +62 -0
  29. senoquant/tabs/quantification/features/spots/dialog.py +477 -0
  30. senoquant/tabs/quantification/features/spots/export.py +1292 -0
  31. senoquant/tabs/quantification/features/spots/feature.py +112 -0
  32. senoquant/tabs/quantification/features/spots/morphology.py +279 -0
  33. senoquant/tabs/quantification/features/spots/rows.py +241 -0
  34. senoquant/tabs/quantification/frontend.py +815 -0
  35. senoquant/tabs/segmentation/__init__.py +1 -0
  36. senoquant/tabs/segmentation/backend.py +131 -0
  37. senoquant/tabs/segmentation/frontend.py +1009 -0
  38. senoquant/tabs/segmentation/models/__init__.py +5 -0
  39. senoquant/tabs/segmentation/models/base.py +146 -0
  40. senoquant/tabs/segmentation/models/cpsam/details.json +65 -0
  41. senoquant/tabs/segmentation/models/cpsam/model.py +150 -0
  42. senoquant/tabs/segmentation/models/default_2d/details.json +69 -0
  43. senoquant/tabs/segmentation/models/default_2d/model.py +664 -0
  44. senoquant/tabs/segmentation/models/default_3d/details.json +69 -0
  45. senoquant/tabs/segmentation/models/default_3d/model.py +682 -0
  46. senoquant/tabs/segmentation/models/hf.py +71 -0
  47. senoquant/tabs/segmentation/models/nuclear_dilation/__init__.py +1 -0
  48. senoquant/tabs/segmentation/models/nuclear_dilation/details.json +26 -0
  49. senoquant/tabs/segmentation/models/nuclear_dilation/model.py +96 -0
  50. senoquant/tabs/segmentation/models/perinuclear_rings/__init__.py +1 -0
  51. senoquant/tabs/segmentation/models/perinuclear_rings/details.json +34 -0
  52. senoquant/tabs/segmentation/models/perinuclear_rings/model.py +132 -0
  53. senoquant/tabs/segmentation/stardist_onnx_utils/__init__.py +2 -0
  54. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/__init__.py +3 -0
  55. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/__init__.py +6 -0
  56. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/generate.py +470 -0
  57. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/prepare.py +273 -0
  58. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/rawdata.py +112 -0
  59. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/data/transform.py +384 -0
  60. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/__init__.py +0 -0
  61. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/blocks.py +184 -0
  62. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/losses.py +79 -0
  63. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/nets.py +165 -0
  64. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/predict.py +467 -0
  65. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/probability.py +67 -0
  66. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/internals/train.py +148 -0
  67. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/io/__init__.py +163 -0
  68. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/__init__.py +52 -0
  69. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/base_model.py +329 -0
  70. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_isotropic.py +160 -0
  71. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_projection.py +178 -0
  72. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_standard.py +446 -0
  73. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/care_upsampling.py +54 -0
  74. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/config.py +254 -0
  75. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/models/pretrained.py +119 -0
  76. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/__init__.py +0 -0
  77. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/scripts/care_predict.py +180 -0
  78. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/__init__.py +5 -0
  79. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/plot_utils.py +159 -0
  80. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/six.py +18 -0
  81. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/tf.py +644 -0
  82. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/utils/utils.py +272 -0
  83. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/csbdeep/version.py +1 -0
  84. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/docs/source/conf.py +368 -0
  85. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/setup.py +68 -0
  86. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_datagen.py +169 -0
  87. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_models.py +462 -0
  88. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tests/test_utils.py +166 -0
  89. senoquant/tabs/segmentation/stardist_onnx_utils/_csbdeep/tools/create_zip_contents.py +34 -0
  90. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/__init__.py +30 -0
  91. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/big.py +624 -0
  92. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/bioimageio_utils.py +494 -0
  93. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/data/__init__.py +39 -0
  94. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/__init__.py +10 -0
  95. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom2d.py +215 -0
  96. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/geometry/geom3d.py +349 -0
  97. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/matching.py +483 -0
  98. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/__init__.py +28 -0
  99. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/base.py +1217 -0
  100. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model2d.py +594 -0
  101. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/models/model3d.py +696 -0
  102. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/nms.py +384 -0
  103. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/__init__.py +2 -0
  104. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/plot.py +74 -0
  105. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/plot/render.py +298 -0
  106. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/rays3d.py +373 -0
  107. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/sample_patches.py +65 -0
  108. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/__init__.py +0 -0
  109. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict2d.py +90 -0
  110. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/scripts/predict3d.py +93 -0
  111. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/utils.py +408 -0
  112. senoquant/tabs/segmentation/stardist_onnx_utils/_stardist/version.py +1 -0
  113. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/__init__.py +45 -0
  114. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/__init__.py +17 -0
  115. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/cli.py +55 -0
  116. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/convert/core.py +285 -0
  117. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/__init__.py +15 -0
  118. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/cli.py +36 -0
  119. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/divisibility.py +193 -0
  120. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/probe.py +100 -0
  121. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/receptive_field.py +182 -0
  122. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/rf_cli.py +48 -0
  123. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/inspect/valid_sizes.py +278 -0
  124. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/__init__.py +8 -0
  125. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/post/core.py +157 -0
  126. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/__init__.py +17 -0
  127. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/pre/core.py +226 -0
  128. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/__init__.py +5 -0
  129. senoquant/tabs/segmentation/stardist_onnx_utils/onnx_framework/predict/core.py +401 -0
  130. senoquant/tabs/settings/__init__.py +1 -0
  131. senoquant/tabs/settings/backend.py +29 -0
  132. senoquant/tabs/settings/frontend.py +19 -0
  133. senoquant/tabs/spots/__init__.py +1 -0
  134. senoquant/tabs/spots/backend.py +139 -0
  135. senoquant/tabs/spots/frontend.py +800 -0
  136. senoquant/tabs/spots/models/__init__.py +5 -0
  137. senoquant/tabs/spots/models/base.py +94 -0
  138. senoquant/tabs/spots/models/rmp/details.json +61 -0
  139. senoquant/tabs/spots/models/rmp/model.py +499 -0
  140. senoquant/tabs/spots/models/udwt/details.json +103 -0
  141. senoquant/tabs/spots/models/udwt/model.py +482 -0
  142. senoquant/utils.py +25 -0
  143. senoquant-1.0.0b1.dist-info/METADATA +193 -0
  144. senoquant-1.0.0b1.dist-info/RECORD +148 -0
  145. senoquant-1.0.0b1.dist-info/WHEEL +5 -0
  146. senoquant-1.0.0b1.dist-info/entry_points.txt +2 -0
  147. senoquant-1.0.0b1.dist-info/licenses/LICENSE +28 -0
  148. senoquant-1.0.0b1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,494 @@
1
+ from pathlib import Path
2
+ try:
3
+ from importlib.metadata import requires
4
+ except ImportError:
5
+ from importlib_metadata import requires
6
+ from zipfile import ZipFile
7
+ import numpy as np
8
+ import tempfile
9
+ from packaging.version import Version
10
+ from csbdeep.utils import axes_check_and_normalize, normalize, _raise
11
+
12
+
13
+ DEEPIMAGEJ_MACRO = \
14
+ """
15
+ //*******************************************************************
16
+ // Date: July-2021
17
+ // Credits: StarDist, DeepImageJ
18
+ // URL:
19
+ // https://github.com/stardist/stardist
20
+ // https://deepimagej.github.io/deepimagej
21
+ // This macro was adapted from
22
+ // https://github.com/deepimagej/imagej-macros/blob/648caa867f6ccb459649d4d3799efa1e2e0c5204/StarDist2D_Post-processing.ijm
23
+ // Please cite the respective contributions when using this code.
24
+ //*******************************************************************
25
+ // Macro to run StarDist postprocessing on 2D images.
26
+ // StarDist and deepImageJ plugins need to be installed.
27
+ // The macro assumes that the image to process is a stack in which
28
+ // the first channel corresponds to the object probability map
29
+ // and the remaining channels are the radial distances from each
30
+ // pixel to the object boundary.
31
+ //*******************************************************************
32
+
33
+ // Get the name of the image to call it
34
+ getDimensions(width, height, channels, slices, frames);
35
+ name=getTitle();
36
+
37
+ probThresh={probThresh};
38
+ nmsThresh={nmsThresh};
39
+
40
+ // Isolate the detection probability scores
41
+ run("Make Substack...", "channels=1");
42
+ rename("scores");
43
+
44
+ // Isolate the oriented distances
45
+ run("Fire");
46
+ selectWindow(name);
47
+ run("Delete Slice", "delete=channel");
48
+ selectWindow(name);
49
+ run("Properties...", "channels=" + maxOf(channels, slices) - 1 + " slices=1 frames=1 pixel_width=1.0000 pixel_height=1.0000 voxel_depth=1.0000");
50
+ rename("distances");
51
+ run("royal");
52
+
53
+ // Run StarDist plugin
54
+ run("Command From Macro", "command=[de.csbdresden.stardist.StarDist2DNMS], args=['prob':'scores', 'dist':'distances', 'probThresh':'" + probThresh + "', 'nmsThresh':'" + nmsThresh + "', 'outputType':'Both', 'excludeBoundary':'2', 'roiPosition':'Stack', 'verbose':'false'], process=[false]");
55
+ """
56
+
57
+
58
+ def _import(error=True):
59
+ try:
60
+ from importlib_metadata import metadata
61
+ from bioimageio.core.build_spec import build_model # type: ignore
62
+ import xarray as xr
63
+ import bioimageio.core # type: ignore
64
+ except ImportError:
65
+ if error:
66
+ raise RuntimeError(
67
+ "Required libraries are missing for bioimage.io model export.\n"
68
+ "Please install StarDist as follows: pip install 'stardist[bioimageio]'\n"
69
+ "(You do not need to uninstall StarDist first.)"
70
+ )
71
+ else:
72
+ return None
73
+ return metadata, build_model, bioimageio.core, xr
74
+
75
+
76
+ def _create_stardist_dependencies(outdir):
77
+ from ruamel.yaml import YAML
78
+ from packaging.requirements import Requirement
79
+ from tensorflow import __version__ as tf_version
80
+ from . import __version__ as stardist_version
81
+ # dependencies that start with the name "bioimageio" will be added as conda dependencies
82
+ reqs_conda = []
83
+ for req_str in requires("stardist"):
84
+ req = Requirement(req_str)
85
+ if (
86
+ req.marker is not None
87
+ # only include requirements that are for the "bioimageio" extra
88
+ and req.marker.evaluate({'extra': 'bioimageio'})
89
+ and not req.marker.evaluate({'extra': ''})
90
+ # and package name starts with "bioimageio"
91
+ and req.name.startswith('bioimageio')
92
+ ):
93
+ # https://packaging.pypa.io/en/stable/requirements.html
94
+ reqs_conda.append(f"{req.name}{req.specifier}")
95
+ # only stardist and tensorflow as pip dependencies
96
+ v_tf = Version(tf_version)
97
+ reqs_pip = (f"stardist>={stardist_version}", f"tensorflow>={v_tf.major}.{v_tf.minor},<{v_tf.major+1}")
98
+ # conda environment
99
+ env = dict(
100
+ name = 'stardist',
101
+ channels = ['defaults', 'conda-forge'],
102
+ dependencies = [
103
+ ('python>=3.7,<3.8' if v_tf.major == 1 else 'python>=3.7'),
104
+ *reqs_conda,
105
+ 'pip', {'pip': reqs_pip},
106
+ ],
107
+ )
108
+ yaml = YAML(typ='safe')
109
+ path = outdir / "environment.yaml"
110
+ with open(path, "w") as f:
111
+ yaml.dump(env, f)
112
+ return f"conda:{path}"
113
+
114
+
115
+ def _create_stardist_doc(outdir):
116
+ doc_path = outdir / "README.md"
117
+ text = (
118
+ "# StarDist Model\n"
119
+ "This is a model for object detection with star-convex shapes.\n"
120
+ "Please see the [StarDist repository](https://github.com/stardist/stardist) for details."
121
+ )
122
+ with open(doc_path, "w") as f:
123
+ f.write(text)
124
+ return doc_path
125
+
126
+
127
+ def _get_stardist_metadata(outdir, model, generate_default_deps):
128
+ metadata, *_ = _import()
129
+ package_data = metadata("stardist")
130
+ doi_2d = "https://doi.org/10.1007/978-3-030-00934-2_30"
131
+ doi_3d = "https://doi.org/10.1109/WACV45572.2020.9093435"
132
+ authors = {
133
+ 'Martin Weigert': dict(name='Martin Weigert', github_user='maweigert'),
134
+ 'Uwe Schmidt': dict(name='Uwe Schmidt', github_user='uschmidt83'),
135
+ }
136
+ data = dict(
137
+ description=package_data["Summary"],
138
+ authors=list(authors.get(name.strip(),dict(name=name.strip())) for name in package_data["Author"].split(",")),
139
+ git_repo=package_data["Home-Page"],
140
+ license=package_data["License"],
141
+ cite=[{"text": "Cell Detection with Star-Convex Polygons", "doi": doi_2d},
142
+ {"text": "Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy", "doi": doi_3d}],
143
+ tags=[
144
+ 'fluorescence-light-microscopy', 'whole-slide-imaging', 'other', # modality
145
+ f'{model.config.n_dim}d', # dims
146
+ 'cells', 'nuclei', # content
147
+ 'tensorflow', # framework
148
+ 'fiji', # software
149
+ 'unet', # network
150
+ 'instance-segmentation', 'object-detection', # task
151
+ 'stardist',
152
+ ],
153
+ covers=["https://raw.githubusercontent.com/stardist/stardist/main/images/stardist_logo.jpg"],
154
+ documentation=_create_stardist_doc(outdir),
155
+ )
156
+ if generate_default_deps: # only if requested, as not required for bioimage.io
157
+ data['dependencies'] = _create_stardist_dependencies(outdir)
158
+
159
+ return data
160
+
161
+
162
+ def _predict_tf(model_path, test_input):
163
+ import tensorflow as tf
164
+ from csbdeep.utils.tf import IS_TF_1
165
+ # need to unzip the model assets
166
+ model_assets = model_path.parent / "tf_model"
167
+ with ZipFile(model_path, "r") as f:
168
+ f.extractall(model_assets)
169
+ if IS_TF_1:
170
+ # make a new graph, i.e. don't use the global default graph
171
+ with tf.Graph().as_default():
172
+ with tf.Session() as sess:
173
+ tf_model = tf.saved_model.load_v2(str(model_assets))
174
+ x = tf.convert_to_tensor(test_input, dtype=tf.float32)
175
+ model = tf_model.signatures["serving_default"]
176
+ y = model(x)
177
+ sess.run(tf.global_variables_initializer())
178
+ output = sess.run(y["output"])
179
+ else:
180
+ tf_model = tf.saved_model.load(str(model_assets))
181
+ x = tf.convert_to_tensor(test_input, dtype=tf.float32)
182
+ model = tf_model.signatures["serving_default"]
183
+ y = model(x)
184
+ output = y["output"].numpy()
185
+ return output
186
+
187
+
188
+ def _get_weights_and_model_metadata(outdir, model, test_input, test_input_axes, test_input_norm_axes, mode, min_percentile, max_percentile):
189
+
190
+ # get the path to the exported model assets (saved in outdir)
191
+ if mode == "keras_hdf5":
192
+ raise NotImplementedError("Export to keras format is not supported yet")
193
+ elif mode == "tensorflow_saved_model_bundle":
194
+ assets_uri = outdir / "TF_SavedModel.zip"
195
+ model_csbdeep = model.export_TF(assets_uri, single_output=True, upsample_grid=True)
196
+ else:
197
+ raise ValueError(f"Unsupported mode: {mode}")
198
+
199
+ # to force "inputs.data_type: float32" in the spec (bonus: disables normalization warning in model._predict_setup)
200
+ test_input = test_input.astype(np.float32)
201
+
202
+ # convert test_input to axes_net semantics and shape, also resize if necessary (to adhere to axes_net_div_by)
203
+ test_input, axes_img, axes_net, axes_net_div_by, *_ = model._predict_setup(
204
+ img=test_input,
205
+ axes=test_input_axes,
206
+ normalizer=None,
207
+ n_tiles=None,
208
+ show_tile_progress=False,
209
+ predict_kwargs={},
210
+ )
211
+
212
+ # normalization axes string and numeric indices
213
+ axes_norm = set(axes_net).intersection(set(axes_check_and_normalize(test_input_norm_axes, disallowed='S')))
214
+ axes_norm = "".join(a for a in axes_net if a in axes_norm) # preserve order of axes_net
215
+ axes_norm_num = tuple(axes_net.index(a) for a in axes_norm)
216
+
217
+ # normalize input image
218
+ test_input_norm = normalize(test_input, pmin=min_percentile, pmax=max_percentile, axis=axes_norm_num)
219
+
220
+ net_axes_in = axes_net.lower()
221
+ net_axes_out = axes_check_and_normalize(model._axes_out).lower()
222
+ ndim_tensor = len(net_axes_out) + 1
223
+
224
+ input_min_shape = list(axes_net_div_by)
225
+ input_min_shape[axes_net.index('C')] = model.config.n_channel_in
226
+ input_step = list(axes_net_div_by)
227
+ input_step[axes_net.index('C')] = 0
228
+
229
+ # add the batch axis to shape and step
230
+ input_min_shape = [1] + input_min_shape
231
+ input_step = [0] + input_step
232
+
233
+ # the axes strings in bioimageio convention
234
+ input_axes = "b" + net_axes_in.lower()
235
+ output_axes = "b" + net_axes_out.lower()
236
+
237
+ if mode == "keras_hdf5":
238
+ output_names = ("prob", "dist") + (("class_prob",) if model._is_multiclass() else ())
239
+ output_n_channels = (1, model.config.n_rays,) + ((1,) if model._is_multiclass() else ())
240
+ # the output shape is computed from the input shape using
241
+ # output_shape[i] = output_scale[i] * input_shape[i] + 2 * output_offset[i]
242
+ output_scale = [1]+list(1/g for g in model.config.grid) + [0]
243
+ output_offset = [0]*(ndim_tensor)
244
+
245
+ elif mode == "tensorflow_saved_model_bundle":
246
+ if model._is_multiclass():
247
+ raise NotImplementedError("Tensorflow SavedModel not supported for multiclass models yet")
248
+ # regarding input/output names: https://github.com/CSBDeep/CSBDeep/blob/b0d2f5f344ebe65a9b4c3007f4567fe74268c813/csbdeep/utils/tf.py#L193-L194
249
+ input_names = ["input"]
250
+ output_names = ["output"]
251
+ output_n_channels = (1 + model.config.n_rays,)
252
+ # the output shape is computed from the input shape using
253
+ # output_shape[i] = output_scale[i] * input_shape[i] + 2 * output_offset[i]
254
+ # same shape as input except for the channel dimension
255
+ output_scale = [1]*(ndim_tensor)
256
+ output_scale[output_axes.index("c")] = 0
257
+ # no offset, except for the input axes, where it is output channel / 2
258
+ output_offset = [0.0]*(ndim_tensor)
259
+ output_offset[output_axes.index("c")] = output_n_channels[0] / 2.0
260
+
261
+ assert all(s in (0, 1) for s in output_scale), "halo computation assumption violated"
262
+ halo = model._axes_tile_overlap(output_axes.replace('b', 's'))
263
+ halo = [int(np.ceil(v/8)*8) for v in halo] # optional: round up to be divisible by 8
264
+
265
+ # the output shape needs to be valid after cropping the halo, so we add the halo to the input min shape
266
+ input_min_shape = [ms + 2 * ha for ms, ha in zip(input_min_shape, halo)]
267
+
268
+ # make sure the input min shape is still divisible by the min axis divisor
269
+ input_min_shape = input_min_shape[:1] + [ms + (-ms % div_by) for ms, div_by in zip(input_min_shape[1:], axes_net_div_by)]
270
+ assert all(ms % div_by == 0 for ms, div_by in zip(input_min_shape[1:], axes_net_div_by))
271
+
272
+ metadata, *_ = _import()
273
+ package_data = metadata("stardist")
274
+ is_2D = model.config.n_dim == 2
275
+
276
+ weights_file = outdir / "stardist_weights.h5"
277
+ model.keras_model.save_weights(str(weights_file))
278
+
279
+ config = dict(
280
+ stardist=dict(
281
+ python_version=package_data["Version"],
282
+ thresholds=dict(model.thresholds._asdict()),
283
+ weights=weights_file.name,
284
+ config=vars(model.config),
285
+ )
286
+ )
287
+
288
+ if is_2D:
289
+ macro_file = outdir / "stardist_postprocessing.ijm"
290
+ with open(str(macro_file), 'w', encoding='utf-8') as f:
291
+ f.write(DEEPIMAGEJ_MACRO.format(probThresh=model.thresholds.prob, nmsThresh=model.thresholds.nms))
292
+ config['stardist'].update(postprocessing_macro=macro_file.name)
293
+
294
+ n_inputs = len(input_names)
295
+ assert n_inputs == 1
296
+ input_config = dict(
297
+ input_names=input_names,
298
+ input_min_shape=[input_min_shape],
299
+ input_step=[input_step],
300
+ input_axes=[input_axes],
301
+ input_data_range=[["-inf", "inf"]],
302
+ preprocessing=[[dict(
303
+ name="scale_range",
304
+ kwargs=dict(
305
+ mode="per_sample",
306
+ axes=axes_norm.lower(),
307
+ min_percentile=min_percentile,
308
+ max_percentile=max_percentile,
309
+ ))]]
310
+ )
311
+
312
+ n_outputs = len(output_names)
313
+ output_config = dict(
314
+ output_names=output_names,
315
+ output_data_range=[["-inf", "inf"]] * n_outputs,
316
+ output_axes=[output_axes] * n_outputs,
317
+ output_reference=[input_names[0]] * n_outputs,
318
+ output_scale=[output_scale] * n_outputs,
319
+ output_offset=[output_offset] * n_outputs,
320
+ halo=[halo] * n_outputs
321
+ )
322
+
323
+ in_path = outdir / "test_input.npy"
324
+ np.save(in_path, test_input[np.newaxis])
325
+
326
+ if mode == "tensorflow_saved_model_bundle":
327
+ test_outputs = _predict_tf(assets_uri, test_input_norm[np.newaxis])
328
+ else:
329
+ test_outputs = model.predict(test_input_norm)
330
+
331
+ # out_paths = []
332
+ # for i, out in enumerate(test_outputs):
333
+ # p = outdir / f"test_output{i}.npy"
334
+ # np.save(p, out)
335
+ # out_paths.append(p)
336
+ assert n_outputs == 1
337
+ out_paths = [outdir / "test_output.npy"]
338
+ np.save(out_paths[0], test_outputs)
339
+
340
+ from tensorflow import __version__ as tf_version
341
+ data = dict(weight_uri=assets_uri, test_inputs=[in_path], test_outputs=out_paths,
342
+ config=config, tensorflow_version=tf_version)
343
+ data.update(input_config)
344
+ data.update(output_config)
345
+ _files = [str(weights_file)]
346
+ if is_2D:
347
+ _files.append(str(macro_file))
348
+ data.update(attachments=dict(files=_files))
349
+
350
+ return data
351
+
352
+
353
+ def export_bioimageio(
354
+ model,
355
+ outpath,
356
+ test_input,
357
+ test_input_axes=None,
358
+ test_input_norm_axes='ZYX',
359
+ name=None,
360
+ mode="tensorflow_saved_model_bundle",
361
+ min_percentile=1.0,
362
+ max_percentile=99.8,
363
+ overwrite_spec_kwargs=None,
364
+ generate_default_deps=False,
365
+ ):
366
+ """Export stardist model into bioimage.io format, https://github.com/bioimage-io/spec-bioimage-io.
367
+
368
+ Parameters
369
+ ----------
370
+ model: StarDist2D, StarDist3D
371
+ the model to convert
372
+ outpath: str, Path
373
+ where to save the model
374
+ test_input: np.ndarray
375
+ input image for generating test data
376
+ test_input_axes: str or None
377
+ the axes of the test input, for example 'YX' for a 2d image or 'ZYX' for a 3d volume
378
+ using None assumes that axes of test_input are the same as those of model
379
+ test_input_norm_axes: str
380
+ the axes of the test input which will be jointly normalized, for example 'ZYX' for all spatial dimensions ('Z' ignored for 2D input)
381
+ use 'ZYXC' to also jointly normalize channels (e.g. for RGB input images)
382
+ name: str
383
+ the name of this model (default: None)
384
+ if None, uses the (folder) name of the model (i.e. `model.name`)
385
+ mode: str
386
+ the export type for this model (default: "tensorflow_saved_model_bundle")
387
+ min_percentile: float
388
+ min percentile to be used for image normalization (default: 1.0)
389
+ max_percentile: float
390
+ max percentile to be used for image normalization (default: 99.8)
391
+ overwrite_spec_kwargs: dict or None
392
+ spec keywords that should be overloaded (default: None)
393
+ generate_default_deps: bool
394
+ not required for bioimage.io, i.e. StarDist models don't need a dependencies field in rdf.yaml (default: False)
395
+ if True, generate an environment.yaml file recording the python, bioimageio.core, stardist and tensorflow requirements
396
+ from which a conda environment can be recreated to run this export
397
+ """
398
+ _, build_model, *_ = _import()
399
+ from .models import StarDist2D, StarDist3D
400
+ isinstance(model, (StarDist2D, StarDist3D)) or _raise(ValueError("not a valid model"))
401
+ 0 <= min_percentile < max_percentile <= 100 or _raise(ValueError("invalid percentile values"))
402
+
403
+ if name is None:
404
+ name = model.name
405
+ name = str(name)
406
+
407
+ outpath = Path(outpath)
408
+ if outpath.suffix == "":
409
+ outdir = outpath
410
+ zip_path = outdir / f"{name}.zip"
411
+ elif outpath.suffix == ".zip":
412
+ outdir = outpath.parent
413
+ zip_path = outpath
414
+ else:
415
+ raise ValueError(f"outpath has to be a folder or zip file, got {outpath}")
416
+ outdir.mkdir(exist_ok=True, parents=True)
417
+
418
+ with tempfile.TemporaryDirectory() as _tmp_dir:
419
+ tmp_dir = Path(_tmp_dir)
420
+ kwargs = _get_stardist_metadata(tmp_dir, model, generate_default_deps)
421
+ model_kwargs = _get_weights_and_model_metadata(tmp_dir, model, test_input, test_input_axes, test_input_norm_axes, mode,
422
+ min_percentile=min_percentile, max_percentile=max_percentile)
423
+ kwargs.update(model_kwargs)
424
+ if overwrite_spec_kwargs is not None:
425
+ kwargs.update(overwrite_spec_kwargs)
426
+
427
+ build_model(name=name, output_path=zip_path, add_deepimagej_config=(model.config.n_dim==2), root=tmp_dir, **kwargs)
428
+ print(f"\nbioimage.io model with name '{name}' exported to '{zip_path}'")
429
+
430
+
431
+ def import_bioimageio(source, outpath):
432
+ """Import stardist model from bioimage.io format, https://github.com/bioimage-io/spec-bioimage-io.
433
+
434
+ Load a model in bioimage.io format from the given `source` (e.g. path to zip file, URL)
435
+ and convert it to a regular stardist model, which will be saved in the folder `outpath`.
436
+
437
+ Parameters
438
+ ----------
439
+ source: str, Path
440
+ bioimage.io resource (e.g. path, URL)
441
+ outpath: str, Path
442
+ folder to save the stardist model (must not exist previously)
443
+
444
+ Returns
445
+ -------
446
+ StarDist2D or StarDist3D
447
+ stardist model loaded from `outpath`
448
+
449
+ """
450
+ import shutil, uuid
451
+ from csbdeep.utils import save_json
452
+ from .models import StarDist2D, StarDist3D
453
+ *_, bioimageio_core, _ = _import()
454
+
455
+ outpath = Path(outpath)
456
+ not outpath.exists() or _raise(FileExistsError(f"'{outpath}' already exists"))
457
+
458
+ with tempfile.TemporaryDirectory() as _tmp_dir:
459
+ tmp_dir = Path(_tmp_dir)
460
+ # download the full model content to a temporary folder
461
+ zip_path = tmp_dir / f"{str(uuid.uuid4())}.zip"
462
+ bioimageio_core.export_resource_package(source, output_path=zip_path)
463
+ with ZipFile(zip_path, "r") as zip_ref:
464
+ zip_ref.extractall(tmp_dir)
465
+ zip_path.unlink()
466
+ rdf_path = tmp_dir / "rdf.yaml"
467
+ biomodel = bioimageio_core.load_resource_description(rdf_path)
468
+
469
+ # read the stardist specific content
470
+ 'stardist' in biomodel.config or _raise(RuntimeError("bioimage.io model not compatible"))
471
+ config = biomodel.config['stardist']['config']
472
+ thresholds = biomodel.config['stardist']['thresholds']
473
+ weights = biomodel.config['stardist']['weights']
474
+
475
+ # make sure that the keras weights are in the attachments
476
+ weights_file = None
477
+ for f in biomodel.attachments.files:
478
+ if f.name == weights and f.exists():
479
+ weights_file = f
480
+ break
481
+ weights_file is not None or _raise(FileNotFoundError(f"couldn't find weights file '{weights}'"))
482
+
483
+ # save the config and threshold to json, and weights to hdf5 to enable loading as stardist model
484
+ # copy bioimageio files to separate sub-folder
485
+ outpath.mkdir(parents=True)
486
+ save_json(config, str(outpath / 'config.json'))
487
+ save_json(thresholds, str(outpath / 'thresholds.json'))
488
+ shutil.copy(str(weights_file), str(outpath / "weights_bioimageio.h5"))
489
+ shutil.copytree(str(tmp_dir), str(outpath / "bioimageio"))
490
+
491
+ model_class = (StarDist2D if config['n_dim'] == 2 else StarDist3D)
492
+ model = model_class(None, outpath.name, basedir=str(outpath.parent))
493
+
494
+ return model
@@ -0,0 +1,39 @@
1
+ def abspath(path):
2
+ import os
3
+ base_path = os.path.abspath(os.path.dirname(__file__))
4
+ return os.path.join(base_path, path)
5
+
6
+
7
+ def test_image_nuclei_2d(return_mask=False):
8
+ """ Fluorescence microscopy image and mask from the 2018 kaggle DSB challenge
9
+
10
+ Caicedo et al. "Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl." Nature methods 16.12
11
+ """
12
+ from tifffile import imread
13
+ img = imread(abspath("images/img2d.tif"))
14
+ mask = imread(abspath("images/mask2d.tif"))
15
+ if return_mask:
16
+ return img, mask
17
+ else:
18
+ return img
19
+
20
+
21
+ def test_image_he_2d():
22
+ """ H&E stained RGB example image from the Cancer Imaging Archive
23
+ https://www.cancerimagingarchive.net
24
+ """
25
+ from imageio import imread
26
+ img = imread(abspath("images/histo.jpg"))
27
+ return img
28
+
29
+
30
+ def test_image_nuclei_3d(return_mask=False):
31
+ """ synthetic nuclei
32
+ """
33
+ from tifffile import imread
34
+ img = imread(abspath("images/img3d.tif"))
35
+ mask = imread(abspath("images/mask3d.tif"))
36
+ if return_mask:
37
+ return img, mask
38
+ else:
39
+ return img
@@ -0,0 +1,10 @@
1
+ from __future__ import absolute_import, print_function
2
+
3
+ # TODO: rethink naming for 2D/3D functions
4
+
5
+ from .geom2d import star_dist, relabel_image_stardist, ray_angles, dist_to_coord, polygons_to_label, polygons_to_label_coord
6
+ from .geom3d import star_dist3D, polyhedron_to_label, relabel_image_stardist3D, dist_to_coord3D, export_to_obj_file3D
7
+
8
+ from .geom2d import _dist_to_coord_old, _polygons_to_label_old
9
+
10
+ #, dist_to_volume, dist_to_centroid