scitex 2.17.3__py3-none-any.whl → 2.17.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. scitex/_dev/_dashboard/_routes.py +13 -0
  2. scitex/_dev/_dashboard/_scripts.py +144 -23
  3. scitex/_dev/_dashboard/_styles.py +90 -0
  4. scitex/_dev/_dashboard/_templates.py +14 -1
  5. scitex/_dev/_rtd.py +122 -0
  6. scitex/_dev/_ssh.py +38 -8
  7. scitex/dev/plt/data/mpl/PLOTTING_FUNCTIONS.yaml +90 -0
  8. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES.yaml +1571 -0
  9. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES_DETAILED.yaml +6262 -0
  10. scitex/dev/plt/data/mpl/SIGNATURES_FLATTENED.yaml +1274 -0
  11. scitex/dev/plt/data/mpl/dir_ax.txt +459 -0
  12. scitex/scholar/_mcp/crossref_handlers.py +45 -7
  13. scitex/scholar/_mcp/openalex_handlers.py +45 -7
  14. scitex/scholar/config/default.yaml +2 -0
  15. scitex/scholar/data/.gitkeep +0 -0
  16. scitex/scholar/data/README.md +44 -0
  17. scitex/scholar/data/bib_files/bibliography.bib +1952 -0
  18. scitex/scholar/data/bib_files/neurovista.bib +277 -0
  19. scitex/scholar/data/bib_files/neurovista_enriched.bib +441 -0
  20. scitex/scholar/data/bib_files/neurovista_enriched_enriched.bib +441 -0
  21. scitex/scholar/data/bib_files/neurovista_processed.bib +338 -0
  22. scitex/scholar/data/bib_files/openaccess.bib +89 -0
  23. scitex/scholar/data/bib_files/pac-seizure_prediction_enriched.bib +2178 -0
  24. scitex/scholar/data/bib_files/pac.bib +698 -0
  25. scitex/scholar/data/bib_files/pac_enriched.bib +1061 -0
  26. scitex/scholar/data/bib_files/pac_processed.bib +0 -0
  27. scitex/scholar/data/bib_files/pac_titles.txt +75 -0
  28. scitex/scholar/data/bib_files/paywalled.bib +98 -0
  29. scitex/scholar/data/bib_files/related-papers-by-coauthors.bib +58 -0
  30. scitex/scholar/data/bib_files/related-papers-by-coauthors_enriched.bib +87 -0
  31. scitex/scholar/data/bib_files/seizure_prediction.bib +694 -0
  32. scitex/scholar/data/bib_files/seizure_prediction_processed.bib +0 -0
  33. scitex/scholar/data/bib_files/test_complete_enriched.bib +437 -0
  34. scitex/scholar/data/bib_files/test_final_enriched.bib +437 -0
  35. scitex/scholar/data/bib_files/test_seizure.bib +46 -0
  36. scitex/scholar/data/impact_factor/JCR_IF_2022.xlsx +0 -0
  37. scitex/scholar/data/impact_factor/JCR_IF_2024.db +0 -0
  38. scitex/scholar/data/impact_factor/JCR_IF_2024.xlsx +0 -0
  39. scitex/scholar/data/impact_factor/JCR_IF_2024_v01.db +0 -0
  40. scitex/scholar/data/impact_factor.db +0 -0
  41. scitex/scholar/local_dbs/__init__.py +5 -1
  42. scitex/scholar/local_dbs/export.py +93 -0
  43. scitex/scholar/local_dbs/unified.py +505 -0
  44. scitex/scholar/metadata_engines/ScholarEngine.py +11 -0
  45. scitex/scholar/metadata_engines/individual/OpenAlexLocalEngine.py +346 -0
  46. scitex/scholar/metadata_engines/individual/__init__.py +1 -0
  47. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/METADATA +1 -1
  48. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/RECORD +51 -22
  49. scitex/scholar/url_finder/.tmp/open_url/KNOWN_RESOLVERS.py +0 -462
  50. scitex/scholar/url_finder/.tmp/open_url/README.md +0 -223
  51. scitex/scholar/url_finder/.tmp/open_url/_DOIToURLResolver.py +0 -694
  52. scitex/scholar/url_finder/.tmp/open_url/_OpenURLResolver.py +0 -1160
  53. scitex/scholar/url_finder/.tmp/open_url/_ResolverLinkFinder.py +0 -344
  54. scitex/scholar/url_finder/.tmp/open_url/__init__.py +0 -24
  55. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/WHEEL +0 -0
  56. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/entry_points.txt +0 -0
  57. {scitex-2.17.3.dist-info → scitex-2.17.4.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,338 @@
1
+ @article{Payne-2023,
2
+ title = {Epileptic seizure forecasting with long short-term memory (LSTM) neural
3
+ networks},
4
+ author = {Daniel E. Payne and Jordan D. Chambers and Anthony Burkitt and Mark J. Cook and Levin Kuhlman and Dean R. Freestone and David B. Grayden},
5
+ year = {2023},
6
+ abstract = {Objective: Forecasting epileptic seizures can reduce uncertainty for patients and allow preventative actions. While many models can predict the occurrence of seizures from features of the EEG, few models incorporate changes in features over time. Long Short-Term Memory (LSTM) neural networks are a machine learning architecture that can display temporal dynamics due to the recurrent connections. In this paper, we used LSTMs to monitor changes in EEG features over time to improve the accuracy of seizure forecasts and to alter the time window of the forecast. Methods: Long-term intracranial EEG recordings from eight patients from the NeuroVista dataset were used. A Fourier transform of 1-minute segments of EEG was fed into a Convolutional Neural Network (CNN). The outputs from the CNN were input to three different LSTM models at different time intervals: 1 minute, 1 hour and 1 day. The LSTM model outputs were used to predict seizure onset within a time window. The prediction and start of the time window were separated by the same length of time as the window. Window sizes tested included 2, 4, 10, 20 and 40 minutes. Results and Conclusion: Our model forecast seizure onsets well above a random predictor. Compared to other models using the same dataset, our model performed better for some patients and worse for others. Monitoring the change in EEG features over time allowed our model to produce good results over a range of different window sizes, which is an improvement on previous models and raises the possibility of altering the forecast to meet individual patient needs. Furthermore, a window size of 40 minutes provides a potential intervention time of 40 minutes, which is the first time an intervention time of more than 5 minutes have been forecast using long-term EEG recordings.},
7
+ doi = {10.48550/arXiv.2309.09471},
8
+ eprint = {2309.09471},
9
+ journal = {arXiv},
10
+ url = {https://arxiv.org/pdf/2309.09471.pdf},
11
+ }
12
+
13
+ @article{DiLorenzo-2019,
14
+ title = {Neural State Monitoring in the Treatment of Epilepsy: Seizure Prediction—Conceptualization to First-In-Man Study},
15
+ author = {Daniel John DiLorenzo and Kent W. Leyde and Dmitry Kaplan},
16
+ year = {2019},
17
+ abstract = {<jats:p>This research study is part of a therapy development effort in which a novel approach was taken to develop an implantable electroencephalographic (EEG) based brain monitoring and seizure prediction system. Previous attempts to predict seizures by other groups had not been demonstrated to be statistically more successful than chance. The primary clinical findings from this group were published in a clinical paper; however much of the fundamental technology, including the strategy and techniques behind the development of the seizure advisory system have not been published. Development of this technology comprised several steps: a vast high quality database of EEG recordings was assembled, a structured approach to algorithm development was undertaken, an implantable 16-channel subdural neural monitoring and seizure advisory system was designed and built, preclinical studies were conducted in a canine model, and a First-In-Man study involving implantation of 15 patients followed for two years was conducted to evaluate the algorithm. The algorithm was successfully trained to correctly provide a) notification of a high likelihood of seizure in 11 of 14 patients, and b) notification of a low likelihood of seizure in 5 of 14 patients (NCT01043406). Continuous neural state monitoring shows promise for applications in seizure prediction and likelihood estimation, and insights for further research and development are drawn.</jats:p>},
18
+ keywords = {Epileptic seizure},
19
+ doi = {10.3390/brainsci9070156},
20
+ pmid = {31266223},
21
+ journal = {Brain Sciences},
22
+ volume = {9},
23
+ citation_count = {17},
24
+ journal_impact_factor = {2.7},
25
+ url = {https://www.mdpi.com/2076-3425/9/7/156/pdf?version=1561976562},
26
+ }
27
+
28
+ @article{Lu-2025,
29
+ title = {Leveraging Channel Coherence in Long-Term iEEG Data for Seizure Prediction},
30
+ author = {Sha Lu and Lin Liu and Jiuyong Li and Jordan Chambers and Mark J. Cook and David B. Grayden},
31
+ year = {2025},
32
+ abstract = {Epilepsy affects millions worldwide, posing significant challenges due to the erratic and unexpected nature of seizures. Despite advancements, existing seizure prediction techniques remain limited in their ability to forecast seizures with high accuracy, impacting the quality of life for those with epilepsy. This research introduces the Coherence-based Seizure Prediction (CoSP) method, which integrates coherence analysis with deep learning to enhance seizure prediction efficacy. In CoSP, electroencephalography (EEG) recordings are divided into 10-second segments to extract channel pairwise coherence. This coherence data is then used to train a four-layer convolutional neural network to predict the probability of being in a preictal state. The predicted probabilities are then processed to issue seizure warnings. CoSP was evaluated in a pseudo-prospective setting using long-term iEEG data from ten patients in the NeuroVista seizure advisory system. CoSP demonstrated promising predictive performance across a range of preictal intervals (4 to 180 minutes). CoSP achieved a median Seizure Sensitivity (SS) of 0.79, a median false alarm rate of 0.15 per hour, and a median Time in Warning (TiW) of 27%, highlighting its potential for accurate and reliable seizure prediction. Statistical analysis confirmed that CoSP significantly outperformed chance (p = 0.001) and other baseline methods (p <0.05) under similar evaluation configurations.},
33
+ doi = {10.1109/jbhi.2025.3556775},
34
+ pmid = {40168220},
35
+ journal = {IEEE Journal of Biomedical and Health Informatics},
36
+ volume = {29},
37
+ }
38
+
39
+ @article{Howbert-2014,
40
+ title = {Forecasting Seizures in Dogs with Naturally Occurring Epilepsy},
41
+ author = {J. Jeffry Howbert and Edward E. Patterson and S. Matt Stead and Ben Brinkmann and Vincent Vasoli and Daniel Crepeau and Charles H. Vite and Beverly Sturges and Vanessa Ruedebusch and Jaideep Mavoori and Kent Leyde and W. Douglas Sheffield and Brian Litt and Gregory A. Worrell},
42
+ year = {2014},
43
+ abstract = {Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring.},
44
+ doi = {10.1371/journal.pone.0081920},
45
+ pmid = {24416133},
46
+ journal = {PLoS ONE},
47
+ volume = {9},
48
+ journal_impact_factor = {2.9},
49
+ url = {https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0081920&type=printable},
50
+ }
51
+
52
+ @article{Baldassano-2017,
53
+ title = {Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings},
54
+ author = {Steven N. Baldassano and Benjamin H. Brinkmann and Hoameng Ung and Tyler Blevins and Erin C. Conrad and Kent Leyde and Mark J. Cook and Ankit N. Khambhati and Joost B. Wagenaar and Gregory A. Worrell and Brian Litt},
55
+ year = {2017},
56
+ abstract = {There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.},
57
+ keywords = {Crowdsourcing, Benchmark (surveying), Plug-in},
58
+ doi = {10.1093/brain/awx098},
59
+ pmid = {28459961},
60
+ journal = {Brain : a journal of neurology},
61
+ volume = {140},
62
+ citation_count = {113},
63
+ journal_impact_factor = {10.6},
64
+ url = {https://academic.oup.com/brain/article-pdf/140/6/1680/25417270/awx098.pdf},
65
+ }
66
+
67
+ @article{Sladky-2022,
68
+ title = {Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation},
69
+ author = {Vladimir Sladky and Petr Nejedly and Filip Mivalt and Benjamin H Brinkmann and Inyong Kim and Erik K St. Louis and Nicholas M Gregg and Brian N Lundstrom and Chelsea M Crowe and Tal Pal Attia and Daniel Crepeau and Irena Balzekas and Victoria S Marks and Lydia P Wheeler and Jan Cimbalnik and Mark Cook and Radek Janca and Beverly K Sturges and Kent Leyde and Kai J Miller and Jamie J Van Gompel and Timothy Denison and Gregory A Worrell and Vaclav Kremen},
70
+ year = {2022},
71
+ abstract = {<jats:title>Abstract</jats:title>
72
+ <jats:p>Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.</jats:p>},
73
+ keywords = {Electrical brain stimulation, Brain stimulation},
74
+ doi = {10.1093/braincomms/fcac115},
75
+ pmid = {35755635},
76
+ journal = {Brain Communications},
77
+ volume = {4},
78
+ citation_count = {36},
79
+ journal_impact_factor = {4.1},
80
+ url = {https://academic.oup.com/braincomms/article-pdf/4/3/fcac115/44179177/fcac115.pdf},
81
+ }
82
+
83
+ @article{Gregg-2020,
84
+ title = {Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy},
85
+ author = {Nicholas M Gregg and Mona Nasseri and Vaclav Kremen and Edward E Patterson and Beverly K Sturges and Timothy J Denison and Benjamin H Brinkmann and Gregory A Worrell},
86
+ year = {2020},
87
+ abstract = {<jats:title>Abstract</jats:title><jats:p>Advances in ambulatory intracranial EEG devices have enabled objective analyses of circadian and multiday seizure periodicities, and seizure clusters in humans. This study characterizes circadian and multiday seizure periodicities, and seizure clusters in dogs with naturally occurring focal epilepsy, and considers the implications of an animal model for the study of seizure risk patterns, seizure forecasting and personalized treatment protocols. In this retrospective cohort study, 16 dogs were continuously monitored with ambulatory intracranial EEG devices designed for humans. Detailed medication records were kept for all dogs. Seizure periodicity was evaluated with circular statistics methods. Circular non-uniformity was assessed for circadian, 7-day and approximately monthly periods. The Rayleigh test was used to assess statistical significance, with correction for multiple comparisons. Seizure clusters were evaluated with Fano factor (index of dispersion) measurements, and compared to a Poisson distribution. Relationships between interseizure interval (ISI) and seizure duration were evaluated. Six dogs met the inclusion criteria of having at least 30 seizures and were monitored for an average of 65 weeks. Three dogs had seizures with circadian seizure periodicity, one dog had a 7-day periodicity, and two dogs had approximately monthly periodicity. Four dogs had seizure clusters and significantly elevated Fano factor values. There were subject-specific differences in the dynamics of ISI and seizure durations, both within and between lead and clustered seizure categories. Our findings show that seizure timing in dogs with naturally occurring epilepsy is not random, and that circadian and multiday seizure periodicities, and seizure clusters are common. Circadian, 7-day, and monthly seizure periodicities occur independent of antiseizure medication dosing, and these patterns likely reflect endogenous rhythms of seizure risk.</jats:p>},
88
+ keywords = {Epileptic seizure},
89
+ doi = {10.1093/braincomms/fcaa008},
90
+ pmid = {32161910},
91
+ journal = {Brain Communications},
92
+ volume = {2},
93
+ citation_count = {86},
94
+ journal_impact_factor = {4.1},
95
+ url = {https://academic.oup.com/braincomms/article-pdf/2/1/fcaa008/33639192/fcaa008.pdf},
96
+ }
97
+
98
+ @article{DiLorenzo-2019,
99
+ title = {Neurovista: Concept to first-in-man: The war story behind launching a venture to treat epilepsy},
100
+ author = {Daniel J. DiLorenzo},
101
+ year = {2019},
102
+ abstract = {<jats:p>Many medical (and nonmedical) technologies are the fruit of years and even decades of work by dedicated members of startup companies and commitment of capital by their investors. The launching of a medical device venture is fraught with many risks, but the personal, societal, and potential financial rewards of developing therapies that improve the lives of others makes the risk and sacrifice worthwhile. The litany of risks and challenges can be daunting, and persistence is the key ingredient to every incremental iota of success achieved. This is a personal war story behind the launching of a medical device venture that developed an implanted seizure prediction system (NCT01043406). The intent is to share the experience so that others with interest in the field may learn from the experience and also decide whether such an endeavor is something that they want to undertake.</jats:p>},
103
+ keywords = {Litany},
104
+ doi = {10.25259/sni_422_2019},
105
+ pmid = {31583172},
106
+ journal = {Surgical Neurology International},
107
+ volume = {10},
108
+ citation_count = {5},
109
+ }
110
+
111
+ @article{Löscher-2022,
112
+ title = {Novel subscalp and intracranial devices to wirelessly record and analyze continuous EEG in unsedated, behaving dogs in their natural environments: A new paradigm in canine epilepsy research},
113
+ author = {Wolfgang Löscher and Gregory A. Worrell},
114
+ year = {2022},
115
+ abstract = {<jats:p>Epilepsy is characterized by unprovoked, recurrent seizures and is a common neurologic disorder in dogs and humans. Roughly 1/3 of canines and humans with epilepsy prove to be drug-resistant and continue to have sporadic seizures despite taking daily anti-seizure medications. The optimization of pharmacologic therapy is often limited by inaccurate seizure diaries and medication side effects. Electroencephalography (EEG) has long been a cornerstone of diagnosis and classification in human epilepsy, but because of several technical challenges has played a smaller clinical role in canine epilepsy. The interictal (between seizures) and ictal (seizure) EEG recorded from the epileptic mammalian brain shows characteristic electrophysiologic biomarkers that are very useful for clinical management. A fundamental engineering gap for both humans and canines with epilepsy has been the challenge of obtaining continuous long-term EEG in the patients' natural environment. We are now on the cusp of a revolution where continuous long-term EEG from behaving canines and humans will be available to guide clinicians in the diagnosis and optimal treatment of their patients. Here we review some of the devices that have recently emerged for obtaining long-term EEG in ambulatory subjects living in their natural environments.</jats:p>},
116
+ keywords = {Drug Resistant Epilepsy},
117
+ doi = {10.3389/fvets.2022.1014269},
118
+ pmid = {36337210},
119
+ journal = {Frontiers in Veterinary Science},
120
+ volume = {9},
121
+ citation_count = {3},
122
+ url = {https://www.frontiersin.org/articles/10.3389/fvets.2022.1014269/pdf},
123
+ }
124
+
125
+ @article{DiLorenzo-2021,
126
+ title = {Societal return on investment may greatly exceed financial return on investment in neurotechnology-based therapies: A case study in epilepsy therapy development},
127
+ author = {Daniel John DiLorenzo},
128
+ year = {2021},
129
+ abstract = {<jats:sec id="st1">
130
+ <jats:title>Background: </jats:title>
131
+ <jats:p>This research study is an economic analysis of a neurotechnology-based translational research and development venture focused on the development of a therapy for patients with epilepsy. In the conceptualization, planning, financing, and execution of neurotechnology ventures, many factors come into play in determining value and ability to secure financing at each stage of the venture. Conventionally, these have included factors that determine the return on investment for the stakeholders of the venture, most notably the investors and the team members, the former investing hard earned capital, and the latter investing significant portions of their professional careers. For a variety of reasons, the positive impact on society is often not quantified and taken into consideration.</jats:p>
132
+ </jats:sec>
133
+ <jats:sec id="st2">
134
+ <jats:title>Methods: </jats:title>
135
+ <jats:p>To address this, a new term is defined and assessed at a first approximation level using an index technology. The metric is termed the societal return on investment (sROI).</jats:p>
136
+ </jats:sec>
137
+ <jats:sec id="st3">
138
+ <jats:title>Results: </jats:title>
139
+ <jats:p>Among chronic conditions, neurological disease is virtually unique in the magnitude of economic devastation that it can inflict on a person and a family. Because the device costs do not reflect this value that is lost and subject to restoration, these are missing from this important calculation. The index project is the development of a seizure advisory system, which cost $71.2 million to develop and conduct a First-In-Man (FIM) study (NCT01043406) and which was estimated to require $50 million to complete a pivotal study.</jats:p>
140
+ </jats:sec>
141
+ <jats:sec id="st4">
142
+ <jats:title>Conclusion: </jats:title>
143
+ <jats:p>Despite the immense costs required to develop, test, and commercialize such a system, the direct and indirect economic costs imposed by uncontrolled seizures are sufficiently staggering that a sROI becomes positive after only 400 patients have been successfully treated and returned to work.</jats:p>
144
+ </jats:sec>},
145
+ keywords = {Investment, Value (mathematics)},
146
+ doi = {10.25259/sni_230_2020},
147
+ pmid = {34084608},
148
+ journal = {Surgical Neurology International},
149
+ volume = {12},
150
+ citation_count = {2},
151
+ }
152
+
153
+ @article{Yang-2024,
154
+ title = {Seizure forecasting with ultra long-term EEG signals},
155
+ author = {Hongliu Yang and Jens Müller and Matthias Eberlein and Sotirios Kalousios and Georg Leonhardt and Jonas Duun-Henriksen and Troels Kjaer and Ronald Tetzlaff},
156
+ year = {2024},
157
+ abstract = {The apparent randomness of seizure occurrence affects greatly the quality of life of persons with epilepsy. Since seizures are often phase-locked to multidien cycles of interictal epileptiform activity, a recent forecasting scheme, exploiting RNS data, is capable of forecasting seizures days in advance.},
158
+ doi = {10.1016/j.clinph.2024.09.017},
159
+ pmid = {39353259},
160
+ journal = {Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology},
161
+ volume = {167},
162
+ journal_impact_factor = {3.7},
163
+ }
164
+
165
+ @article{Schroeder-2022,
166
+ title = {Chronic iEEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states},
167
+ author = {Gabrielle M. Schroeder and Philippa J. Karoly and Matias I. Maturana and Peter N. Taylor and Mark Cook and Yujiang Wang},
168
+ year = {2022},
169
+ abstract = {Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Methods: Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterised the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states (SNSs). We then compared SNS occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. Results: In most patients, the occurrence or duration of at least one SNS was associated with the time since implantation. Some patients had one or more SNSs that were associated with phases of circadian and/or multidien spike rate cycles. A given SNS's occurrence and duration were usually not associated with the same timescale. Discussion: Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a SNS's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures, and similar principles likely apply to other neurological conditions.},
170
+ doi = {10.48550/arxiv.2201.11600},
171
+ eprint = {2201.11600},
172
+ journal = {arXiv (Cornell University)},
173
+ citation_count = {1},
174
+ url = {https://arxiv.org/pdf/2201.11600.pdf},
175
+ }
176
+
177
+ @article{Schroeder-2021,
178
+ title = {Seizure pathways and seizure durations can vary independently within individual patients with focal epilepsy},
179
+ author = {Gabrielle M. Schroeder and Fahmida A Chowdhury and Mark Cook and Beate Diehl and John S. Duncan and Philippa J. Karoly and Peter N. Taylor and Yujiang Wang},
180
+ year = {2021},
181
+ abstract = {A seizure's electrographic dynamics are characterised by its spatiotemporal evolution, also termed dynamical "pathway" and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations can vary within the same patient, producing seizures with different dynamics, severity, and clinical implications. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using 1) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean 6.7 days, 16.5 seizures/subject), 2) NeuroVista chronic iEEG recordings of 10 patients (mean 521.2 days, 252.6 seizures/subject), and 3) chronic iEEG recordings of 3 dogs with focal-onset seizures (mean 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was weakened by seizures that 1) had a common pathway, but different durations ("elastic pathways"), or 2) had similar durations, but followed different pathways ("duplicate durations"). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by different processes. Uncovering such modulators may reveal novel therapeutic targets for reducing seizure duration and severity.},
182
+ doi = {10.48550/arxiv.2109.06672},
183
+ eprint = {2109.06672},
184
+ journal = {arXiv (Cornell University)},
185
+ citation_count = {1},
186
+ url = {https://arxiv.org/pdf/2109.06672.pdf},
187
+ }
188
+
189
+ @article{Schroeder-2022,
190
+ title = {Multiple mechanisms shape the relationship between pathway and duration of focal seizures},
191
+ author = {Gabrielle M Schroeder and Fahmida A Chowdhury and Mark J Cook and Beate Diehl and John S Duncan and Philippa J Karoly and Peter N Taylor and Yujiang Wang},
192
+ year = {2022},
193
+ abstract = {<jats:title>Abstract</jats:title>
194
+ <jats:p>A seizure’s electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical ‘pathway’, and the time it takes to complete that pathway, which results in the seizure’s duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were ‘truncated’ versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations (‘elasticity’), or had similar durations, but followed different pathways (‘semblance’). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.</jats:p>},
195
+ keywords = {partial seizures},
196
+ doi = {10.1093/braincomms/fcac173},
197
+ pmid = {35855481},
198
+ journal = {Brain Communications},
199
+ volume = {4},
200
+ citation_count = {12},
201
+ journal_impact_factor = {4.1},
202
+ url = {https://academic.oup.com/braincomms/article-pdf/4/4/fcac173/45028162/fcac173.pdf},
203
+ }
204
+
205
+ @article{Sirbu-2025,
206
+ title = {Regulating Next-Generation Implantable Brain-Computer Interfaces:
207
+ Recommendations for Ethical Development and Implementation},
208
+ author = {Renee Sirbu and Jessica Morley and Tyler Schroder and M. Taddeo and Raghavendra Pradyumna Pothukuchi and Muhammed Ugur and Abhishek Bhattacharjee and Luciano Floridi},
209
+ year = {2025},
210
+ abstract = {Brain-computer interfaces offer significant therapeutic opportunities for a variety of neurophysiological and neuropsychiatric disorders and may perhaps one day lead to augmenting the cognition and decision-making of the healthy brain. However, existing regulatory frameworks designed for implantable medical devices are inadequate to address the unique ethical, legal, and social risks associated with next-generation networked brain-computer interfaces. In this article, we make nine recommendations to support developers in the design of BCIs and nine recommendations to support policymakers in the application of BCIs, drawing insights from the regulatory history of IMDs and principles from AI ethics. We begin by outlining the historical development of IMDs and the regulatory milestones that have shaped their oversight. Next, we summarize similarities between IMDs and emerging implantable BCIs, identifying existing provisions for their regulation. We then use two case studies of emerging cutting-edge BCIs, the HALO and SCALO computer systems, to highlight distinctive features in the design and application of next-generation BCIs arising from contemporary chip architectures, which necessitate reevaluating regulatory approaches. We identify critical ethical considerations for these BCIs, including unique conceptions of autonomy, identity, and mental privacy. Based on these insights, we suggest potential avenues for the ethical regulation of BCIs, emphasizing the importance of interdisciplinary collaboration and proactive mitigation of potential harms. The goal is to support the responsible design and application of new BCIs, ensuring their safe and ethical integration into medical practice.},
211
+ doi = {10.48550/arXiv.2506.12540},
212
+ eprint = {2506.12540},
213
+ journal = {arXiv.org},
214
+ citation_count = {1},
215
+ url = {https://arxiv.org/pdf/2506.12540.pdf},
216
+ }
217
+
218
+ @article{Kiral-Kornek-2018,
219
+ title = {Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System},
220
+ author = {Isabell Kiral-Kornek and Subhrajit Roy and Ewan Nurse and Benjamin Mashford and Philippa Karoly and Thomas Carroll and Daniel Payne and Susmita Saha and Steven Baldassano and Terence O'Brien and David Grayden and Mark Cook and Dean Freestone and Stefan Harrer},
221
+ year = {2018},
222
+ abstract = {Seizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs.},
223
+ keywords = {Neuromorphic engineering, Wearable Technology},
224
+ doi = {10.1016/j.ebiom.2017.11.032},
225
+ pmid = {29262989},
226
+ journal = {EBioMedicine},
227
+ volume = {27},
228
+ citation_count = {279},
229
+ journal_impact_factor = {9.7},
230
+ url = {http://www.epilepsy.com/sites/core/files/atoms/files/community-survey-report-2016%20V2.pdf},
231
+ }
232
+
233
+ @article{Chambers-2024,
234
+ title = {Using Long Short-Term Memory (LSTM) recurrent neural networks to classify unprocessed EEG for seizure prediction},
235
+ author = {Jordan D. Chambers and Mark J. Cook and Anthony N. Burkitt and David B. Grayden},
236
+ year = {2024},
237
+ abstract = {<jats:sec><jats:title>Objective</jats:title><jats:p>Seizure prediction could improve quality of life for patients through removing uncertainty and providing an opportunity for acute treatments. Most seizure prediction models use feature engineering to process the EEG recordings. Long-Short Term Memory (LSTM) neural networks are a recurrent neural network architecture that can display temporal dynamics and, therefore, potentially analyze EEG signals without performing feature engineering. In this study, we tested if LSTMs could classify unprocessed EEG recordings to make seizure predictions.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Long-term intracranial EEG data was used from 10 patients. 10-s segments of EEG were input to LSTM models that were trained to classify the EEG signal. The final seizure prediction was generated from 5 outputs of the LSTM model over 50 s and combined with time information to account for seizure cycles.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The LSTM models could make predictions significantly better than a random predictor. When compared to other publications using the same dataset, our model performed better than several others and was comparable to the best models published to date. Furthermore, this framework could still produce predictions significantly better than chance when the experimental paradigm design was altered, without the need to reperform feature engineering.</jats:p></jats:sec><jats:sec><jats:title>Significance</jats:title><jats:p>Removing the need to perform feature engineering is an advancement on previously published models. This framework can be applied to many different patients’ needs and a variety of acute interventions. Also, it opens the possibility of personalized seizure predictions that can be altered to meet daily needs.</jats:p></jats:sec>},
238
+ keywords = {Feature Engineering, Feature (linguistics), Epileptic seizure},
239
+ doi = {10.3389/fnins.2024.1472747},
240
+ pmid = {39618708},
241
+ journal = {Frontiers in Neuroscience},
242
+ volume = {18},
243
+ citation_count = {2},
244
+ url = {https://www.frontiersin.org/articles/10.3389/fnins.2024.1472747/pdf},
245
+ }
246
+
247
+ @article{Karoly-2017,
248
+ title = {The circadian profile of epilepsy improves seizure forecasting},
249
+ author = {Philippa J Karoly and Hoameng Ung and David B Grayden and Levin Kuhlmann and Kent Leyde and Mark J Cook and Dean R Freestone},
250
+ year = {2017},
251
+ abstract = {It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.},
252
+ keywords = {Electrocorticography},
253
+ doi = {10.1093/brain/awx173},
254
+ pmid = {28899023},
255
+ journal = {Brain : a journal of neurology},
256
+ volume = {140},
257
+ citation_count = {198},
258
+ journal_impact_factor = {10.6},
259
+ }
260
+
261
+ @article{Chen-2022,
262
+ title = {Seizure Forecasting by High-Frequency Activity (80–170 Hz) in Long-term Continuous Intracranial EEG Recordings},
263
+ author = {Zhuying Chen and Matias I. Maturana and Anthony N. Burkitt and Mark J. Cook and David B. Grayden},
264
+ year = {2022},
265
+ abstract = {Background and Objectives Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting. Methods We used seizure data and HFA (80–170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC). Results Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77. Discussion These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers. Classification of Evidence This study provides Class IV evidence that HFA (80–170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.},
266
+ doi = {10.1212/wnl.0000000000200348},
267
+ pmid = {35523589},
268
+ journal = {Neurology},
269
+ volume = {99},
270
+ citation_count = {4},
271
+ url = {https://www.neurology.org/doi/pdfdirect/10.1212/WNL.0000000000200348},
272
+ }
273
+
274
+ @article{Andrade-2024,
275
+ title = {On the performance of seizure prediction machine learning methods across different databases: the sample and alarm-based perspectives},
276
+ author = {Inês Andrade and César Teixeira and Mauro Pinto},
277
+ year = {2024},
278
+ abstract = {<jats:p>Epilepsy affects 1% of the global population, with approximately one-third of patients resistant to anti-seizure medications (ASMs), posing risks of physical injuries and psychological issues. Seizure prediction algorithms aim to enhance the quality of life for these individuals by providing timely alerts. This study presents a patient-specific seizure prediction algorithm applied to diverse databases (EPILEPSIAE, CHB-MIT, AES, and Epilepsy Ecosystem). The proposed algorithm undergoes a standardized framework, including data preprocessing, feature extraction, training, testing, and postprocessing. Various databases necessitate adaptations in the algorithm, considering differences in data availability and characteristics. The algorithm exhibited variable performance across databases, taking into account sensitivity, FPR/h, specificity, and AUC score. This study distinguishes between sample-based approaches, which often yield better results by disregarding the temporal aspect of seizures, and alarm-based approaches, which aim to simulate real-life conditions but produce less favorable outcomes. Statistical assessment reveals challenges in surpassing chance levels, emphasizing the rarity of seizure events. Comparative analyses with existing studies highlight the complexity of standardized assessments, given diverse methodologies and dataset variations. Rigorous methodologies aiming to simulate real-life conditions produce less favorable outcomes, emphasizing the importance of realistic assumptions and comprehensive, long-term, and systematically structured datasets for future research.</jats:p>},
279
+ doi = {10.3389/fnins.2024.1417748},
280
+ pmid = {39077429},
281
+ journal = {Frontiers in Neuroscience},
282
+ volume = {18},
283
+ url = {https://www.frontiersin.org/articles/10.3389/fnins.2024.1417748/pdf},
284
+ }
285
+
286
+ @article{Brinkmann-2015,
287
+ title = {Forecasting Seizures Using Intracranial EEG Measures and SVM in Naturally Occurring Canine Epilepsy},
288
+ author = {Benjamin H. Brinkmann and Edward E. Patterson and Charles Vite and Vincent M. Vasoli and Daniel Crepeau and Matt Stead and J. Jeffry Howbert and Vladimir Cherkassky and Joost B. Wagenaar and Brian Litt and Gregory A. Worrell},
289
+ year = {2015},
290
+ abstract = {Management of drug resistant focal epilepsy would be greatly assisted by a reliable warning system capable of alerting patients prior to seizures to allow the patient to adjust activities or medication. Such a system requires successful identification of a preictal, or seizure-prone state. Identification of preictal states in continuous long- duration intracranial electroencephalographic (iEEG) recordings of dogs with naturally occurring epilepsy was investigated using a support vector machine (SVM) algorithm. The dogs studied were implanted with a 16-channel ambulatory iEEG recording device with average channel reference for a mean (st. dev.) of 380.4 (+87.5) days producing 220.2 (+104.1) days of intracranial EEG recorded at 400 Hz for analysis. The iEEG records had 51.6 (+52.8) seizures identified, of which 35.8 (+30.4) seizures were preceded by more than 4 hours of seizure-free data. Recorded iEEG data were stratified into 11 contiguous, non-overlapping frequency bands and binned into one-minute synchrony features for analysis. Performance of the SVM classifier was assessed using a 5-fold cross validation approach, where preictal training data were taken from 90 minute windows with a 5 minute pre-seizure offset. Analysis of the optimal preictal training time was performed by repeating the cross validation over a range of preictal windows and comparing results. We show that the optimization of feature selection varies for each subject, i.e. algorithms are subject specific, but achieve prediction performance significantly better than a time-matched Poisson random predictor (p<0.05) in 5/5 dogs analyzed.},
291
+ doi = {10.1371/journal.pone.0133900},
292
+ pmid = {26241907},
293
+ journal = {PLOS ONE},
294
+ volume = {10},
295
+ citation_count = {78},
296
+ journal_impact_factor = {2.9},
297
+ url = {https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0133900&type=printable},
298
+ }
299
+
300
+ @article{Haderlein-2023,
301
+ title = {Path Signatures for Seizure Forecasting},
302
+ author = {Jonas F. Haderlein and Andre D. H. Peterson and Parvin Zarei Eskikand and Mark Cook and Anthony N. Burkitt and Iven Mareels and David B. Grayden},
303
+ year = {2023},
304
+ abstract = {Predicting future system behaviour from past observed behaviour (time series) is fundamental to science and engineering. In computational neuroscience, the prediction of future epileptic seizures from brain activity measurements, using EEG data, remains largely unresolved despite much dedicated research effort. Based on a longitudinal and state-of-the-art data set using intercranial EEG measurements from people with epilepsy, we consider the automated discovery of predictive features (or biomarkers) to forecast seizures in a patient-specific way. To this end, we use the path signature, a recent development in the analysis of data streams, to map from measured time series to seizure prediction. The predictor is based on linear classification, here augmented with sparsity constraints, to discern time series with and without an impending seizure. This approach may be seen as a step towards a generic pattern recognition pipeline where the main advantages are simplicity and ease of customisation, while maintaining forecasting performance on par with modern machine learning. Nevertheless, it turns out that although the path signature method has some powerful theoretical guarantees, appropriate time series statistics can achieve essentially the same results in our context of seizure prediction. This suggests that, due to their inherent complexity and non-stationarity, the brain's dynamics are not identifiable from the available EEG measurement data, and, more concretely, epileptic episode prediction is not reliably achieved using EEG measurement data alone.},
305
+ keywords = {Epileptic seizure},
306
+ doi = {10.48550/arxiv.2308.09312},
307
+ eprint = {2308.09312},
308
+ journal = {arXiv (Cornell University)},
309
+ citation_count = {1},
310
+ url = {https://arxiv.org/pdf/2308.09312.pdf},
311
+ }
312
+
313
+ @article{Karoly-2018,
314
+ title = {Seizure pathways: A model-based investigation},
315
+ author = {Philippa J. Karoly and Levin Kuhlmann and Daniel Soudry and David B. Grayden and Mark J. Cook and Dean R. Freestone},
316
+ year = {2018},
317
+ abstract = {We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.},
318
+ keywords = {Electrocorticography, Nerve net, Biological neural network},
319
+ doi = {10.1371/journal.pcbi.1006403},
320
+ pmid = {30307937},
321
+ journal = {PLOS Computational Biology},
322
+ volume = {14},
323
+ citation_count = {53},
324
+ journal_impact_factor = {3.8},
325
+ url = {https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006403&type=printable},
326
+ }
327
+
328
+ @article{Ahmad-2022,
329
+ title = {FPGA Implementation of Epileptic Seizure Detection using Artificial Neural Network},
330
+ author = {Ahmad A. Ahmad and Yasmin M. Massoud and Levin Kuhlmann and Mohamed A.Abde El Ghany},
331
+ year = {2022},
332
+ abstract = {Epilepsy is a neurological disorder accompanied by a sudden, uncontrolled electrical disturbance in the brain which is called seizures. So far, epilepsy has no actual treatment, but its symptoms and accompanying seizures are rather controlled by medication. This makes the continuous monitoring of epilepsy patients an important point to consider. Recently, machine learning and deep learning techniques are utilized in seizure prediction algorithms, which supports seizure monitoring significantly. Additionally, Field-programmable Gate Arrays (FPGAs) were used extensively in the past years to create hardware implementations of machine learning models to predict seizures. In this work, we aim to implement FPGA-based general and patient specific seizure prediction that detect seizures for all epilepsy patients using multilayer perceptron neural network models, which was not done before. This will be done by first extracting features from The raw electroencephalogram (EEG) signal samples provided by Melbourne-NeuroVista seizure trial and the Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge. Results show that the general model had an AUC score of 0.71 while the patient specific model had an AUC score of 0.79.},
333
+ keywords = {Epileptic seizure},
334
+ doi = {10.1109/niles56402.2022.9942397},
335
+ journal = {2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES)},
336
+ volume = {13},
337
+ citation_count = {1},
338
+ }
@@ -0,0 +1,89 @@
1
+ @article{Hlsemann2019QuantificationOPA,
2
+ title={Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling},
3
+ author={Mareike J. H{\"u}lsemann and E. Naumann and B. Rasch},
4
+ journal={Frontiers in Neuroscience},
5
+ year={2019},
6
+ volume={13},
7
+ url={https://www.ncbi.nlm.nih.gov/pubmed/31275096}
8
+ }
9
+
10
+ @article{Munia2019TimeFrequencyBPK,
11
+ title={Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations},
12
+ author={T. T. Munia and Selin Aviyente},
13
+ journal={Scientific Reports},
14
+ year={2019},
15
+ volume={9},
16
+ url={https://api.semanticscholar.org/CorpusID:201651743}
17
+ }
18
+
19
+ @article{Voytek2010ShiftsIGV,
20
+ title={Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks},
21
+ author={Bradley Voytek and R. Canolty and A. Shestyuk and N. Crone and J. Parvizi and R. Knight},
22
+ journal={Frontiers in Human Neuroscience},
23
+ year={2010},
24
+ volume={4},
25
+ url={https://api.semanticscholar.org/CorpusID:7724159}
26
+ }
27
+
28
+ @article{Seymour2017TheDOX,
29
+ title={The Detection of Phase Amplitude Coupling during Sensory Processing},
30
+ author={Robert A. Seymour and Gina Rippon and Klaus Kessler},
31
+ journal={Frontiers in Neuroscience},
32
+ year={2017},
33
+ volume={11},
34
+ url={https://api.semanticscholar.org/CorpusID:19922713}
35
+ }
36
+
37
+ @article{Combrisson2020TensorpacAOAH,
38
+ title={Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals},
39
+ author={Etienne Combrisson and T. Nest and A. Brovelli and Robin A. A. Ince and Juan L. P. Soto and A. Guillot and K. Jerbi},
40
+ journal={PLoS Computational Biology},
41
+ year={2020},
42
+ volume={16},
43
+ url={https://www.ncbi.nlm.nih.gov/pubmed/33119593}
44
+ }
45
+
46
+ @article{Onslow2014ACCAI,
47
+ title={A Canonical Circuit for Generating Phase-Amplitude Coupling},
48
+ author={Angela C. E. Onslow and Matthew W. Jones and R. Bogacz},
49
+ journal={PLoS ONE},
50
+ year={2014},
51
+ volume={9},
52
+ url={https://api.semanticscholar.org/CorpusID:157901}
53
+ }
54
+
55
+ @article{FitzGerald2013CrossfrequencyCWAL,
56
+ title={Cross-frequency coupling within and between the human thalamus and neocortex},
57
+ author={Thomas H. B. FitzGerald and A. Valent{\'i}n and R. Selway and M. Richardson},
58
+ journal={Frontiers in Human Neuroscience},
59
+ year={2013},
60
+ volume={7},
61
+ url={https://api.semanticscholar.org/CorpusID:14588601}
62
+ }
63
+
64
+ @article{Sotero2016TopologyCAAN,
65
+ title={Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column},
66
+ author={R. Sotero},
67
+ journal={PLoS Computational Biology},
68
+ year={2016},
69
+ volume={12},
70
+ url={https://api.semanticscholar.org/CorpusID:3626970}
71
+ }
72
+
73
+ @article{Ponzi2023ThetagammaPAAT,
74
+ title={Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit},
75
+ author={A. Ponzi and S. Dura-Bernal and M. Migliore},
76
+ journal={PLOS Computational Biology},
77
+ year={2023},
78
+ volume={19},
79
+ url={https://pdfs.semanticscholar.org/8544/7fef2080fa46fe3f62e148f22c02d97631b9.pdf}
80
+ }
81
+
82
+ @article{Sacks2021PhaseAmplitudeCMAU,
83
+ title={Phase–Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence},
84
+ author={D. Sacks and P. Schwenn and L. McLoughlin and J. Lagopoulos and D. Hermens},
85
+ journal={Frontiers in Human Neuroscience},
86
+ year={2021},
87
+ volume={15},
88
+ url={https://www.ncbi.nlm.nih.gov/pubmed/33841115}
89
+ }