scitex 2.8.1__py3-none-any.whl → 2.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +15 -7
- scitex/__version__.py +1 -2
- scitex/_install_guide.py +250 -0
- scitex/_optional_deps.py +206 -39
- scitex/ai/_gen_ai/_Groq.py +2 -4
- scitex/ai/_gen_ai/_OpenAI.py +5 -2
- scitex/ai/_gen_ai/_Perplexity.py +20 -6
- scitex/audio/__init__.py +24 -15
- scitex/audio/_cross_process_lock.py +139 -0
- scitex/audio/_mcp_handlers.py +256 -0
- scitex/audio/_mcp_tool_schemas.py +203 -0
- scitex/audio/engines/elevenlabs_engine.py +5 -2
- scitex/audio/mcp_server.py +98 -457
- scitex/bridge/__init__.py +30 -19
- scitex/bridge/_figrecipe.py +245 -0
- scitex/bridge/_helpers.py +2 -1
- scitex/bridge/_plt_vis.py +23 -10
- scitex/bridge/_stats_plt.py +18 -5
- scitex/bridge/_stats_vis.py +16 -2
- scitex/browser/__init__.py +84 -44
- scitex/browser/automation/__init__.py +5 -1
- scitex/browser/core/BrowserMixin.py +17 -4
- scitex/browser/core/__init__.py +11 -2
- scitex/browser/remote/CaptchaHandler.py +1 -1
- scitex/browser/remote/ZenRowsAPIClient.py +1 -1
- scitex/capture/grid.py +487 -0
- scitex/capture/mcp_handlers.py +401 -0
- scitex/capture/mcp_tool_defs.py +192 -0
- scitex/capture/mcp_tools.py +241 -0
- scitex/capture/mcp_utils.py +30 -0
- scitex/cli/convert.py +421 -0
- scitex/cli/main.py +6 -4
- scitex/datetime/__init__.py +46 -0
- scitex/datetime/_linspace.py +100 -0
- scitex/datetime/_normalize_timestamp.py +306 -0
- scitex/db/_delete_duplicates.py +4 -4
- scitex/db/_sqlite3/_delete_duplicates.py +11 -2
- scitex/dev/plt/__init__.py +61 -62
- scitex/dev/plt/demo_plotters/__init__.py +0 -0
- scitex/dev/plt/demo_plotters/plot_mpl_axhline.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_axhspan.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_axvline.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_axvspan.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_bar.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_barh.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_boxplot.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_contour.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_contourf.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_errorbar.py +30 -0
- scitex/dev/plt/demo_plotters/plot_mpl_eventplot.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_fill.py +30 -0
- scitex/dev/plt/demo_plotters/plot_mpl_fill_between.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_hexbin.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_hist.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_hist2d.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_imshow.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_pcolormesh.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_pie.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_plot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_quiver.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_scatter.py +28 -0
- scitex/dev/plt/demo_plotters/plot_mpl_stackplot.py +31 -0
- scitex/dev/plt/demo_plotters/plot_mpl_stem.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_step.py +29 -0
- scitex/dev/plt/demo_plotters/plot_mpl_violinplot.py +28 -0
- scitex/dev/plt/demo_plotters/plot_sns_barplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_boxplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_heatmap.py +28 -0
- scitex/dev/plt/demo_plotters/plot_sns_histplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_kdeplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_lineplot.py +31 -0
- scitex/dev/plt/demo_plotters/plot_sns_scatterplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_stripplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_swarmplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_sns_violinplot.py +29 -0
- scitex/dev/plt/demo_plotters/plot_stx_bar.py +29 -0
- scitex/dev/plt/demo_plotters/plot_stx_barh.py +29 -0
- scitex/dev/plt/demo_plotters/plot_stx_box.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_boxplot.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_conf_mat.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_contour.py +31 -0
- scitex/dev/plt/demo_plotters/plot_stx_ecdf.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_errorbar.py +30 -0
- scitex/dev/plt/demo_plotters/plot_stx_fill_between.py +31 -0
- scitex/dev/plt/demo_plotters/plot_stx_fillv.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_heatmap.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_image.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_imshow.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_joyplot.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_kde.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_line.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_mean_ci.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_mean_std.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_median_iqr.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_raster.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_rectangle.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_scatter.py +29 -0
- scitex/dev/plt/demo_plotters/plot_stx_shaded_line.py +29 -0
- scitex/dev/plt/demo_plotters/plot_stx_violin.py +28 -0
- scitex/dev/plt/demo_plotters/plot_stx_violinplot.py +28 -0
- scitex/dev/plt/mpl/get_dir_ax.py +46 -0
- scitex/dev/plt/mpl/get_signatures.py +176 -0
- scitex/dev/plt/mpl/get_signatures_details.py +522 -0
- scitex/dict/_pop_keys.py +1 -7
- scitex/dsp/__init__.py +15 -10
- scitex/dsp/add_noise.py +5 -2
- scitex/dsp/example.py +35 -22
- scitex/dsp/filt.py +8 -3
- scitex/dsp/reference.py +3 -2
- scitex/dsp/utils/__init__.py +2 -1
- scitex/dsp/utils/_differential_bandpass_filters.py +14 -4
- scitex/dt/__init__.py +39 -2
- scitex/errors.py +82 -521
- scitex/fig/__init__.py +4 -4
- scitex/fig/editor/edit/panel_loader.py +1 -1
- scitex/fig/io/_bundle.py +7 -7
- scitex/fts/README.md +262 -0
- scitex/fts/TODO.md +66 -0
- scitex/fts/__init__.py +90 -0
- scitex/fts/_bundle/README_IN_BUNDLE.md +102 -0
- scitex/fts/_bundle/_FTS.py +657 -0
- scitex/fts/_bundle/__init__.py +38 -0
- scitex/fts/_bundle/_children.py +216 -0
- scitex/fts/_bundle/_conversion/__init__.py +15 -0
- scitex/fts/_bundle/_conversion/_bundle2dict.py +44 -0
- scitex/fts/_bundle/_conversion/_dict2bundle.py +50 -0
- scitex/fts/_bundle/_dataclasses/_Axes.py +57 -0
- scitex/fts/_bundle/_dataclasses/_BBox.py +54 -0
- scitex/fts/_bundle/_dataclasses/_ColumnDef.py +72 -0
- scitex/fts/_bundle/_dataclasses/_DataFormat.py +40 -0
- scitex/fts/_bundle/_dataclasses/_DataInfo.py +135 -0
- scitex/fts/_bundle/_dataclasses/_DataSource.py +44 -0
- scitex/fts/_bundle/_dataclasses/_Node.py +319 -0
- scitex/fts/_bundle/_dataclasses/_NodeRefs.py +45 -0
- scitex/fts/_bundle/_dataclasses/_SizeMM.py +38 -0
- scitex/fts/_bundle/_dataclasses/__init__.py +35 -0
- scitex/fts/_bundle/_extractors/__init__.py +32 -0
- scitex/fts/_bundle/_extractors/_extract_bar.py +131 -0
- scitex/fts/_bundle/_extractors/_extract_line.py +71 -0
- scitex/fts/_bundle/_extractors/_extract_scatter.py +79 -0
- scitex/fts/_bundle/_loader.py +134 -0
- scitex/fts/_bundle/_mpl_helpers.py +389 -0
- scitex/fts/_bundle/_saver.py +269 -0
- scitex/fts/_bundle/_storage.py +200 -0
- scitex/fts/_bundle/_utils/__init__.py +55 -0
- scitex/fts/_bundle/_utils/_const.py +26 -0
- scitex/fts/_bundle/_utils/_errors.py +73 -0
- scitex/fts/_bundle/_utils/_generate.py +21 -0
- scitex/fts/_bundle/_utils/_types.py +76 -0
- scitex/fts/_bundle/_validation.py +434 -0
- scitex/fts/_bundle/_zipbundle.py +165 -0
- scitex/fts/_fig/__init__.py +22 -0
- scitex/fts/_fig/_backend/__init__.py +53 -0
- scitex/fts/_fig/_backend/_export.py +165 -0
- scitex/fts/_fig/_backend/_parser.py +188 -0
- scitex/fts/_fig/_backend/_render.py +538 -0
- scitex/fts/_fig/_composite.py +345 -0
- scitex/fts/_fig/_dataclasses/_ChannelEncoding.py +46 -0
- scitex/fts/_fig/_dataclasses/_Encoding.py +82 -0
- scitex/fts/_fig/_dataclasses/_Theme.py +441 -0
- scitex/fts/_fig/_dataclasses/_TraceEncoding.py +52 -0
- scitex/fts/_fig/_dataclasses/__init__.py +47 -0
- scitex/fts/_fig/_editor/__init__.py +14 -0
- scitex/fts/_fig/_editor/_cui/__init__.py +33 -0
- scitex/fts/_fig/_editor/_cui/_backend_detector.py +39 -0
- scitex/fts/_fig/_editor/_cui/_bundle_resolver.py +366 -0
- scitex/fts/_fig/_editor/_cui/_editor_launcher.py +175 -0
- scitex/fts/_fig/_editor/_cui/_manual_handler.py +52 -0
- scitex/fts/_fig/_editor/_cui/_panel_loader.py +246 -0
- scitex/fts/_fig/_editor/_cui/_path_resolver.py +66 -0
- scitex/fts/_fig/_editor/_defaults.py +300 -0
- scitex/fts/_fig/_editor/_gui/__init__.py +11 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/__init__.py +20 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/_bbox.py +1339 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/_core.py +1688 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/_plotter.py +664 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/_renderer.py +853 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/_utils.py +79 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/base/reset.css +41 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/base/typography.css +16 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/base/variables.css +85 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/buttons.css +217 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/context-menu.css +93 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/dropdown.css +57 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/forms.css +112 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/modal.css +59 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/components/sections.css +212 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/canvas.css +176 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/element-inspector.css +190 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/loading.css +59 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/overlay.css +45 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/panel-grid.css +95 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/selection.css +101 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/features/statistics.css +138 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/index.css +31 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/layout/container.css +7 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/layout/controls.css +56 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/css/layout/preview.css +78 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/alignment/axis.js +314 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/alignment/basic.js +107 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/alignment/distribute.js +54 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/canvas/canvas.js +172 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/canvas/dragging.js +258 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/canvas/resize.js +48 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/canvas/selection.js +71 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/core/api.js +288 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/core/state.js +143 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/core/utils.js +245 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/dev/element-inspector.js +992 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/editor/bbox.js +339 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/editor/element-drag.js +286 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/editor/overlay.js +371 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/editor/preview.js +293 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/main.js +426 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/shortcuts/context-menu.js +152 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/shortcuts/keyboard.js +265 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/ui/controls.js +184 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/ui/download.js +57 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/ui/help.js +100 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/static/js/ui/theme.js +34 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/templates/__init__.py +124 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/templates/_html.py +851 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/templates/_scripts.py +4932 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor/templates/_styles.py +1657 -0
- scitex/fts/_fig/_editor/_gui/_flask_editor.py +36 -0
- scitex/fts/_fig/_models/_Annotations.py +115 -0
- scitex/fts/_fig/_models/_Axes.py +152 -0
- scitex/fts/_fig/_models/_Figure.py +138 -0
- scitex/fts/_fig/_models/_Guides.py +104 -0
- scitex/fts/_fig/_models/_Plot.py +123 -0
- scitex/fts/_fig/_models/_Styles.py +245 -0
- scitex/fts/_fig/_models/__init__.py +80 -0
- scitex/fts/_fig/_models/_plot_types/__init__.py +156 -0
- scitex/fts/_fig/_models/_plot_types/_bar.py +43 -0
- scitex/fts/_fig/_models/_plot_types/_box.py +38 -0
- scitex/fts/_fig/_models/_plot_types/_distribution.py +36 -0
- scitex/fts/_fig/_models/_plot_types/_errorbar.py +60 -0
- scitex/fts/_fig/_models/_plot_types/_histogram.py +30 -0
- scitex/fts/_fig/_models/_plot_types/_image.py +61 -0
- scitex/fts/_fig/_models/_plot_types/_line.py +57 -0
- scitex/fts/_fig/_models/_plot_types/_scatter.py +30 -0
- scitex/fts/_fig/_models/_plot_types/_seaborn.py +121 -0
- scitex/fts/_fig/_models/_plot_types/_violin.py +36 -0
- scitex/fts/_fig/_utils/__init__.py +129 -0
- scitex/fts/_fig/_utils/_auto_layout.py +127 -0
- scitex/fts/_fig/_utils/_calc_bounds.py +111 -0
- scitex/fts/_fig/_utils/_const_sizes.py +48 -0
- scitex/fts/_fig/_utils/_convert_coords.py +77 -0
- scitex/fts/_fig/_utils/_get_template.py +178 -0
- scitex/fts/_fig/_utils/_normalize.py +73 -0
- scitex/fts/_fig/_utils/_plot_layout.py +397 -0
- scitex/fts/_fig/_utils/_validate.py +197 -0
- scitex/fts/_kinds/__init__.py +45 -0
- scitex/fts/_kinds/_figure/__init__.py +19 -0
- scitex/fts/_kinds/_figure/_composite.py +345 -0
- scitex/fts/_kinds/_plot/__init__.py +25 -0
- scitex/fts/_kinds/_plot/_backend/__init__.py +53 -0
- scitex/fts/_kinds/_plot/_backend/_export.py +165 -0
- scitex/fts/_kinds/_plot/_backend/_parser.py +188 -0
- scitex/fts/_kinds/_plot/_backend/_render.py +538 -0
- scitex/fts/_kinds/_plot/_dataclasses/_ChannelEncoding.py +46 -0
- scitex/fts/_kinds/_plot/_dataclasses/_Encoding.py +82 -0
- scitex/fts/_kinds/_plot/_dataclasses/_Theme.py +441 -0
- scitex/fts/_kinds/_plot/_dataclasses/_TraceEncoding.py +52 -0
- scitex/fts/_kinds/_plot/_dataclasses/__init__.py +47 -0
- scitex/fts/_kinds/_plot/_models/_Annotations.py +115 -0
- scitex/fts/_kinds/_plot/_models/_Axes.py +152 -0
- scitex/fts/_kinds/_plot/_models/_Figure.py +138 -0
- scitex/fts/_kinds/_plot/_models/_Guides.py +104 -0
- scitex/fts/_kinds/_plot/_models/_Plot.py +123 -0
- scitex/fts/_kinds/_plot/_models/_Styles.py +245 -0
- scitex/fts/_kinds/_plot/_models/__init__.py +80 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/__init__.py +156 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_bar.py +43 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_box.py +38 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_distribution.py +36 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_errorbar.py +60 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_histogram.py +30 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_image.py +61 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_line.py +57 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_scatter.py +30 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_seaborn.py +121 -0
- scitex/fts/_kinds/_plot/_models/_plot_types/_violin.py +36 -0
- scitex/fts/_kinds/_plot/_utils/__init__.py +129 -0
- scitex/fts/_kinds/_plot/_utils/_auto_layout.py +127 -0
- scitex/fts/_kinds/_plot/_utils/_calc_bounds.py +111 -0
- scitex/fts/_kinds/_plot/_utils/_const_sizes.py +48 -0
- scitex/fts/_kinds/_plot/_utils/_convert_coords.py +77 -0
- scitex/fts/_kinds/_plot/_utils/_get_template.py +178 -0
- scitex/fts/_kinds/_plot/_utils/_normalize.py +73 -0
- scitex/fts/_kinds/_plot/_utils/_plot_layout.py +397 -0
- scitex/fts/_kinds/_plot/_utils/_validate.py +197 -0
- scitex/fts/_kinds/_shape/__init__.py +141 -0
- scitex/fts/_kinds/_stats/__init__.py +56 -0
- scitex/fts/_kinds/_stats/_dataclasses/_Stats.py +423 -0
- scitex/fts/_kinds/_stats/_dataclasses/__init__.py +48 -0
- scitex/fts/_kinds/_table/__init__.py +72 -0
- scitex/fts/_kinds/_table/_latex/__init__.py +93 -0
- scitex/fts/_kinds/_table/_latex/_editor/__init__.py +11 -0
- scitex/fts/_kinds/_table/_latex/_editor/_app.py +725 -0
- scitex/fts/_kinds/_table/_latex/_export.py +279 -0
- scitex/fts/_kinds/_table/_latex/_figure_exporter.py +153 -0
- scitex/fts/_kinds/_table/_latex/_stats_formatter.py +274 -0
- scitex/fts/_kinds/_table/_latex/_table_exporter.py +362 -0
- scitex/fts/_kinds/_table/_latex/_utils.py +369 -0
- scitex/fts/_kinds/_table/_latex/_validator.py +445 -0
- scitex/fts/_kinds/_text/__init__.py +77 -0
- scitex/fts/_schemas/data_info.schema.json +75 -0
- scitex/fts/_schemas/encoding.schema.json +90 -0
- scitex/fts/_schemas/node.schema.json +145 -0
- scitex/fts/_schemas/render_manifest.schema.json +62 -0
- scitex/fts/_schemas/stats.schema.json +132 -0
- scitex/fts/_schemas/theme.schema.json +141 -0
- scitex/fts/_stats/__init__.py +48 -0
- scitex/fts/_stats/_dataclasses/_Stats.py +423 -0
- scitex/fts/_stats/_dataclasses/__init__.py +48 -0
- scitex/fts/_tables/__init__.py +65 -0
- scitex/fts/_tables/_latex/__init__.py +93 -0
- scitex/fts/_tables/_latex/_editor/__init__.py +11 -0
- scitex/fts/_tables/_latex/_editor/_app.py +725 -0
- scitex/fts/_tables/_latex/_export.py +279 -0
- scitex/fts/_tables/_latex/_figure_exporter.py +153 -0
- scitex/fts/_tables/_latex/_stats_formatter.py +274 -0
- scitex/fts/_tables/_latex/_table_exporter.py +362 -0
- scitex/fts/_tables/_latex/_utils.py +369 -0
- scitex/fts/_tables/_latex/_validator.py +445 -0
- scitex/gen/__init__.py +66 -25
- scitex/gen/misc.py +28 -0
- scitex/io/__init__.py +47 -32
- scitex/io/_load.py +87 -36
- scitex/io/_load_modules/__init__.py +10 -7
- scitex/io/_load_modules/_pandas.py +6 -1
- scitex/io/_save.py +299 -1556
- scitex/io/_save_modules/__init__.py +76 -19
- scitex/io/_save_modules/_figure_utils.py +90 -0
- scitex/io/_save_modules/_image_csv.py +497 -0
- scitex/io/_save_modules/_legends.py +91 -0
- scitex/io/_save_modules/_pltz_bundle.py +356 -0
- scitex/io/_save_modules/_pltz_stx.py +536 -0
- scitex/io/_save_modules/_stx_bundle.py +104 -0
- scitex/io/_save_modules/_symlink.py +96 -0
- scitex/io/_save_modules/_yaml.py +1 -1
- scitex/io/_save_modules/_zarr.py +64 -18
- scitex/io/bundle/README.md +212 -0
- scitex/io/bundle/__init__.py +110 -0
- scitex/io/{_bundle.py → bundle/_core.py} +168 -97
- scitex/io/bundle/_nested.py +713 -0
- scitex/io/bundle/_types.py +74 -0
- scitex/io/{_zip_bundle.py → bundle/_zip.py} +93 -45
- scitex/io/utils/h5_to_zarr.py +1 -1
- scitex/logging/__init__.py +108 -13
- scitex/logging/_errors.py +508 -0
- scitex/logging/_formatters.py +30 -6
- scitex/logging/_warnings.py +261 -0
- scitex/plt/__init__.py +4 -1
- scitex/plt/_figrecipe.py +236 -0
- scitex/plt/_subplots/_AxisWrapper.py +6 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_UnitAwareMixin.py +112 -1
- scitex/plt/_subplots/_FigWrapper.py +15 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +125 -489
- scitex/plt/_subplots/_export_as_csv.py +11 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +2 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_pcolormesh.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_stackplot.py +62 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +208 -0
- scitex/plt/_subplots/_fonts.py +71 -0
- scitex/plt/_subplots/_mm_layout.py +282 -0
- scitex/plt/gallery/__init__.py +99 -2
- scitex/plt/styles/_plot_postprocess.py +3 -1
- scitex/plt/utils/_configure_mpl.py +16 -19
- scitex/repro/_RandomStateManager.py +13 -8
- scitex/resource/__init__.py +19 -1
- scitex/resource/_utils/_get_env_info.py +13 -25
- scitex/schema/__init__.py +149 -160
- scitex/schema/_encoding.py +273 -0
- scitex/schema/_figure_elements.py +406 -0
- scitex/schema/_theme.py +360 -0
- scitex/schema/_validation.py +0 -98
- scitex/scholar/__init__.py +56 -14
- scitex/scholar/auth/ScholarAuthManager.py +1 -1
- scitex/scholar/auth/__init__.py +11 -2
- scitex/scholar/auth/providers/BaseAuthenticator.py +1 -1
- scitex/scholar/auth/providers/EZProxyAuthenticator.py +1 -1
- scitex/scholar/auth/providers/OpenAthensAuthenticator.py +1 -1
- scitex/scholar/auth/providers/ShibbolethAuthenticator.py +1 -1
- scitex/scholar/config/ScholarConfig.py +1 -1
- scitex/scholar/core/Scholar.py +1 -1
- scitex/session/_decorator.py +18 -16
- scitex/session/_lifecycle.py +9 -11
- scitex/session/template.py +9 -8
- scitex/sh/test_sh.py +72 -0
- scitex/sh/test_sh_simple.py +61 -0
- scitex/stats/__init__.py +221 -97
- scitex/stats/_schema.py +21 -22
- scitex/stats/descriptive/_circular.py +212 -351
- scitex/stats/descriptive/_describe.py +81 -132
- scitex/stats/descriptive/_nan.py +205 -433
- scitex/stats/descriptive/_real.py +127 -141
- scitex/str/_format_plot_text.py +5 -5
- scitex/str/_latex.py +26 -84
- scitex/str/_latex_fallback.py +53 -47
- scitex/web/_search_pubmed.py +5 -4
- scitex/writer/tests/test_diff_between.py +451 -0
- scitex/writer/tests/test_document_section.py +311 -0
- scitex/writer/tests/test_document_workflow.py +393 -0
- scitex/writer/tests/test_writer.py +361 -0
- scitex/writer/tests/test_writer_integration.py +303 -0
- {scitex-2.8.1.dist-info → scitex-2.10.0.dist-info}/METADATA +364 -181
- {scitex-2.8.1.dist-info → scitex-2.10.0.dist-info}/RECORD +412 -97
- scitex/scholar/docs/to_claude/guidelines/examples/mgmt/ARCHITECTURE_EXAMPLE.md +0 -905
- scitex/scholar/docs/to_claude/guidelines/examples/mgmt/BULLETIN_BOARD_EXAMPLE.md +0 -99
- scitex/scholar/docs/to_claude/guidelines/examples/mgmt/PROJECT_DESCRIPTION_EXAMPLE.md +0 -96
- {scitex-2.8.1.dist-info → scitex-2.10.0.dist-info}/WHEEL +0 -0
- {scitex-2.8.1.dist-info → scitex-2.10.0.dist-info}/entry_points.txt +0 -0
- {scitex-2.8.1.dist-info → scitex-2.10.0.dist-info}/licenses/LICENSE +0 -0
scitex/stats/descriptive/_nan.py
CHANGED
|
@@ -1,516 +1,288 @@
|
|
|
1
1
|
#!/usr/bin/env python3
|
|
2
|
-
#
|
|
3
|
-
#
|
|
4
|
-
|
|
5
|
-
|
|
2
|
+
# Timestamp: "2025-12-27 (refactored)"
|
|
3
|
+
# File: scitex/stats/descriptive/_nan.py
|
|
4
|
+
"""
|
|
5
|
+
NaN-aware descriptive statistics.
|
|
6
|
+
|
|
7
|
+
Uses torch when available (preserves tensor type), falls back to numpy.
|
|
8
|
+
"""
|
|
9
|
+
|
|
6
10
|
from __future__ import annotations
|
|
11
|
+
|
|
7
12
|
import os
|
|
8
13
|
|
|
14
|
+
import numpy as np
|
|
15
|
+
|
|
9
16
|
__FILE__ = __file__
|
|
10
17
|
__DIR__ = os.path.dirname(__FILE__)
|
|
11
|
-
# ----------------------------------------
|
|
12
18
|
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
- Provides robust statistical measures that handle missing values
|
|
17
|
-
- Calculates mean, std, variance, skewness, kurtosis with NaN handling
|
|
18
|
-
- Computes quantiles and extreme values ignoring NaN
|
|
19
|
-
- Demonstrates NaN-robust statistical computations
|
|
20
|
-
|
|
21
|
-
Dependencies:
|
|
22
|
-
- packages:
|
|
23
|
-
- torch
|
|
24
|
-
- numpy
|
|
25
|
-
- scitex
|
|
26
|
-
|
|
27
|
-
IO:
|
|
28
|
-
- input-files:
|
|
29
|
-
- PyTorch tensor or numpy array with potential NaN values
|
|
30
|
-
- output-files:
|
|
31
|
-
- NaN-robust statistical results
|
|
32
|
-
"""
|
|
19
|
+
# Optional torch support
|
|
20
|
+
try:
|
|
21
|
+
import torch
|
|
33
22
|
|
|
34
|
-
|
|
35
|
-
|
|
23
|
+
HAS_TORCH = True
|
|
24
|
+
except ImportError:
|
|
25
|
+
torch = None
|
|
26
|
+
HAS_TORCH = False
|
|
36
27
|
|
|
37
|
-
import numpy as np
|
|
38
|
-
import scitex as stx
|
|
39
|
-
import torch
|
|
40
|
-
from scitex import logging
|
|
41
28
|
|
|
42
|
-
|
|
29
|
+
def _is_torch_tensor(x):
|
|
30
|
+
"""Check if x is a torch tensor."""
|
|
31
|
+
return HAS_TORCH and isinstance(x, torch.Tensor)
|
|
43
32
|
|
|
44
|
-
logger = logging.getLogger(__name__)
|
|
45
33
|
|
|
46
|
-
|
|
34
|
+
def _normalize_axis(axis, dim):
|
|
35
|
+
"""Normalize axis/dim parameter."""
|
|
36
|
+
return dim if dim is not None else axis
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# =============================================================================
|
|
40
|
+
# NaN-aware Functions
|
|
41
|
+
# =============================================================================
|
|
47
42
|
|
|
48
43
|
|
|
49
|
-
@torch_fn
|
|
50
|
-
@batch_fn
|
|
51
44
|
def nanmax(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
52
|
-
|
|
53
|
-
dim = axis
|
|
54
|
-
if
|
|
55
|
-
|
|
56
|
-
|
|
45
|
+
"""Compute maximum ignoring NaN values."""
|
|
46
|
+
dim = _normalize_axis(axis, dim)
|
|
47
|
+
if _is_torch_tensor(x):
|
|
48
|
+
min_value = torch.finfo(x.dtype).min
|
|
49
|
+
if isinstance(dim, (tuple, list)):
|
|
50
|
+
for d in sorted(dim, reverse=True):
|
|
51
|
+
x = x.nan_to_num(min_value).max(dim=d, keepdim=keepdims)[0]
|
|
52
|
+
return x
|
|
53
|
+
return x.nan_to_num(min_value).max(dim=dim, keepdim=keepdims)[0]
|
|
57
54
|
else:
|
|
58
|
-
x =
|
|
59
|
-
|
|
55
|
+
x = np.asarray(x)
|
|
56
|
+
return np.nanmax(x, axis=dim, keepdims=keepdims)
|
|
60
57
|
|
|
61
58
|
|
|
62
|
-
@torch_fn
|
|
63
|
-
@batch_fn
|
|
64
59
|
def nanmin(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
65
|
-
|
|
66
|
-
dim = axis
|
|
67
|
-
if
|
|
68
|
-
|
|
69
|
-
|
|
60
|
+
"""Compute minimum ignoring NaN values."""
|
|
61
|
+
dim = _normalize_axis(axis, dim)
|
|
62
|
+
if _is_torch_tensor(x):
|
|
63
|
+
max_value = torch.finfo(x.dtype).max
|
|
64
|
+
if isinstance(dim, (tuple, list)):
|
|
65
|
+
for d in sorted(dim, reverse=True):
|
|
66
|
+
x = x.nan_to_num(max_value).min(dim=d, keepdim=keepdims)[0]
|
|
67
|
+
return x
|
|
68
|
+
return x.nan_to_num(max_value).min(dim=dim, keepdim=keepdims)[0]
|
|
70
69
|
else:
|
|
71
|
-
x =
|
|
72
|
-
|
|
70
|
+
x = np.asarray(x)
|
|
71
|
+
return np.nanmin(x, axis=dim, keepdims=keepdims)
|
|
73
72
|
|
|
74
73
|
|
|
75
|
-
@torch_fn
|
|
76
|
-
@batch_fn
|
|
77
74
|
def nansum(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
78
|
-
|
|
75
|
+
"""Compute sum ignoring NaN values."""
|
|
76
|
+
dim = _normalize_axis(axis, dim)
|
|
77
|
+
if _is_torch_tensor(x):
|
|
78
|
+
return torch.nansum(x, dim=dim, keepdim=keepdims)
|
|
79
|
+
return np.nansum(np.asarray(x), axis=dim, keepdims=keepdims)
|
|
79
80
|
|
|
80
81
|
|
|
81
|
-
@torch_fn
|
|
82
|
-
@batch_fn
|
|
83
82
|
def nanmean(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
84
|
-
|
|
83
|
+
"""Compute mean ignoring NaN values."""
|
|
84
|
+
dim = _normalize_axis(axis, dim)
|
|
85
|
+
if _is_torch_tensor(x):
|
|
86
|
+
return torch.nanmean(x, dim=dim, keepdim=keepdims)
|
|
87
|
+
return np.nanmean(np.asarray(x), axis=dim, keepdims=keepdims)
|
|
85
88
|
|
|
86
89
|
|
|
87
|
-
@torch_fn
|
|
88
|
-
@batch_fn
|
|
89
90
|
def nanvar(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
90
|
-
|
|
91
|
-
|
|
91
|
+
"""Compute variance ignoring NaN values."""
|
|
92
|
+
dim = _normalize_axis(axis, dim)
|
|
93
|
+
if _is_torch_tensor(x):
|
|
94
|
+
tensor_mean = torch.nanmean(x, dim=dim, keepdim=True)
|
|
95
|
+
return (x - tensor_mean).square().nanmean(dim=dim, keepdim=keepdims)
|
|
96
|
+
else:
|
|
97
|
+
x = np.asarray(x)
|
|
98
|
+
return np.nanvar(x, axis=dim, keepdims=keepdims)
|
|
92
99
|
|
|
93
100
|
|
|
94
|
-
@torch_fn
|
|
95
|
-
@batch_fn
|
|
96
101
|
def nanstd(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
97
|
-
|
|
102
|
+
"""Compute standard deviation ignoring NaN values."""
|
|
103
|
+
dim = _normalize_axis(axis, dim)
|
|
104
|
+
if _is_torch_tensor(x):
|
|
105
|
+
return torch.sqrt(nanvar(x, dim=dim, keepdims=keepdims))
|
|
106
|
+
return np.nanstd(np.asarray(x), axis=dim, keepdims=keepdims)
|
|
98
107
|
|
|
99
108
|
|
|
100
|
-
# @torch_fn
|
|
101
|
-
# def nanzscore(x, axis=-1, dim=None, batch_size=None, keepdims=True):
|
|
102
|
-
# _mean = nanmean(x, dim=dim, keepdims=True)
|
|
103
|
-
# _std = nanstd(x, dim=dim, keepdims=True)
|
|
104
|
-
# zscores = (x - _mean) / _std
|
|
105
|
-
# return zscores if keepdims else zscores.squeeze(dim)
|
|
106
|
-
@torch_fn
|
|
107
|
-
@batch_fn
|
|
108
109
|
def nanzscore(x, axis=-1, dim=None, batch_size=None, keepdims=True):
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
110
|
+
"""Compute z-scores ignoring NaN values."""
|
|
111
|
+
dim = _normalize_axis(axis, dim)
|
|
112
|
+
if _is_torch_tensor(x):
|
|
113
|
+
_mean = torch.nanmean(x, dim=dim, keepdim=True)
|
|
112
114
|
_std = nanstd(x, dim=dim, keepdims=True)
|
|
115
|
+
zscores = (x - _mean) / _std
|
|
116
|
+
return zscores if keepdims else zscores.squeeze(dim)
|
|
113
117
|
else:
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype) # Changed this line
|
|
124
|
-
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
125
|
-
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
126
|
-
# return correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
# @torch_fn
|
|
130
|
-
# def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
131
|
-
# dim = axis if dim is None else dim
|
|
132
|
-
# if isinstance(dim, (tuple, list)):
|
|
133
|
-
# zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
134
|
-
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype)
|
|
135
|
-
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
136
|
-
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
137
|
-
# result = correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
138
|
-
# return result.squeeze() if not keepdims else result
|
|
139
|
-
# else:
|
|
140
|
-
# # Original code for single dimension
|
|
141
|
-
# zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
142
|
-
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype)
|
|
143
|
-
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
144
|
-
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
145
|
-
# result = correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
146
|
-
# return result.squeeze() if not keepdims else result
|
|
147
|
-
|
|
148
|
-
# @torch_fn
|
|
149
|
-
# def nanskewness(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
150
|
-
# zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
151
|
-
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype) # Changed this line
|
|
152
|
-
# s = torch.nanmean(torch.pow(zscores, 3.0), dim=dim, keepdims=keepdims)
|
|
153
|
-
# correction = n**2 / ((n - 1) * (n - 2))
|
|
154
|
-
# return correction * s
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
@torch_fn
|
|
158
|
-
@batch_fn
|
|
118
|
+
x = np.asarray(x)
|
|
119
|
+
_mean = np.nanmean(x, axis=dim, keepdims=True)
|
|
120
|
+
_std = np.nanstd(x, axis=dim, keepdims=True)
|
|
121
|
+
zscores = (x - _mean) / _std
|
|
122
|
+
if not keepdims and dim is not None:
|
|
123
|
+
zscores = np.squeeze(zscores, axis=dim)
|
|
124
|
+
return zscores
|
|
125
|
+
|
|
126
|
+
|
|
159
127
|
def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
160
|
-
|
|
161
|
-
|
|
128
|
+
"""Compute excess kurtosis ignoring NaN values."""
|
|
129
|
+
dim = _normalize_axis(axis, dim)
|
|
130
|
+
zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
131
|
+
if _is_torch_tensor(x):
|
|
132
|
+
return torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdim=keepdims) - 3.0
|
|
133
|
+
return np.nanmean(np.power(zscores, 4.0), axis=dim, keepdims=keepdims) - 3.0
|
|
162
134
|
|
|
163
135
|
|
|
164
|
-
@torch_fn
|
|
165
|
-
@batch_fn
|
|
166
136
|
def nanskewness(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
167
|
-
|
|
168
|
-
|
|
137
|
+
"""Compute skewness ignoring NaN values."""
|
|
138
|
+
dim = _normalize_axis(axis, dim)
|
|
139
|
+
zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
140
|
+
if _is_torch_tensor(x):
|
|
141
|
+
return torch.nanmean(torch.pow(zscores, 3.0), dim=dim, keepdim=keepdims)
|
|
142
|
+
return np.nanmean(np.power(zscores, 3.0), axis=dim, keepdims=keepdims)
|
|
169
143
|
|
|
170
144
|
|
|
171
|
-
@torch_fn
|
|
172
|
-
@batch_fn
|
|
173
145
|
def nanprod(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
146
|
+
"""Compute product ignoring NaN values (treated as 1)."""
|
|
147
|
+
dim = _normalize_axis(axis, dim)
|
|
148
|
+
if _is_torch_tensor(x):
|
|
149
|
+
if isinstance(dim, (tuple, list)):
|
|
150
|
+
for d in sorted(dim, reverse=True):
|
|
151
|
+
x = x.nan_to_num(1).prod(dim=d, keepdim=keepdims)
|
|
152
|
+
return x
|
|
153
|
+
return x.nan_to_num(1).prod(dim=dim, keepdim=keepdims)
|
|
178
154
|
else:
|
|
179
|
-
x =
|
|
180
|
-
|
|
155
|
+
x = np.asarray(x)
|
|
156
|
+
return np.nanprod(x, axis=dim, keepdims=keepdims)
|
|
181
157
|
|
|
182
158
|
|
|
183
|
-
@torch_fn
|
|
184
|
-
@batch_fn
|
|
185
159
|
def nancumprod(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
186
|
-
|
|
160
|
+
"""Compute cumulative product ignoring NaN values."""
|
|
161
|
+
dim = _normalize_axis(axis, dim)
|
|
187
162
|
if isinstance(dim, (tuple, list)):
|
|
188
163
|
raise ValueError("cumprod does not support multiple dimensions")
|
|
189
|
-
|
|
164
|
+
if _is_torch_tensor(x):
|
|
165
|
+
return x.nan_to_num(1).cumprod(dim=dim)
|
|
166
|
+
return np.nancumprod(np.asarray(x), axis=dim)
|
|
190
167
|
|
|
191
168
|
|
|
192
|
-
@torch_fn
|
|
193
|
-
@batch_fn
|
|
194
169
|
def nancumsum(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
195
|
-
|
|
170
|
+
"""Compute cumulative sum ignoring NaN values."""
|
|
171
|
+
dim = _normalize_axis(axis, dim)
|
|
196
172
|
if isinstance(dim, (tuple, list)):
|
|
197
173
|
raise ValueError("cumsum does not support multiple dimensions")
|
|
198
|
-
|
|
174
|
+
if _is_torch_tensor(x):
|
|
175
|
+
return x.nan_to_num(0).cumsum(dim=dim)
|
|
176
|
+
return np.nancumsum(np.asarray(x), axis=dim)
|
|
199
177
|
|
|
200
178
|
|
|
201
|
-
@torch_fn
|
|
202
|
-
@batch_fn
|
|
203
179
|
def nanargmin(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
204
|
-
|
|
205
|
-
dim = axis
|
|
206
|
-
if
|
|
207
|
-
|
|
208
|
-
|
|
180
|
+
"""Compute argmin ignoring NaN values."""
|
|
181
|
+
dim = _normalize_axis(axis, dim)
|
|
182
|
+
if _is_torch_tensor(x):
|
|
183
|
+
max_value = torch.finfo(x.dtype).max
|
|
184
|
+
if isinstance(dim, (tuple, list)):
|
|
185
|
+
for d in sorted(dim, reverse=True):
|
|
186
|
+
x = x.nan_to_num(max_value).argmin(dim=d, keepdim=keepdims)
|
|
187
|
+
return x
|
|
188
|
+
return x.nan_to_num(max_value).argmin(dim=dim, keepdim=keepdims)
|
|
209
189
|
else:
|
|
210
|
-
x =
|
|
211
|
-
|
|
190
|
+
x = np.asarray(x)
|
|
191
|
+
return (
|
|
192
|
+
np.nanargmin(x, axis=dim, keepdims=keepdims)
|
|
193
|
+
if keepdims
|
|
194
|
+
else np.nanargmin(x, axis=dim)
|
|
195
|
+
)
|
|
212
196
|
|
|
213
197
|
|
|
214
|
-
@torch_fn
|
|
215
|
-
@batch_fn
|
|
216
198
|
def nanargmax(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
217
|
-
|
|
218
|
-
dim = axis
|
|
219
|
-
if
|
|
220
|
-
|
|
221
|
-
|
|
199
|
+
"""Compute argmax ignoring NaN values."""
|
|
200
|
+
dim = _normalize_axis(axis, dim)
|
|
201
|
+
if _is_torch_tensor(x):
|
|
202
|
+
min_value = torch.finfo(x.dtype).min
|
|
203
|
+
if isinstance(dim, (tuple, list)):
|
|
204
|
+
for d in sorted(dim, reverse=True):
|
|
205
|
+
x = x.nan_to_num(min_value).argmax(dim=d, keepdim=keepdims)
|
|
206
|
+
return x
|
|
207
|
+
return x.nan_to_num(min_value).argmax(dim=dim, keepdim=keepdims)
|
|
222
208
|
else:
|
|
223
|
-
x =
|
|
224
|
-
|
|
209
|
+
x = np.asarray(x)
|
|
210
|
+
return (
|
|
211
|
+
np.nanargmax(x, axis=dim, keepdims=keepdims)
|
|
212
|
+
if keepdims
|
|
213
|
+
else np.nanargmax(x, axis=dim)
|
|
214
|
+
)
|
|
225
215
|
|
|
226
216
|
|
|
227
|
-
@torch_fn
|
|
228
|
-
@batch_fn
|
|
229
217
|
def nanquantile(x, q, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
return result
|
|
218
|
+
"""Compute quantile ignoring NaN values.
|
|
219
|
+
|
|
220
|
+
Parameters
|
|
221
|
+
----------
|
|
222
|
+
x : array-like
|
|
223
|
+
Input data
|
|
224
|
+
q : float
|
|
225
|
+
Quantile to compute (0-100)
|
|
226
|
+
"""
|
|
227
|
+
dim = _normalize_axis(axis, dim)
|
|
228
|
+
|
|
229
|
+
if _is_torch_tensor(x):
|
|
230
|
+
if isinstance(dim, (tuple, list)):
|
|
231
|
+
original_shape = x.shape
|
|
232
|
+
dim_list = list(dim) if isinstance(dim, tuple) else dim
|
|
233
|
+
dim_list = [d if d >= 0 else len(original_shape) + d for d in dim_list]
|
|
234
|
+
keep_dims = [i for i in range(len(original_shape)) if i not in dim_list]
|
|
235
|
+
perm_dims = keep_dims + dim_list
|
|
236
|
+
x_perm = x.permute(perm_dims)
|
|
237
|
+
new_shape = [original_shape[i] for i in keep_dims] + [-1]
|
|
238
|
+
x_flat = x_perm.reshape(new_shape)
|
|
239
|
+
mask = ~torch.isnan(x_flat)
|
|
240
|
+
x_filtered = torch.where(mask, x_flat, torch.tensor(float("inf")))
|
|
241
|
+
result = torch.quantile(x_filtered, q / 100, dim=-1, keepdim=keepdims)
|
|
242
|
+
if keepdims:
|
|
243
|
+
final_shape = list(original_shape)
|
|
244
|
+
for d in dim_list:
|
|
245
|
+
final_shape[d] = 1
|
|
246
|
+
result = result.reshape(final_shape)
|
|
247
|
+
return result
|
|
248
|
+
else:
|
|
249
|
+
mask = ~torch.isnan(x)
|
|
250
|
+
x_filtered = torch.where(mask, x, torch.tensor(float("inf")))
|
|
251
|
+
return torch.quantile(x_filtered, q / 100, dim=dim, keepdim=keepdims)
|
|
265
252
|
else:
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
x = torch.quantile(x_filtered, q / 100, dim=dim, keepdim=keepdims)
|
|
269
|
-
return x
|
|
253
|
+
x = np.asarray(x)
|
|
254
|
+
return np.nanquantile(x, q / 100, axis=dim, keepdims=keepdims)
|
|
270
255
|
|
|
271
256
|
|
|
272
257
|
def nanq25(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
kwargs["batch_size"] = batch_size
|
|
276
|
-
return nanquantile(x, 25, **kwargs)
|
|
258
|
+
"""Compute 25th percentile ignoring NaN values."""
|
|
259
|
+
return nanquantile(x, 25, axis=axis, dim=dim, keepdims=keepdims)
|
|
277
260
|
|
|
278
261
|
|
|
279
262
|
def nanq50(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
kwargs["batch_size"] = batch_size
|
|
283
|
-
return nanquantile(x, 50, **kwargs)
|
|
263
|
+
"""Compute 50th percentile (median) ignoring NaN values."""
|
|
264
|
+
return nanquantile(x, 50, axis=axis, dim=dim, keepdims=keepdims)
|
|
284
265
|
|
|
285
266
|
|
|
286
267
|
def nanq75(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
kwargs["batch_size"] = batch_size
|
|
290
|
-
return nanquantile(x, 75, **kwargs)
|
|
268
|
+
"""Compute 75th percentile ignoring NaN values."""
|
|
269
|
+
return nanquantile(x, 75, axis=axis, dim=dim, keepdims=keepdims)
|
|
291
270
|
|
|
292
271
|
|
|
293
|
-
@torch_fn
|
|
294
|
-
@batch_fn
|
|
295
272
|
def nancount(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
296
|
-
"""Count
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
Dimension(s) along which to count
|
|
306
|
-
keepdims : bool, default=True
|
|
307
|
-
Whether to keep reduced dimensions
|
|
308
|
-
|
|
309
|
-
Returns
|
|
310
|
-
-------
|
|
311
|
-
torch.Tensor
|
|
312
|
-
Count of non-NaN values
|
|
313
|
-
"""
|
|
314
|
-
dim = axis if dim is None else dim
|
|
315
|
-
mask = ~torch.isnan(x)
|
|
316
|
-
|
|
317
|
-
if isinstance(dim, (tuple, list)):
|
|
318
|
-
for d in sorted(dim, reverse=True):
|
|
319
|
-
mask = mask.sum(dim=d, keepdims=keepdims)
|
|
273
|
+
"""Count non-NaN values along specified dimensions."""
|
|
274
|
+
dim = _normalize_axis(axis, dim)
|
|
275
|
+
if _is_torch_tensor(x):
|
|
276
|
+
mask = ~torch.isnan(x)
|
|
277
|
+
if isinstance(dim, (tuple, list)):
|
|
278
|
+
for d in sorted(dim, reverse=True):
|
|
279
|
+
mask = mask.sum(dim=d, keepdim=keepdims)
|
|
280
|
+
return mask
|
|
281
|
+
return mask.sum(dim=dim, keepdim=keepdims)
|
|
320
282
|
else:
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
# @torch_fn
|
|
327
|
-
# @batch_fn
|
|
328
|
-
# def nanmax(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
329
|
-
# min_value = torch.finfo(x.dtype).min
|
|
330
|
-
# dim = axis if dim is None else dim
|
|
331
|
-
# if isinstance(dim, (tuple, list)):
|
|
332
|
-
# for d in sorted(dim, reverse=True):
|
|
333
|
-
# x = x.nan_to_num(min_value).max(dim=d, keepdims=keepdims)[0]
|
|
334
|
-
# else:
|
|
335
|
-
# x = x.nan_to_num(min_value).max(dim=dim, keepdims=keepdims)[0]
|
|
336
|
-
# return x
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
# @torch_fn
|
|
340
|
-
# @batch_fn
|
|
341
|
-
# def nanmin(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
342
|
-
# max_value = torch.finfo(x.dtype).max
|
|
343
|
-
# dim = axis if dim is None else dim
|
|
344
|
-
# if isinstance(dim, (tuple, list)):
|
|
345
|
-
# for d in sorted(dim, reverse=True):
|
|
346
|
-
# x = x.nan_to_num(max_value).min(dim=d, keepdims=keepdims)[0]
|
|
347
|
-
# else:
|
|
348
|
-
# x = x.nan_to_num(max_value).min(dim=dim, keepdims=keepdims)[0]
|
|
349
|
-
# return x
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
# @torch_fn
|
|
353
|
-
# @batch_fn
|
|
354
|
-
# def nansum(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
355
|
-
# return torch.nansum(x, dim=dim, keepdims=keepdims)
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
# @torch_fn
|
|
359
|
-
# @batch_fn
|
|
360
|
-
# def nanmean(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
361
|
-
# return torch.nanmean(x, dim=dim, keepdims=keepdims)
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
# @torch_fn
|
|
365
|
-
# @batch_fn
|
|
366
|
-
# def nanvar(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
367
|
-
# tensor_mean = nanmean(x, dim=dim, keepdims=True)
|
|
368
|
-
# return (x - tensor_mean).square().nanmean(dim=dim, keepdims=keepdims)
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
# @torch_fn
|
|
372
|
-
# @batch_fn
|
|
373
|
-
# def nanstd(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
374
|
-
# return torch.sqrt(nanvar(x, dim=dim, keepdims=keepdims))
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
# @torch_fn
|
|
378
|
-
# @batch_fn
|
|
379
|
-
# def nanzscore(x, axis=-1, dim=None, batch_size=None, keepdims=True):
|
|
380
|
-
# dim = axis if dim is None else dim
|
|
381
|
-
# if isinstance(dim, (tuple, list)):
|
|
382
|
-
# _mean = nanmean(x, dim=dim, keepdims=True)
|
|
383
|
-
# _std = nanstd(x, dim=dim, keepdims=True)
|
|
384
|
-
# else:
|
|
385
|
-
# _mean = nanmean(x, dim=dim, keepdims=True)
|
|
386
|
-
# _std = nanstd(x, dim=dim, keepdims=True)
|
|
387
|
-
# zscores = (x - _mean) / _std
|
|
388
|
-
# return zscores if keepdims else zscores.squeeze(dim)
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
# @torch_fn
|
|
392
|
-
# @batch_fn
|
|
393
|
-
# def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
394
|
-
# zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
395
|
-
# return (
|
|
396
|
-
# torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
397
|
-
# - 3.0
|
|
398
|
-
# )
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
# @torch_fn
|
|
402
|
-
# @batch_fn
|
|
403
|
-
# def nanskewness(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
404
|
-
# zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
405
|
-
# return torch.nanmean(torch.pow(zscores, 3.0), dim=dim, keepdims=keepdims)
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
# @torch_fn
|
|
409
|
-
# @batch_fn
|
|
410
|
-
# def nancount(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
411
|
-
# """Count number of non-NaN values along specified dimensions."""
|
|
412
|
-
# dim = axis if dim is None else dim
|
|
413
|
-
# mask = ~torch.isnan(x)
|
|
414
|
-
# if isinstance(dim, (tuple, list)):
|
|
415
|
-
# for d in sorted(dim, reverse=True):
|
|
416
|
-
# mask = mask.sum(dim=d, keepdims=keepdims)
|
|
417
|
-
# else:
|
|
418
|
-
# mask = mask.sum(dim=dim, keepdims=keepdims)
|
|
419
|
-
# return mask
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
def main(args) -> int:
|
|
423
|
-
"""Demonstrate NaN-aware statistics functions with synthetic data."""
|
|
424
|
-
x = np.random.rand(10, 5, 3)
|
|
425
|
-
|
|
426
|
-
# Introduce some NaN values
|
|
427
|
-
x_with_nan = x.copy()
|
|
428
|
-
x_with_nan[0, 0, 0] = np.nan
|
|
429
|
-
x_with_nan[2, 1, 1] = np.nan
|
|
430
|
-
x = torch.tensor(x_with_nan)
|
|
431
|
-
|
|
432
|
-
# Compute NaN-aware statistics
|
|
433
|
-
x_nanmean = nanmean(x)
|
|
434
|
-
x_nanstd = nanstd(x)
|
|
435
|
-
x_nanvar = nanvar(x)
|
|
436
|
-
x_nanskew = nanskewness(x)
|
|
437
|
-
x_nankurt = nankurtosis(x)
|
|
438
|
-
x_nanmax = nanmax(x)
|
|
439
|
-
x_nanmin = nanmin(x)
|
|
440
|
-
x_nancount = nancount(x)
|
|
441
|
-
|
|
442
|
-
# Store results
|
|
443
|
-
results = {
|
|
444
|
-
"input": x,
|
|
445
|
-
"nan_mean": x_nanmean,
|
|
446
|
-
"nan_std": x_nanstd,
|
|
447
|
-
"nan_var": x_nanvar,
|
|
448
|
-
"nan_skew": x_nanskew,
|
|
449
|
-
"nan_kurt": x_nankurt,
|
|
450
|
-
"nan_max": x_nanmax,
|
|
451
|
-
"nan_min": x_nanmin,
|
|
452
|
-
"nan_count": x_nancount,
|
|
453
|
-
}
|
|
454
|
-
|
|
455
|
-
for k, v in results.items():
|
|
456
|
-
if isinstance(v, (np.ndarray, torch.Tensor)):
|
|
457
|
-
print(f"\n{k}, Type: {type(v)}, Shape: {v.shape}, Values: {v}")
|
|
458
|
-
elif isinstance(v, list):
|
|
459
|
-
print(f"\n{k}, Type: {type(v)}, Length: {len(v)}, Values: {v}")
|
|
460
|
-
else:
|
|
461
|
-
print(f"\n{k}, Type: {type(v)}, Values: {v}")
|
|
462
|
-
|
|
463
|
-
# # Save results
|
|
464
|
-
# stx.io.save(results, "./nan_statistics.pkl")
|
|
465
|
-
|
|
466
|
-
# # Log results
|
|
467
|
-
# logger.info(f"NaN-aware mean: {x_nanmean}")
|
|
468
|
-
# logger.info(f"NaN-aware std: {x_nanstd}")
|
|
469
|
-
# logger.info(f"Non-NaN count: {x_nancount}")
|
|
470
|
-
|
|
471
|
-
return 0
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
def parse_args() -> argparse.Namespace:
|
|
475
|
-
"""Parse command line arguments."""
|
|
476
|
-
parser = argparse.ArgumentParser(
|
|
477
|
-
description="Demonstrate NaN-aware statistics functions"
|
|
478
|
-
)
|
|
479
|
-
args = parser.parse_args()
|
|
480
|
-
return args
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
def run_main() -> None:
|
|
484
|
-
"""Initialize scitex framework, run main function, and cleanup."""
|
|
485
|
-
global CONFIG, CC, sys, plt, rng
|
|
486
|
-
import sys
|
|
487
|
-
|
|
488
|
-
import matplotlib.pyplot as plt
|
|
489
|
-
import scitex as stx
|
|
490
|
-
|
|
491
|
-
args = parse_args()
|
|
492
|
-
CONFIG, sys.stdout, sys.stderr, plt, CC, rng_manager = stx.session.start(
|
|
493
|
-
sys,
|
|
494
|
-
plt,
|
|
495
|
-
args=args,
|
|
496
|
-
file=__FILE__,
|
|
497
|
-
sdir_suffix=None,
|
|
498
|
-
verbose=False,
|
|
499
|
-
agg=True,
|
|
500
|
-
)
|
|
501
|
-
|
|
502
|
-
exit_status = main(args)
|
|
503
|
-
|
|
504
|
-
stx.session.close(
|
|
505
|
-
CONFIG,
|
|
506
|
-
verbose=False,
|
|
507
|
-
notify=False,
|
|
508
|
-
message="",
|
|
509
|
-
exit_status=exit_status,
|
|
510
|
-
)
|
|
511
|
-
|
|
283
|
+
x = np.asarray(x)
|
|
284
|
+
mask = ~np.isnan(x)
|
|
285
|
+
return np.sum(mask, axis=dim, keepdims=keepdims)
|
|
512
286
|
|
|
513
|
-
if __name__ == "__main__":
|
|
514
|
-
run_main()
|
|
515
287
|
|
|
516
288
|
# EOF
|