scitex 2.17.3__py3-none-any.whl → 2.17.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. scitex/_dev/_dashboard/_routes.py +13 -0
  2. scitex/_dev/_dashboard/_scripts.py +144 -23
  3. scitex/_dev/_dashboard/_styles.py +90 -0
  4. scitex/_dev/_dashboard/_templates.py +14 -1
  5. scitex/_dev/_rtd.py +122 -0
  6. scitex/_dev/_ssh.py +38 -8
  7. scitex/dev/plt/data/mpl/PLOTTING_FUNCTIONS.yaml +90 -0
  8. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES.yaml +1571 -0
  9. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES_DETAILED.yaml +6262 -0
  10. scitex/dev/plt/data/mpl/SIGNATURES_FLATTENED.yaml +1274 -0
  11. scitex/dev/plt/data/mpl/dir_ax.txt +459 -0
  12. scitex/scholar/_mcp/crossref_handlers.py +45 -7
  13. scitex/scholar/_mcp/openalex_handlers.py +45 -7
  14. scitex/scholar/config/default.yaml +2 -0
  15. scitex/scholar/data/.gitkeep +0 -0
  16. scitex/scholar/data/README.md +44 -0
  17. scitex/scholar/data/bib_files/bibliography.bib +1952 -0
  18. scitex/scholar/data/bib_files/neurovista.bib +277 -0
  19. scitex/scholar/data/bib_files/neurovista_enriched.bib +441 -0
  20. scitex/scholar/data/bib_files/neurovista_enriched_enriched.bib +441 -0
  21. scitex/scholar/data/bib_files/neurovista_processed.bib +338 -0
  22. scitex/scholar/data/bib_files/openaccess.bib +89 -0
  23. scitex/scholar/data/bib_files/pac-seizure_prediction_enriched.bib +2178 -0
  24. scitex/scholar/data/bib_files/pac.bib +698 -0
  25. scitex/scholar/data/bib_files/pac_enriched.bib +1061 -0
  26. scitex/scholar/data/bib_files/pac_processed.bib +0 -0
  27. scitex/scholar/data/bib_files/pac_titles.txt +75 -0
  28. scitex/scholar/data/bib_files/paywalled.bib +98 -0
  29. scitex/scholar/data/bib_files/related-papers-by-coauthors.bib +58 -0
  30. scitex/scholar/data/bib_files/related-papers-by-coauthors_enriched.bib +87 -0
  31. scitex/scholar/data/bib_files/seizure_prediction.bib +694 -0
  32. scitex/scholar/data/bib_files/seizure_prediction_processed.bib +0 -0
  33. scitex/scholar/data/bib_files/test_complete_enriched.bib +437 -0
  34. scitex/scholar/data/bib_files/test_final_enriched.bib +437 -0
  35. scitex/scholar/data/bib_files/test_seizure.bib +46 -0
  36. scitex/scholar/data/impact_factor/JCR_IF_2022.xlsx +0 -0
  37. scitex/scholar/data/impact_factor/JCR_IF_2024.db +0 -0
  38. scitex/scholar/data/impact_factor/JCR_IF_2024.xlsx +0 -0
  39. scitex/scholar/data/impact_factor/JCR_IF_2024_v01.db +0 -0
  40. scitex/scholar/data/impact_factor.db +0 -0
  41. scitex/scholar/local_dbs/__init__.py +5 -1
  42. scitex/scholar/local_dbs/export.py +93 -0
  43. scitex/scholar/local_dbs/unified.py +505 -0
  44. scitex/scholar/metadata_engines/ScholarEngine.py +11 -0
  45. scitex/scholar/metadata_engines/individual/OpenAlexLocalEngine.py +346 -0
  46. scitex/scholar/metadata_engines/individual/__init__.py +1 -0
  47. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/METADATA +1 -1
  48. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/RECORD +51 -22
  49. scitex/scholar/url_finder/.tmp/open_url/KNOWN_RESOLVERS.py +0 -462
  50. scitex/scholar/url_finder/.tmp/open_url/README.md +0 -223
  51. scitex/scholar/url_finder/.tmp/open_url/_DOIToURLResolver.py +0 -694
  52. scitex/scholar/url_finder/.tmp/open_url/_OpenURLResolver.py +0 -1160
  53. scitex/scholar/url_finder/.tmp/open_url/_ResolverLinkFinder.py +0 -344
  54. scitex/scholar/url_finder/.tmp/open_url/__init__.py +0 -24
  55. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/WHEEL +0 -0
  56. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/entry_points.txt +0 -0
  57. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/licenses/LICENSE +0 -0
File without changes
@@ -0,0 +1,75 @@
1
+ 'Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy'
2
+ 'Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making'
3
+ 'A Canonical Circuit for Generating Phase-Amplitude Coupling'
4
+ 'What Can Local Transfer Entropy Tell Us about Phase-Amplitude Coupling in Electrophysiological Signals?'
5
+ 'Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations'
6
+ 'Measuring phase-amplitude coupling between neuronal oscillations of different frequencies.'
7
+ 'Parametric estimation of spectrum driven by an exogenous signal'
8
+ 'Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations'
9
+ 'The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat'
10
+ 'Phase‐amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation'
11
+ 'Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit'
12
+ 'Cross-frequency coupling within and between the human thalamus and neocortex'
13
+ 'Event-Related Phase-Amplitude Coupling During Working Memory of Musical Chords'
14
+ 'Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling'
15
+ 'Alpha and high gamma phase amplitude coupling during motor imagery and weighted cross-frequency coupling to extract discriminative cross-frequency patterns'
16
+ 'Different Methods to Estimate the Phase of Neural Rhythms Agree But Only During Times of Low Uncertainty'
17
+ 'Untangling cross-frequency coupling in neuroscience'
18
+ 'Direct modulation index: A measure of phase amplitude coupling for neurophysiology data'
19
+ 'The bispectrum and its relationship to phase-amplitude coupling'
20
+ 'Addressing Pitfalls in Phase-Amplitude Coupling Analysis with an Extended Modulation Index Toolbox'
21
+ 'Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column'
22
+ 'Seizure Onset Zone Identification Based on Phase-Amplitude Coupling of Interictal Electrocorticogram'
23
+ 'Understanding phase-amplitude coupling from bispectral analysis'
24
+ 'Cross-Frequency Phase-Amplitude Coupling between Hippocampal Theta and Gamma Oscillations during Recall Destabilizes Memory and Renders It Susceptible to Reconsolidation Disruption'
25
+ 'Toward a proper estimation of phase–amplitude coupling in neural oscillations'
26
+ 'Phase-Amplitude Coupling in Autism Spectrum Disorder: Results from the Autism Biomarkers Consortium for Clinical Trials'
27
+ 'Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling'
28
+ 'Phase-amplitude coupling in neuronal oscillator networks'
29
+ 'REPAC: Reliable Estimation of Phase-Amplitude Coupling in Brain Networks'
30
+ 'Generation of phase-amplitude coupling of neurophysiological signals in a neural mass model of a cortical column'
31
+ 'Multitaper estimates of phase-amplitude coupling'
32
+ 'How to design optimal brain stimulation to modulate phase-amplitude coupling?'
33
+ 'Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks'
34
+ 'Phase-Amplitude Coupling in Spontaneous Mouse Behavior'
35
+ 'Cross‐Frequency Couplings Reveal Mice Visual Cortex Selectivity to Grating Orientations'
36
+ 'Phase–Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence'
37
+ 'Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall'
38
+ 'Heterogeneous profiles of coupled sleep oscillations in human hippocampus'
39
+ 'Phase-amplitude coupling profiles differ in frontal and auditory cortices'
40
+ 'Long term effects of cueing procedural memory reactivation during NREM sleep'
41
+ 'Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse'
42
+ 'CFC delta-beta is related with mixed features and response to treatment in bipolar II depression'
43
+ 'Phase-dependent Stimulation for Modulating Phase-amplitude Coupling: A Computational Modeling Approach'
44
+ 'Modeling the Generation of Phase-Amplitude Coupling in Cortical Circuits: From Detailed Networks to Neural Mass Models'
45
+ 'Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals'
46
+ 'Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy'
47
+ 'EEG phase-amplitude coupling to stratify encephalopathy severity in the developing brain'
48
+ 'Variational Phase-Amplitude Coupling Characterizes Signatures of Anterior Cortex Under Emotional Processing'
49
+ 'Statistical Inference for Modulation Index in Phase-Amplitude Coupling'
50
+ 'Measuring Phase-Amplitude Coupling Based on the Jensen-Shannon Divergence and Correlation Matrix'
51
+ 'Modelling Brain Connectivity Networks by Graph Embedding for Dyslexia Diagnosis'
52
+ 'Cross‐regional phase amplitude coupling supports the encoding of episodic memories'
53
+ 'Phase resetting in human auditory cortex to visual speech'
54
+ 'Analyzing human sleep EEG: A methodological primer with code implementation.'
55
+ 'Effect of Phase Clustering Bias on Phase-Amplitude Coupling for Emotional EEG.'
56
+ 'EEG Phase-Amplitude Coupling Strength and Phase Preference: Association with Age over the First Three Years after Birth'
57
+ 'Computing Phase Amplitude Coupling in EEGLAB: PACTools'
58
+ 'Phase-Amplitude Coupling: A General Mechanism for Memory Processing and Synaptic Plasticity?'
59
+ 'Timing of phase‐amplitude coupling is essential for neuronal and functional maturation of audiovisual integration in adolescents'
60
+ 'Phase-amplitude coupling of Go/Nogo task-related neuronal oscillation decreases for humans with insufficient sleep.'
61
+ 'Boosting Generalization in Bio-signal Classification by Learning the Phase-Amplitude Coupling'
62
+ 'Complex network modelling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis'
63
+ 'Decreased Phase–Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats'
64
+ 'Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI'
65
+ 'Phase-Amplitude Coupling Brain Networks in Children with Attention-Deficit/Hyperactivity Disorder'
66
+ 'Generative models, linguistic communication and active inference'
67
+ 'A Mutual Information Measure of Phase-Amplitude Coupling using High Dimensional Sparse Models'
68
+ 'The Detection of Phase Amplitude Coupling during Sensory Processing'
69
+ 'Dyconnmap: Dynamic connectome mapping—A neuroimaging python module'
70
+ 'Granger Causality Based Directional Phase-Amplitude Coupling Measure'
71
+ 'Implicit Analysis of Perceptual Multimedia Experience Based on Physiological Response: A Review'
72
+ 'Multivariate Analysis of Bivariate Phase-Amplitude Coupling in EEG Data Using Tensor Robust PCA'
73
+ 'The functional role of cross-frequency coupling'
74
+ 'Dissociated cortical phase- and amplitude-coupling patterns in the human brain'
75
+ 'The Functional Interactions between Cortical Regions through Theta-Gamma Coupling during Resting-State and a Visual Working Memory Task'
@@ -0,0 +1,98 @@
1
+ @article{Canolty2010TheFRC,
2
+ title={The functional role of cross-frequency coupling},
3
+ author={R. Canolty and R. Knight},
4
+ journal={Trends in Cognitive Sciences},
5
+ year={2010},
6
+ volume={14},
7
+ pages={506-515},
8
+ url={https://www.sciencedirect.com/science/article/pii/S1364661310002068?dgcid=api\_sd\_search-api-endpoint}
9
+ }
10
+
11
+ @article{Aru2014UntanglingCCD,
12
+ title={Untangling cross-frequency coupling in neuroscience},
13
+ author={Juhan Aru and Jaan Aru and V. Priesemann and M. Wibral and Raul Vicente},
14
+ journal={Current Opinion in Neurobiology},
15
+ year={2014},
16
+ volume={31},
17
+ pages={51-61},
18
+ url={https://www.sciencedirect.com/science/article/pii/S0959438814001640?dgcid=api\_sd\_search-api-endpoint}
19
+ }
20
+
21
+ @article{Dvok2014TowardAPJ,
22
+ title={Toward a proper estimation of phase–amplitude coupling in neural oscillations},
23
+ author={Dino Dvoř{\'a}k and A. Fenton},
24
+ journal={Journal of Neuroscience Methods},
25
+ year={2014},
26
+ volume={225},
27
+ pages={42-56},
28
+ url={https://www.sciencedirect.com/science/article/pii/S0165027014000132?dgcid=api\_sd\_search-api-endpoint}
29
+ }
30
+
31
+ @article{Scherer2022DirectMIM,
32
+ title={Direct modulation index: A measure of phase amplitude coupling for neurophysiology data},
33
+ author={Maximilian Scherer and Tianlu Wang and R. Guggenberger and L. Milosevic and A. Gharabaghi},
34
+ journal={Human Brain Mapping},
35
+ year={2022},
36
+ volume={44},
37
+ pages={1862 - 1867},
38
+ url={https://doi.org/10.1002/hbm.26190}
39
+ }
40
+
41
+ @article{Bergmann2018PhaseAmplitudeCAN,
42
+ title={Phase-Amplitude Coupling: A General Mechanism for Memory Processing and Synaptic Plasticity?},
43
+ author={T. Bergmann and J. Born},
44
+ journal={Neuron},
45
+ year={2018},
46
+ volume={97},
47
+ pages={10-13},
48
+ url={https://www.sciencedirect.com/science/article/pii/S0896627317311704?dgcid=api\_sd\_search-api-endpoint}
49
+ }
50
+
51
+ @article{Cohen2009OscillatoryAAZ,
52
+ title={Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making},
53
+ author={Michael X. Cohen and C. Elger and J. Fell},
54
+ journal={Journal of Cognitive Neuroscience},
55
+ year={2009},
56
+ volume={21},
57
+ pages={390-402},
58
+ url={https://doi.org/10.1162/jocn.2008.21020}
59
+ }
60
+
61
+ @article{Meij2012PhaseAmplitudeCIAC,
62
+ title={Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse},
63
+ author={Roemer van der Meij and M. Kahana and E. Maris},
64
+ journal={The Journal of Neuroscience},
65
+ year={2012},
66
+ volume={32},
67
+ pages={111 - 123},
68
+ url={https://doi.org/10.1523/JNEUROSCI.4816-11.2012}
69
+ }
70
+
71
+ @article{Mikutta2019PhaseamplitudeCOAE,
72
+ title={Phase‐amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation},
73
+ author={C. Mikutta and B. Feige and J. Maier and E. Hertenstein and J. Holz and D. Riemann and C. Nissen},
74
+ journal={Journal of Sleep Research},
75
+ year={2019},
76
+ volume={28},
77
+ url={https://doi.org/10.1111/jsr.12835}
78
+ }
79
+
80
+ @article{Zhang2017TemporalspatialCOAG,
81
+ title={Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy},
82
+ author={Ruihua Zhang and Ye Ren and Chunyan Liu and Na Xu and Xiaoli Li and F. Cong and T. Ristaniemi and Yuping Wang},
83
+ journal={Clinical Neurophysiology},
84
+ year={2017},
85
+ volume={128},
86
+ pages={1707-1718},
87
+ url={https://www.sciencedirect.com/science/article/pii/S138824571730216X?dgcid=api\_sd\_search-api-endpoint}
88
+ }
89
+
90
+ @article{Zhang2023VariationalPCAM,
91
+ title={Variational Phase-Amplitude Coupling Characterizes Signatures of Anterior Cortex Under Emotional Processing},
92
+ author={Chu Zhang and C. Yeh and Wenbin Shi},
93
+ journal={IEEE Journal of Biomedical and Health Informatics},
94
+ year={2023},
95
+ volume={27},
96
+ pages={1935-1945},
97
+ url={http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=10040734}
98
+ }
@@ -0,0 +1,58 @@
1
+ @article{kuhlmann2018epilepsyecosystem,
2
+ title={{Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG}},
3
+ author={Kuhlmann, Levin and Karoly, Philippa and Freestone, Dean R and Brinkmann, Benjamin H and Temko, Andre and Barachant, Alexandre and Li, Fanjie and Titericz Jr, Gergely and Lang, Brent W and Lavery, Daniel and Roman, Ken and Broadhead, Daniel and Dobson, Simon and Jones, Gavin and Tang, Qing and Ivanenko, Ivan and Panichev, Oleg and Proix, Timoth{\'e}e and N{\'a}hl{\'i}k, Michal and Grunberg, Daniel B and Reuben, Charles and Worrell, Gregory and Litt, Brian and Liley, David T J and Grayden, David B and Cook, Mark J},
4
+ journal={Brain},
5
+ volume={141},
6
+ number={9},
7
+ pages={2619--2630},
8
+ year={2018},
9
+ publisher={Oxford University Press},
10
+ doi={10.1093/brain/awy210}
11
+ }
12
+
13
+ @article{kiralkornek2018epileptic,
14
+ title={{Epileptic seizure prediction using big data and deep learning: toward a mobile system}},
15
+ author={Kiral-Kornek, Isabell and Roy, Subhrajit and Nurse, Ewan and Mashford, Benjamin and Karoly, Philippa and Carroll, Thomas and Payne, Daniel and Saha, Susmita and Baldassano, Steven and O'Brien, Terence and Grayden, David B and Cook, Mark and Freestone, Dean and Harrer, Stefan},
16
+ journal={EBioMedicine},
17
+ volume={27},
18
+ pages={103--111},
19
+ year={2018},
20
+ publisher={Elsevier},
21
+ doi={10.1016/j.ebiom.2017.11.032}
22
+ }
23
+
24
+ @article{karoly2016interictal,
25
+ title={{Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity}},
26
+ author={Karoly, Philippa J and Freestone, Dean R and Boston, Ray and Grayden, David B and Himes, David and Leyde, Kent and Seneviratne, Udaya and Berkovic, Samuel F and O'Brien, Terence J and Cook, Mark J},
27
+ journal={Brain},
28
+ volume={139},
29
+ number={4},
30
+ pages={1066--1078},
31
+ year={2016},
32
+ publisher={Oxford University Press},
33
+ doi={10.1093/brain/aww019}
34
+ }
35
+
36
+ @article{edakawa2016detection,
37
+ title={{Detection of epileptic seizures using phase--amplitude coupling in intracranial electroencephalography}},
38
+ author={Edakawa, Kohtaroh and Yanagisawa, Takufumi and Kishima, Haruhiko and Fukuma, Ryohei and Oshino, Satoru and Khoo, Hui Ming and Kobayashi, Maki and Tanaka, Masataka and Yoshimine, Toshiki},
39
+ journal={Scientific reports},
40
+ volume={6},
41
+ number={1},
42
+ pages={25422},
43
+ year={2016},
44
+ publisher={Nature Publishing Group},
45
+ doi={10.1038/srep25422}
46
+ }
47
+
48
+ @article{yanagisawa2012regulation,
49
+ title={{Regulation of motor representation by phase--amplitude coupling in the sensorimotor cortex}},
50
+ author={Yanagisawa, Takufumi and Yamashita, Osamu and Hirata, Masayuki and Kishima, Haruhiko and Saitoh, Youichi and Goto, Tetsu and Yoshimine, Toshiki and Kamitani, Yukiyasu},
51
+ journal={Journal of Neuroscience},
52
+ volume={32},
53
+ number={44},
54
+ pages={15467--15475},
55
+ year={2012},
56
+ publisher={Society for Neuroscience},
57
+ doi={10.1523/JNEUROSCI.1162-12.2012}
58
+ }
@@ -0,0 +1,87 @@
1
+ @article{kuhlmann2018epilepsyecosystem,
2
+ title = {Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG},
3
+ author = {Kuhlmann, Levin and Karoly, Philippa and Freestone, Dean R and Brinkmann, Benjamin H and Temko, Andre and Barachant, Alexandre and Li, Fanjie and Titericz Jr, Gergely and Lang, Brent W and Lavery, Daniel and Roman, Ken and Broadhead, Daniel and Dobson, Simon and Jones, Gavin and Tang, Qing and Ivanenko, Ivan and Panichev, Oleg and Proix, Timoth\{\'e\}e and N\{\'a\}hl\{\'i\}k, Michal and Grunberg, Daniel B and Reuben, Charles and Worrell, Gregory and Litt, Brian and Liley, David T J and Grayden, David B and Cook, Mark J},
4
+ year = {2018},
5
+ abstract = {Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.},
6
+ keywords = {Crowd sourcing},
7
+ doi = {10.1093/brain/awy210},
8
+ pmid = {30101347},
9
+ journal = {Brain},
10
+ volume = {141},
11
+ citation_count = {178},
12
+ journal_impact_factor = {10.6},
13
+ number = {9},
14
+ pages = {2619–2630},
15
+ publisher = {Oxford University Press},
16
+ }
17
+
18
+ @article{kiralkornek2018103,
19
+ title = {Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System},
20
+ journal = {EBioMedicine},
21
+ volume = {27},
22
+ pages = {103-111},
23
+ year = {2018},
24
+ issn = {2352-3964},
25
+ doi = {https://doi.org/10.1016/j.ebiom.2017.11.032},
26
+ url = {https://www.sciencedirect.com/science/article/pii/S235239641730470X},
27
+ author = {Isabell Kiral-Kornek and Subhrajit Roy and Ewan Nurse and Benjamin Mashford and Philippa Karoly and Thomas Carroll and Daniel Payne and Susmita Saha and Steven Baldassano and Terence O'Brien and David Grayden and Mark Cook and Dean Freestone and Stefan Harrer},
28
+ keywords = {Epilepsy, Seizure prediction, Artificial intelligence, Deep neural networks, Mobile medical devices, Precision medicine},
29
+ abstract = {Background
30
+ Seizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs.
31
+ Methods
32
+ Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third, the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic chip for autonomous operation on a wearable device is provided.
33
+ Results
34
+ The prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly surpassing an equivalent random predictor for all patients by 42%.
35
+ Conclusion
36
+ This study demonstrates that deep learning in combination with neuromorphic hardware can provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low power consumption and reliable long-term performance.}
37
+ }
38
+
39
+ @article{karoly2016interictal,
40
+ title = {Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity},
41
+ author = {Karoly, Philippa J and Freestone, Dean R and Boston, Ray and Grayden, David B and Himes, David and Leyde, Kent and Seneviratne, Udaya and Berkovic, Samuel F and O'Brien, Terence J and Cook, Mark J},
42
+ year = {2016},
43
+ abstract = {We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was significantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however, spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then spikes may be useful biomarkers of cortical excitability.},
44
+ keywords = {Spike-and-wave, Electrocorticography},
45
+ doi = {10.1093/brain/aww019},
46
+ pmid = {26912639},
47
+ journal = {Brain},
48
+ volume = {139},
49
+ citation_count = {319},
50
+ journal_impact_factor = {10.6},
51
+ number = {4},
52
+ pages = {1066–1078},
53
+ publisher = {Oxford University Press},
54
+ }
55
+
56
+ @article{edakawa2016detection,
57
+ title = {Detection of epileptic seizures using phase–amplitude coupling in intracranial electroencephalography},
58
+ author = {Edakawa, Kohtaroh and Yanagisawa, Takufumi and Kishima, Haruhiko and Fukuma, Ryohei and Oshino, Satoru and Khoo, Hui Ming and Kobayashi, Maki and Tanaka, Masataka and Yoshimine, Toshiki},
59
+ year = {2016},
60
+ abstract = {<jats:title>Abstract</jats:title><jats:p>Seizure detection using intracranial electroencephalography (iEEG) contributes to improved treatment of patients with refractory epilepsy. For that purpose, a feature of iEEG to characterize the ictal state with high specificity and sensitivity is necessary. We evaluated the use of phase–amplitude coupling (PAC) of iEEG signals over a period of 24 h to detect the ictal and interictal states. PAC was estimated by using a synchronisation index (SI) for iEEG signals from seven patients with refractory temporal lobe epilepsy. iEEG signals of the ictal state was characterised by a strong PAC between the phase of β and the amplitude of high γ. Furthermore, using SI values, the ictal state was successfully detected with significantly higher accuracy than by using the amplitude of high γ alone. In conclusion, PAC accurately distinguished the ictal state from the interictal state.</jats:p>},
61
+ doi = {10.1038/srep25422},
62
+ pmid = {27147119},
63
+ journal = {Scientific reports},
64
+ volume = {6},
65
+ citation_count = {98},
66
+ journal_impact_factor = {3.8},
67
+ number = {1},
68
+ pages = {25422},
69
+ publisher = {Nature Publishing Group},
70
+ }
71
+
72
+ @article{yanagisawa2012regulation,
73
+ title = {Regulation of motor representation by phase–amplitude coupling in the sensorimotor cortex},
74
+ author = {Yanagisawa, Takufumi and Yamashita, Osamu and Hirata, Masayuki and Kishima, Haruhiko and Saitoh, Youichi and Goto, Tetsu and Yoshimine, Toshiki and Kamitani, Yukiyasu},
75
+ year = {2012},
76
+ abstract = {<jats:p>High-γ amplitude (80–150 Hz) represents motor information, such as movement types, on the sensorimotor cortex. In several cortical areas, high-γ amplitudes are coupled with low-frequency phases, e.g., α and θ (phase–amplitude coupling, PAC). However, such coupling has not been studied in the sensorimotor cortex; thus, its potential functional role has yet to be explored. We investigated PAC of high-γ amplitude in the sensorimotor cortex during waiting for and the execution of movements using electrocorticographic (ECoG) recordings in humans. ECoG signals were recorded from the sensorimotor cortices of 4 epilepsy patients while they performed three different hand movements. A subset of electrodes showed high-γ activity selective to movement type around the timing of motor execution, while the same electrodes showed nonselective high-γ activity during the waiting period (&gt;2 s before execution). Cross frequency coupling analysis revealed that the high-γ amplitude during waiting was strongly coupled with the α phase (10–14 Hz) at the electrodes with movement-selective high-γ amplitudes during execution. This coupling constituted the high-γ amplitude peaking around the trough of the α oscillation, and its strength and phase were not predictive of movement type. As the coupling attenuated toward the timing of motor execution, the high-γ amplitude appeared to be released from the α phase to build a motor representation with phase-independent activity. Our results suggest that PAC modulates motor representation in the sensorimotor cortex by holding and releasing high-γ activity in movement-selective cortical regions.</jats:p>},
77
+ keywords = {Electrocorticography},
78
+ doi = {10.1523/JNEUROSCI.1162-12.2012},
79
+ pmid = {23115184},
80
+ journal = {Journal of Neuroscience},
81
+ volume = {32},
82
+ citation_count = {141},
83
+ journal_impact_factor = {4.4},
84
+ number = {44},
85
+ pages = {15467–15475},
86
+ publisher = {Society for Neuroscience},
87
+ }