scikit-network 0.33.0__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.0.dist-info/AUTHORS.rst +43 -0
- scikit_network-0.33.0.dist-info/LICENSE +34 -0
- scikit_network-0.33.0.dist-info/METADATA +517 -0
- scikit_network-0.33.0.dist-info/RECORD +216 -0
- scikit_network-0.33.0.dist-info/WHEEL +5 -0
- scikit_network-0.33.0.dist-info/top_level.txt +1 -0
- sknetwork/__init__.py +21 -0
- sknetwork/base.py +67 -0
- sknetwork/classification/__init__.py +8 -0
- sknetwork/classification/base.py +142 -0
- sknetwork/classification/base_rank.py +133 -0
- sknetwork/classification/diffusion.py +134 -0
- sknetwork/classification/knn.py +139 -0
- sknetwork/classification/metrics.py +205 -0
- sknetwork/classification/pagerank.py +66 -0
- sknetwork/classification/propagation.py +152 -0
- sknetwork/classification/tests/__init__.py +1 -0
- sknetwork/classification/tests/test_API.py +30 -0
- sknetwork/classification/tests/test_diffusion.py +77 -0
- sknetwork/classification/tests/test_knn.py +23 -0
- sknetwork/classification/tests/test_metrics.py +53 -0
- sknetwork/classification/tests/test_pagerank.py +20 -0
- sknetwork/classification/tests/test_propagation.py +24 -0
- sknetwork/classification/vote.cpython-312-darwin.so +0 -0
- sknetwork/classification/vote.pyx +56 -0
- sknetwork/clustering/__init__.py +8 -0
- sknetwork/clustering/base.py +172 -0
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +242 -0
- sknetwork/clustering/leiden_core.cpython-312-darwin.so +0 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +286 -0
- sknetwork/clustering/louvain_core.cpython-312-darwin.so +0 -0
- sknetwork/clustering/louvain_core.pyx +124 -0
- sknetwork/clustering/metrics.py +91 -0
- sknetwork/clustering/postprocess.py +66 -0
- sknetwork/clustering/propagation_clustering.py +104 -0
- sknetwork/clustering/tests/__init__.py +1 -0
- sknetwork/clustering/tests/test_API.py +38 -0
- sknetwork/clustering/tests/test_kcenters.py +60 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +129 -0
- sknetwork/clustering/tests/test_metrics.py +50 -0
- sknetwork/clustering/tests/test_postprocess.py +39 -0
- sknetwork/data/__init__.py +6 -0
- sknetwork/data/base.py +33 -0
- sknetwork/data/load.py +406 -0
- sknetwork/data/models.py +459 -0
- sknetwork/data/parse.py +644 -0
- sknetwork/data/test_graphs.py +84 -0
- sknetwork/data/tests/__init__.py +1 -0
- sknetwork/data/tests/test_API.py +30 -0
- sknetwork/data/tests/test_base.py +14 -0
- sknetwork/data/tests/test_load.py +95 -0
- sknetwork/data/tests/test_models.py +52 -0
- sknetwork/data/tests/test_parse.py +250 -0
- sknetwork/data/tests/test_test_graphs.py +29 -0
- sknetwork/data/tests/test_toy_graphs.py +68 -0
- sknetwork/data/timeout.py +38 -0
- sknetwork/data/toy_graphs.py +611 -0
- sknetwork/embedding/__init__.py +8 -0
- sknetwork/embedding/base.py +94 -0
- sknetwork/embedding/force_atlas.py +198 -0
- sknetwork/embedding/louvain_embedding.py +148 -0
- sknetwork/embedding/random_projection.py +135 -0
- sknetwork/embedding/spectral.py +141 -0
- sknetwork/embedding/spring.py +198 -0
- sknetwork/embedding/svd.py +359 -0
- sknetwork/embedding/tests/__init__.py +1 -0
- sknetwork/embedding/tests/test_API.py +49 -0
- sknetwork/embedding/tests/test_force_atlas.py +35 -0
- sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
- sknetwork/embedding/tests/test_random_projection.py +28 -0
- sknetwork/embedding/tests/test_spectral.py +81 -0
- sknetwork/embedding/tests/test_spring.py +50 -0
- sknetwork/embedding/tests/test_svd.py +43 -0
- sknetwork/gnn/__init__.py +10 -0
- sknetwork/gnn/activation.py +117 -0
- sknetwork/gnn/base.py +181 -0
- sknetwork/gnn/base_activation.py +89 -0
- sknetwork/gnn/base_layer.py +109 -0
- sknetwork/gnn/gnn_classifier.py +305 -0
- sknetwork/gnn/layer.py +153 -0
- sknetwork/gnn/loss.py +180 -0
- sknetwork/gnn/neighbor_sampler.py +65 -0
- sknetwork/gnn/optimizer.py +164 -0
- sknetwork/gnn/tests/__init__.py +1 -0
- sknetwork/gnn/tests/test_activation.py +56 -0
- sknetwork/gnn/tests/test_base.py +75 -0
- sknetwork/gnn/tests/test_base_layer.py +37 -0
- sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
- sknetwork/gnn/tests/test_layers.py +80 -0
- sknetwork/gnn/tests/test_loss.py +33 -0
- sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
- sknetwork/gnn/tests/test_optimizer.py +43 -0
- sknetwork/gnn/tests/test_utils.py +41 -0
- sknetwork/gnn/utils.py +127 -0
- sknetwork/hierarchy/__init__.py +6 -0
- sknetwork/hierarchy/base.py +96 -0
- sknetwork/hierarchy/louvain_hierarchy.py +272 -0
- sknetwork/hierarchy/metrics.py +234 -0
- sknetwork/hierarchy/paris.cpython-312-darwin.so +0 -0
- sknetwork/hierarchy/paris.pyx +316 -0
- sknetwork/hierarchy/postprocess.py +350 -0
- sknetwork/hierarchy/tests/__init__.py +1 -0
- sknetwork/hierarchy/tests/test_API.py +24 -0
- sknetwork/hierarchy/tests/test_algos.py +34 -0
- sknetwork/hierarchy/tests/test_metrics.py +62 -0
- sknetwork/hierarchy/tests/test_postprocess.py +57 -0
- sknetwork/linalg/__init__.py +9 -0
- sknetwork/linalg/basics.py +37 -0
- sknetwork/linalg/diteration.cpython-312-darwin.so +0 -0
- sknetwork/linalg/diteration.pyx +47 -0
- sknetwork/linalg/eig_solver.py +93 -0
- sknetwork/linalg/laplacian.py +15 -0
- sknetwork/linalg/normalizer.py +86 -0
- sknetwork/linalg/operators.py +225 -0
- sknetwork/linalg/polynome.py +76 -0
- sknetwork/linalg/ppr_solver.py +170 -0
- sknetwork/linalg/push.cpython-312-darwin.so +0 -0
- sknetwork/linalg/push.pyx +71 -0
- sknetwork/linalg/sparse_lowrank.py +142 -0
- sknetwork/linalg/svd_solver.py +91 -0
- sknetwork/linalg/tests/__init__.py +1 -0
- sknetwork/linalg/tests/test_eig.py +44 -0
- sknetwork/linalg/tests/test_laplacian.py +18 -0
- sknetwork/linalg/tests/test_normalization.py +34 -0
- sknetwork/linalg/tests/test_operators.py +66 -0
- sknetwork/linalg/tests/test_polynome.py +38 -0
- sknetwork/linalg/tests/test_ppr.py +50 -0
- sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
- sknetwork/linalg/tests/test_svd.py +38 -0
- sknetwork/linkpred/__init__.py +2 -0
- sknetwork/linkpred/base.py +46 -0
- sknetwork/linkpred/nn.py +126 -0
- sknetwork/linkpred/tests/__init__.py +1 -0
- sknetwork/linkpred/tests/test_nn.py +27 -0
- sknetwork/log.py +19 -0
- sknetwork/path/__init__.py +5 -0
- sknetwork/path/dag.py +54 -0
- sknetwork/path/distances.py +98 -0
- sknetwork/path/search.py +31 -0
- sknetwork/path/shortest_path.py +61 -0
- sknetwork/path/tests/__init__.py +1 -0
- sknetwork/path/tests/test_dag.py +37 -0
- sknetwork/path/tests/test_distances.py +62 -0
- sknetwork/path/tests/test_search.py +40 -0
- sknetwork/path/tests/test_shortest_path.py +40 -0
- sknetwork/ranking/__init__.py +8 -0
- sknetwork/ranking/base.py +61 -0
- sknetwork/ranking/betweenness.cpython-312-darwin.so +0 -0
- sknetwork/ranking/betweenness.pyx +97 -0
- sknetwork/ranking/closeness.py +92 -0
- sknetwork/ranking/hits.py +94 -0
- sknetwork/ranking/katz.py +83 -0
- sknetwork/ranking/pagerank.py +110 -0
- sknetwork/ranking/postprocess.py +37 -0
- sknetwork/ranking/tests/__init__.py +1 -0
- sknetwork/ranking/tests/test_API.py +32 -0
- sknetwork/ranking/tests/test_betweenness.py +38 -0
- sknetwork/ranking/tests/test_closeness.py +30 -0
- sknetwork/ranking/tests/test_hits.py +20 -0
- sknetwork/ranking/tests/test_pagerank.py +62 -0
- sknetwork/ranking/tests/test_postprocess.py +26 -0
- sknetwork/regression/__init__.py +4 -0
- sknetwork/regression/base.py +61 -0
- sknetwork/regression/diffusion.py +210 -0
- sknetwork/regression/tests/__init__.py +1 -0
- sknetwork/regression/tests/test_API.py +32 -0
- sknetwork/regression/tests/test_diffusion.py +56 -0
- sknetwork/sknetwork.py +3 -0
- sknetwork/test_base.py +35 -0
- sknetwork/test_log.py +15 -0
- sknetwork/topology/__init__.py +8 -0
- sknetwork/topology/cliques.cpython-312-darwin.so +0 -0
- sknetwork/topology/cliques.pyx +149 -0
- sknetwork/topology/core.cpython-312-darwin.so +0 -0
- sknetwork/topology/core.pyx +90 -0
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cpython-312-darwin.so +0 -0
- sknetwork/topology/minheap.pxd +20 -0
- sknetwork/topology/minheap.pyx +109 -0
- sknetwork/topology/structure.py +194 -0
- sknetwork/topology/tests/__init__.py +1 -0
- sknetwork/topology/tests/test_cliques.py +28 -0
- sknetwork/topology/tests/test_core.py +19 -0
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +85 -0
- sknetwork/topology/tests/test_triangles.py +38 -0
- sknetwork/topology/tests/test_wl.py +72 -0
- sknetwork/topology/triangles.cpython-312-darwin.so +0 -0
- sknetwork/topology/triangles.pyx +151 -0
- sknetwork/topology/weisfeiler_lehman.py +133 -0
- sknetwork/topology/weisfeiler_lehman_core.cpython-312-darwin.so +0 -0
- sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
- sknetwork/utils/__init__.py +7 -0
- sknetwork/utils/check.py +355 -0
- sknetwork/utils/format.py +221 -0
- sknetwork/utils/membership.py +82 -0
- sknetwork/utils/neighbors.py +115 -0
- sknetwork/utils/tests/__init__.py +1 -0
- sknetwork/utils/tests/test_check.py +190 -0
- sknetwork/utils/tests/test_format.py +63 -0
- sknetwork/utils/tests/test_membership.py +24 -0
- sknetwork/utils/tests/test_neighbors.py +41 -0
- sknetwork/utils/tests/test_tfidf.py +18 -0
- sknetwork/utils/tests/test_values.py +66 -0
- sknetwork/utils/tfidf.py +37 -0
- sknetwork/utils/values.py +76 -0
- sknetwork/visualization/__init__.py +4 -0
- sknetwork/visualization/colors.py +34 -0
- sknetwork/visualization/dendrograms.py +277 -0
- sknetwork/visualization/graphs.py +1039 -0
- sknetwork/visualization/tests/__init__.py +1 -0
- sknetwork/visualization/tests/test_dendrograms.py +53 -0
- sknetwork/visualization/tests/test_graphs.py +176 -0
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in November 2018
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Quentin Lutz <qlutz@enst.fr>
|
|
7
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
8
|
+
"""
|
|
9
|
+
from typing import Union, Optional
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
from scipy import sparse
|
|
13
|
+
|
|
14
|
+
from sknetwork.clustering.base import BaseClustering
|
|
15
|
+
from sknetwork.clustering.louvain_core import optimize_core
|
|
16
|
+
from sknetwork.clustering.postprocess import reindex_labels
|
|
17
|
+
from sknetwork.utils.check import check_random_state, get_probs
|
|
18
|
+
from sknetwork.utils.format import check_format, get_adjacency, directed2undirected
|
|
19
|
+
from sknetwork.utils.membership import get_membership
|
|
20
|
+
from sknetwork.log import Log
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class Louvain(BaseClustering, Log):
|
|
24
|
+
"""Louvain algorithm for clustering graphs by maximization of modularity.
|
|
25
|
+
|
|
26
|
+
For bipartite graphs, the algorithm maximizes Barber's modularity by default.
|
|
27
|
+
|
|
28
|
+
Parameters
|
|
29
|
+
----------
|
|
30
|
+
resolution :
|
|
31
|
+
Resolution parameter.
|
|
32
|
+
modularity : str
|
|
33
|
+
Type of modularity to maximize. Can be ``'Dugue'``, ``'Newman'`` or ``'Potts'`` (default = ``'dugue'``).
|
|
34
|
+
tol_optimization :
|
|
35
|
+
Minimum increase in modularity to enter a new optimization pass in the local search.
|
|
36
|
+
tol_aggregation :
|
|
37
|
+
Minimum increase in modularity to enter a new aggregation pass.
|
|
38
|
+
n_aggregations :
|
|
39
|
+
Maximum number of aggregations.
|
|
40
|
+
A negative value is interpreted as no limit.
|
|
41
|
+
shuffle_nodes :
|
|
42
|
+
Enables node shuffling before optimization.
|
|
43
|
+
sort_clusters :
|
|
44
|
+
If ``True``, sort labels in decreasing order of cluster size.
|
|
45
|
+
return_probs :
|
|
46
|
+
If ``True``, return the probability distribution over clusters (soft clustering).
|
|
47
|
+
return_aggregate :
|
|
48
|
+
If ``True``, return the adjacency matrix of the graph between clusters.
|
|
49
|
+
random_state :
|
|
50
|
+
Random number generator or random seed. If None, numpy.random is used.
|
|
51
|
+
verbose :
|
|
52
|
+
Verbose mode.
|
|
53
|
+
|
|
54
|
+
Attributes
|
|
55
|
+
----------
|
|
56
|
+
labels_ : np.ndarray, shape (n_labels,)
|
|
57
|
+
Label of each node.
|
|
58
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
59
|
+
Probability distribution over labels.
|
|
60
|
+
labels_row_, labels_col_ : np.ndarray
|
|
61
|
+
Labels of rows and columns, for bipartite graphs.
|
|
62
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
63
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
64
|
+
aggregate_ : sparse.csr_matrix
|
|
65
|
+
Aggregate adjacency matrix or biadjacency matrix between clusters.
|
|
66
|
+
|
|
67
|
+
Example
|
|
68
|
+
-------
|
|
69
|
+
>>> from sknetwork.clustering import Louvain
|
|
70
|
+
>>> from sknetwork.data import karate_club
|
|
71
|
+
>>> louvain = Louvain()
|
|
72
|
+
>>> adjacency = karate_club()
|
|
73
|
+
>>> labels = louvain.fit_predict(adjacency)
|
|
74
|
+
>>> len(set(labels))
|
|
75
|
+
4
|
|
76
|
+
|
|
77
|
+
References
|
|
78
|
+
----------
|
|
79
|
+
* Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008).
|
|
80
|
+
`Fast unfolding of communities in large networks.
|
|
81
|
+
<https://arxiv.org/abs/0803.0476>`_
|
|
82
|
+
Journal of statistical mechanics: theory and experiment, 2008.
|
|
83
|
+
|
|
84
|
+
* Dugué, N., & Perez, A. (2015).
|
|
85
|
+
`Directed Louvain: maximizing modularity in directed networks
|
|
86
|
+
<https://hal.archives-ouvertes.fr/hal-01231784/document>`_
|
|
87
|
+
(Doctoral dissertation, Université d'Orléans).
|
|
88
|
+
|
|
89
|
+
* Barber, M. J. (2007).
|
|
90
|
+
`Modularity and community detection in bipartite networks
|
|
91
|
+
<https://arxiv.org/pdf/0707.1616>`_
|
|
92
|
+
Physical Review E, 76(6).
|
|
93
|
+
"""
|
|
94
|
+
|
|
95
|
+
def __init__(self, resolution: float = 1, modularity: str = 'dugue', tol_optimization: float = 1e-3,
|
|
96
|
+
tol_aggregation: float = 1e-3, n_aggregations: int = -1, shuffle_nodes: bool = False,
|
|
97
|
+
sort_clusters: bool = True, return_probs: bool = True, return_aggregate: bool = True,
|
|
98
|
+
random_state: Optional[Union[np.random.RandomState, int]] = None, verbose: bool = False):
|
|
99
|
+
super(Louvain, self).__init__(sort_clusters=sort_clusters, return_probs=return_probs,
|
|
100
|
+
return_aggregate=return_aggregate)
|
|
101
|
+
Log.__init__(self, verbose)
|
|
102
|
+
|
|
103
|
+
self.labels_ = None
|
|
104
|
+
self.resolution = resolution
|
|
105
|
+
self.modularity = modularity.lower()
|
|
106
|
+
self.tol_optimization = tol_optimization
|
|
107
|
+
self.tol_aggregation = tol_aggregation
|
|
108
|
+
self.n_aggregations = n_aggregations
|
|
109
|
+
self.shuffle_nodes = shuffle_nodes
|
|
110
|
+
self.random_state = check_random_state(random_state)
|
|
111
|
+
self.bipartite = None
|
|
112
|
+
|
|
113
|
+
def _optimize(self, labels, adjacency, out_weights, in_weights):
|
|
114
|
+
"""One optimization pass of the Louvain algorithm.
|
|
115
|
+
|
|
116
|
+
Parameters
|
|
117
|
+
----------
|
|
118
|
+
labels :
|
|
119
|
+
Labels of nodes.
|
|
120
|
+
adjacency :
|
|
121
|
+
Adjacency matrix.
|
|
122
|
+
out_weights :
|
|
123
|
+
Out-weights of nodes.
|
|
124
|
+
in_weights :
|
|
125
|
+
In-weights of nodes
|
|
126
|
+
|
|
127
|
+
Returns
|
|
128
|
+
-------
|
|
129
|
+
labels :
|
|
130
|
+
Labels of nodes after optimization.
|
|
131
|
+
increase :
|
|
132
|
+
Gain in modularity after optimization.
|
|
133
|
+
"""
|
|
134
|
+
labels = labels.astype(np.int64)
|
|
135
|
+
indices = adjacency.indices.astype(np.int64)
|
|
136
|
+
indptr = adjacency.indptr.astype(np.int64)
|
|
137
|
+
data = adjacency.data.astype(np.float32)
|
|
138
|
+
out_weights = out_weights.astype(np.float32)
|
|
139
|
+
in_weights = in_weights.astype(np.float32)
|
|
140
|
+
out_cluster_weights = out_weights.copy()
|
|
141
|
+
in_cluster_weights = in_weights.copy()
|
|
142
|
+
cluster_weights = np.zeros_like(out_cluster_weights).astype(np.float32)
|
|
143
|
+
self_loops = adjacency.diagonal().astype(np.float32)
|
|
144
|
+
return optimize_core(labels, indices, indptr, data, out_weights, in_weights, out_cluster_weights,
|
|
145
|
+
in_cluster_weights, cluster_weights, self_loops, self.resolution, self.tol_optimization)
|
|
146
|
+
|
|
147
|
+
@staticmethod
|
|
148
|
+
def _aggregate(labels, adjacency, out_weights, in_weights):
|
|
149
|
+
"""Aggregate nodes belonging to the same cluster.
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
labels :
|
|
154
|
+
Labels of nodes.
|
|
155
|
+
adjacency :
|
|
156
|
+
Adjacency matrix.
|
|
157
|
+
out_weights :
|
|
158
|
+
Out-weights of nodes.
|
|
159
|
+
in_weights :
|
|
160
|
+
In-weights of nodes.
|
|
161
|
+
|
|
162
|
+
Returns
|
|
163
|
+
-------
|
|
164
|
+
Aggregate graph (adjacency matrix, out-weights, in-weights).
|
|
165
|
+
"""
|
|
166
|
+
membership = get_membership(labels)
|
|
167
|
+
adjacency_ = membership.T.tocsr().dot(adjacency.dot(membership))
|
|
168
|
+
out_weights_ = membership.T.dot(out_weights)
|
|
169
|
+
in_weights_ = membership.T.dot(in_weights)
|
|
170
|
+
return adjacency_, out_weights_, in_weights_
|
|
171
|
+
|
|
172
|
+
def _pre_processing(self, input_matrix, force_bipartite):
|
|
173
|
+
"""Pre-processing for Louvain.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
input_matrix :
|
|
178
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
179
|
+
force_bipartite :
|
|
180
|
+
If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
adjacency :
|
|
185
|
+
Adjacency matrix.
|
|
186
|
+
out_weights, in_weights :
|
|
187
|
+
Node weights.
|
|
188
|
+
membership :
|
|
189
|
+
Membership matrix (labels).
|
|
190
|
+
index :
|
|
191
|
+
Index of nodes.
|
|
192
|
+
"""
|
|
193
|
+
self._init_vars()
|
|
194
|
+
|
|
195
|
+
# adjacency matrix
|
|
196
|
+
input_matrix = check_format(input_matrix)
|
|
197
|
+
force_directed = self.modularity == 'dugue'
|
|
198
|
+
adjacency, self.bipartite = get_adjacency(input_matrix, force_directed=force_directed,
|
|
199
|
+
force_bipartite=force_bipartite)
|
|
200
|
+
|
|
201
|
+
# shuffling
|
|
202
|
+
n = adjacency.shape[0]
|
|
203
|
+
index = np.arange(n)
|
|
204
|
+
if self.shuffle_nodes:
|
|
205
|
+
index = self.random_state.permutation(index)
|
|
206
|
+
adjacency = adjacency[index][:, index]
|
|
207
|
+
|
|
208
|
+
# node weights
|
|
209
|
+
if self.modularity == 'potts':
|
|
210
|
+
out_weights = get_probs('uniform', adjacency)
|
|
211
|
+
in_weights = out_weights.copy()
|
|
212
|
+
elif self.modularity == 'newman':
|
|
213
|
+
out_weights = get_probs('degree', adjacency)
|
|
214
|
+
in_weights = out_weights.copy()
|
|
215
|
+
elif self.modularity == 'dugue':
|
|
216
|
+
out_weights = get_probs('degree', adjacency)
|
|
217
|
+
in_weights = get_probs('degree', adjacency.T)
|
|
218
|
+
else:
|
|
219
|
+
raise ValueError('Unknown modularity function.')
|
|
220
|
+
|
|
221
|
+
# normalized, symmetric adjacency matrix (sums to 1)
|
|
222
|
+
adjacency = directed2undirected(adjacency)
|
|
223
|
+
adjacency = adjacency / adjacency.data.sum()
|
|
224
|
+
|
|
225
|
+
# cluster membership
|
|
226
|
+
membership = sparse.identity(n, format='csr')
|
|
227
|
+
|
|
228
|
+
return adjacency, out_weights, in_weights, membership, index
|
|
229
|
+
|
|
230
|
+
def _post_processing(self, input_matrix, membership, index):
|
|
231
|
+
"""Post-processing for Louvain.
|
|
232
|
+
|
|
233
|
+
Parameters
|
|
234
|
+
----------
|
|
235
|
+
input_matrix :
|
|
236
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
237
|
+
membership :
|
|
238
|
+
Membership matrix (labels).
|
|
239
|
+
index :
|
|
240
|
+
Index of nodes.
|
|
241
|
+
"""
|
|
242
|
+
if self.sort_clusters:
|
|
243
|
+
labels = reindex_labels(membership.indices)
|
|
244
|
+
else:
|
|
245
|
+
labels = membership.indices
|
|
246
|
+
if self.shuffle_nodes:
|
|
247
|
+
reverse = np.empty(index.size, index.dtype)
|
|
248
|
+
reverse[index] = np.arange(index.size)
|
|
249
|
+
labels = labels[reverse]
|
|
250
|
+
self.labels_ = labels
|
|
251
|
+
if self.bipartite:
|
|
252
|
+
self._split_vars(input_matrix.shape)
|
|
253
|
+
self._secondary_outputs(input_matrix)
|
|
254
|
+
|
|
255
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> 'Louvain':
|
|
256
|
+
"""Fit algorithm to data.
|
|
257
|
+
|
|
258
|
+
Parameters
|
|
259
|
+
----------
|
|
260
|
+
input_matrix :
|
|
261
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
262
|
+
force_bipartite :
|
|
263
|
+
If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
|
|
264
|
+
|
|
265
|
+
Returns
|
|
266
|
+
-------
|
|
267
|
+
self : :class:`Louvain`
|
|
268
|
+
"""
|
|
269
|
+
adjacency, out_weights, in_weights, membership, index = self._pre_processing(input_matrix, force_bipartite)
|
|
270
|
+
n = adjacency.shape[0]
|
|
271
|
+
count = 0
|
|
272
|
+
stop = False
|
|
273
|
+
while not stop:
|
|
274
|
+
count += 1
|
|
275
|
+
labels = np.arange(n)
|
|
276
|
+
labels, increase = self._optimize(labels, adjacency, out_weights, in_weights)
|
|
277
|
+
_, labels = np.unique(labels, return_inverse=True)
|
|
278
|
+
adjacency, out_weights, in_weights = self._aggregate(labels, adjacency, out_weights, in_weights)
|
|
279
|
+
membership = membership.dot(get_membership(labels))
|
|
280
|
+
n = adjacency.shape[0]
|
|
281
|
+
stop = n == 1
|
|
282
|
+
stop |= increase <= self.tol_aggregation
|
|
283
|
+
stop |= count == self.n_aggregations
|
|
284
|
+
self.print_log("Aggregation:", count, " Clusters:", n, " Increase:", increase)
|
|
285
|
+
self._post_processing(input_matrix, membership, index)
|
|
286
|
+
return self
|
|
Binary file
|
|
@@ -0,0 +1,124 @@
|
|
|
1
|
+
# distutils: language=c++
|
|
2
|
+
# cython: language_level=3
|
|
3
|
+
from libcpp.set cimport set
|
|
4
|
+
cimport cython
|
|
5
|
+
|
|
6
|
+
ctypedef fused int_or_long:
|
|
7
|
+
int
|
|
8
|
+
long
|
|
9
|
+
|
|
10
|
+
@cython.boundscheck(False)
|
|
11
|
+
@cython.wraparound(False)
|
|
12
|
+
def optimize_core(int_or_long[:] labels, int_or_long[:] indices, int_or_long[:] indptr, float[:] data,
|
|
13
|
+
float[:] out_weights, float[:] in_weights, float[:] out_cluster_weights, float[:] in_cluster_weights,
|
|
14
|
+
float[:] cluster_weights, float[:] self_loops, float resolution, float tol_optimization): # pragma: no cover
|
|
15
|
+
"""Find clusters maximizing modularity.
|
|
16
|
+
|
|
17
|
+
Parameters
|
|
18
|
+
----------
|
|
19
|
+
labels :
|
|
20
|
+
Initial labels.
|
|
21
|
+
indices :
|
|
22
|
+
CSR format index array of the normalized adjacency matrix.
|
|
23
|
+
indptr :
|
|
24
|
+
CSR format index pointer array of the normalized adjacency matrix.
|
|
25
|
+
data :
|
|
26
|
+
CSR format data array of the normalized adjacency matrix.
|
|
27
|
+
out_weights :
|
|
28
|
+
Out-weights of nodes (sum to 1).
|
|
29
|
+
in_weights :
|
|
30
|
+
In-weights of nodes (sum to 1).
|
|
31
|
+
out_cluster_weights :
|
|
32
|
+
Out-weights of clusters (sum to 1).
|
|
33
|
+
in_cluster_weights :
|
|
34
|
+
In-weights of clusters (sum to 1).
|
|
35
|
+
cluster_weights :
|
|
36
|
+
Weights of clusters (initialized to 0).
|
|
37
|
+
self_loops :
|
|
38
|
+
Weights of self loops.
|
|
39
|
+
resolution :
|
|
40
|
+
Resolution parameter (positive).
|
|
41
|
+
tol_optimization :
|
|
42
|
+
Minimum increase in modularity to enter a new optimization pass.
|
|
43
|
+
|
|
44
|
+
Returns
|
|
45
|
+
-------
|
|
46
|
+
labels :
|
|
47
|
+
Labels of nodes.
|
|
48
|
+
increase :
|
|
49
|
+
Increase in modularity.
|
|
50
|
+
"""
|
|
51
|
+
cdef int_or_long n
|
|
52
|
+
cdef int_or_long stop = 0
|
|
53
|
+
cdef int_or_long label
|
|
54
|
+
cdef int_or_long label_target
|
|
55
|
+
cdef int_or_long label_best
|
|
56
|
+
cdef int_or_long i
|
|
57
|
+
cdef int_or_long j
|
|
58
|
+
cdef int_or_long start
|
|
59
|
+
cdef int_or_long end
|
|
60
|
+
|
|
61
|
+
cdef float increase = 0
|
|
62
|
+
cdef float increase_pass
|
|
63
|
+
cdef float delta
|
|
64
|
+
cdef float delta_local
|
|
65
|
+
cdef float delta_best
|
|
66
|
+
cdef float in_weight
|
|
67
|
+
cdef float out_weight
|
|
68
|
+
|
|
69
|
+
cdef set[int_or_long] label_set = ()
|
|
70
|
+
|
|
71
|
+
n = labels.shape[0]
|
|
72
|
+
while not stop:
|
|
73
|
+
increase_pass = 0
|
|
74
|
+
|
|
75
|
+
for i in range(n):
|
|
76
|
+
label_set.clear()
|
|
77
|
+
label = labels[i]
|
|
78
|
+
start = indptr[i]
|
|
79
|
+
end = indptr[i+1]
|
|
80
|
+
|
|
81
|
+
# neighboring clusters
|
|
82
|
+
for j in range(start, end):
|
|
83
|
+
label_target = labels[indices[j]]
|
|
84
|
+
label_set.insert(label_target)
|
|
85
|
+
cluster_weights[label_target] += data[j]
|
|
86
|
+
label_set.erase(label)
|
|
87
|
+
|
|
88
|
+
if not label_set.empty():
|
|
89
|
+
out_weight = out_weights[i]
|
|
90
|
+
in_weight = in_weights[i]
|
|
91
|
+
|
|
92
|
+
# node leaving the current cluster
|
|
93
|
+
delta = 2 * (cluster_weights[label] - self_loops[i])
|
|
94
|
+
delta -= resolution * out_weight * (in_cluster_weights[label] - in_weight)
|
|
95
|
+
delta -= resolution * in_weight * (out_cluster_weights[label] - out_weight)
|
|
96
|
+
|
|
97
|
+
delta_best = 0
|
|
98
|
+
label_best = label
|
|
99
|
+
|
|
100
|
+
for label_target in label_set:
|
|
101
|
+
delta_local = 2 * cluster_weights[label_target]
|
|
102
|
+
delta_local -= resolution * out_weight * in_cluster_weights[label_target]
|
|
103
|
+
delta_local -= resolution * in_weight * out_cluster_weights[label_target]
|
|
104
|
+
delta_local -= delta
|
|
105
|
+
if delta_local > delta_best:
|
|
106
|
+
delta_best = delta_local
|
|
107
|
+
label_best = label_target
|
|
108
|
+
cluster_weights[label_target] = 0
|
|
109
|
+
|
|
110
|
+
if label_best != label:
|
|
111
|
+
increase_pass += delta_best
|
|
112
|
+
labels[i] = label_best
|
|
113
|
+
# update weights
|
|
114
|
+
out_cluster_weights[label] -= out_weight
|
|
115
|
+
in_cluster_weights[label] -= in_weight
|
|
116
|
+
out_cluster_weights[label_best] += out_weight
|
|
117
|
+
in_cluster_weights[label_best] += in_weight
|
|
118
|
+
|
|
119
|
+
cluster_weights[label] = 0
|
|
120
|
+
|
|
121
|
+
increase += increase_pass
|
|
122
|
+
stop = increase_pass <= tol_optimization
|
|
123
|
+
|
|
124
|
+
return labels, increase
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created in July 2018
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
7
|
+
"""
|
|
8
|
+
from typing import Optional, Union, Tuple
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy import sparse
|
|
12
|
+
|
|
13
|
+
from sknetwork.utils.check import get_probs
|
|
14
|
+
from sknetwork.utils.format import get_adjacency
|
|
15
|
+
from sknetwork.utils.membership import get_membership
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def get_modularity(input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: np.ndarray,
|
|
19
|
+
labels_col: Optional[np.ndarray] = None, weights: str = 'degree',
|
|
20
|
+
resolution: float = 1, return_all: bool = False) -> Union[float, Tuple[float, float, float]]:
|
|
21
|
+
"""Modularity of a clustering.
|
|
22
|
+
|
|
23
|
+
The modularity of a clustering is
|
|
24
|
+
|
|
25
|
+
:math:`Q = \\dfrac{1}{w} \\sum_{i,j}\\left(A_{ij} - \\gamma \\dfrac{w_iw_j}{w}\\right)\\delta_{c_i,c_j}`
|
|
26
|
+
for graphs,
|
|
27
|
+
|
|
28
|
+
:math:`Q = \\dfrac{1}{w} \\sum_{i,j}\\left(A_{ij} - \\gamma \\dfrac{d^+_id^-_j}{w}\\right)\\delta_{c_i,c_j}`
|
|
29
|
+
for directed graphs,
|
|
30
|
+
|
|
31
|
+
where
|
|
32
|
+
|
|
33
|
+
* :math:`c_i` is the cluster of node :math:`i`,\n
|
|
34
|
+
* :math:`w_i` is the weight of node :math:`i`,\n
|
|
35
|
+
* :math:`w^+_i, w^-_i` are the out-weight, in-weight of node :math:`i` (for directed graphs),\n
|
|
36
|
+
* :math:`w = 1^TA1` is the total weight,\n
|
|
37
|
+
* :math:`\\delta` is the Kronecker symbol,\n
|
|
38
|
+
* :math:`\\gamma \\ge 0` is the resolution parameter.
|
|
39
|
+
|
|
40
|
+
Parameters
|
|
41
|
+
----------
|
|
42
|
+
input_matrix :
|
|
43
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
44
|
+
labels :
|
|
45
|
+
Labels of nodes.
|
|
46
|
+
labels_col :
|
|
47
|
+
Labels of column nodes (for bipartite graphs).
|
|
48
|
+
weights :
|
|
49
|
+
Weighting of nodes (``'degree'`` (default) or ``'uniform'``).
|
|
50
|
+
resolution:
|
|
51
|
+
Resolution parameter (default = 1).
|
|
52
|
+
return_all:
|
|
53
|
+
If ``True``, return modularity, fit, diversity.
|
|
54
|
+
|
|
55
|
+
Returns
|
|
56
|
+
-------
|
|
57
|
+
modularity : float
|
|
58
|
+
fit: float, optional
|
|
59
|
+
diversity: float, optional
|
|
60
|
+
|
|
61
|
+
Example
|
|
62
|
+
-------
|
|
63
|
+
>>> from sknetwork.clustering import get_modularity
|
|
64
|
+
>>> from sknetwork.data import house
|
|
65
|
+
>>> adjacency = house()
|
|
66
|
+
>>> labels = np.array([0, 0, 1, 1, 0])
|
|
67
|
+
>>> np.round(get_modularity(adjacency, labels), 2)
|
|
68
|
+
0.11
|
|
69
|
+
"""
|
|
70
|
+
adjacency, bipartite = get_adjacency(input_matrix.astype(float))
|
|
71
|
+
|
|
72
|
+
if bipartite:
|
|
73
|
+
if labels_col is None:
|
|
74
|
+
raise ValueError('For bipartite graphs, you must specify the labels of both rows and columns.')
|
|
75
|
+
else:
|
|
76
|
+
labels = np.hstack((labels, labels_col))
|
|
77
|
+
|
|
78
|
+
if len(labels) != adjacency.shape[0]:
|
|
79
|
+
raise ValueError('Dimension mismatch between labels and input matrix.')
|
|
80
|
+
|
|
81
|
+
probs_row = get_probs(weights, adjacency)
|
|
82
|
+
probs_col = get_probs(weights, adjacency.T)
|
|
83
|
+
membership = get_membership(labels).astype(float)
|
|
84
|
+
|
|
85
|
+
fit = membership.T.dot(adjacency.dot(membership)).diagonal().sum() / adjacency.data.sum()
|
|
86
|
+
div = membership.T.dot(probs_col).dot(membership.T.dot(probs_row))
|
|
87
|
+
mod = fit - resolution * div
|
|
88
|
+
if return_all:
|
|
89
|
+
return mod, fit, div
|
|
90
|
+
else:
|
|
91
|
+
return mod
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Created on July 10, 2019
|
|
5
|
+
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
|
+
@author: Thomas Bonald <bonald@enst.fr>
|
|
7
|
+
"""
|
|
8
|
+
from typing import Optional
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy import sparse
|
|
12
|
+
|
|
13
|
+
from sknetwork.utils.membership import get_membership
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def reindex_labels(labels: np.ndarray) -> np.ndarray:
|
|
17
|
+
"""Reindex clusters in decreasing order of size.
|
|
18
|
+
|
|
19
|
+
Parameters
|
|
20
|
+
----------
|
|
21
|
+
labels :
|
|
22
|
+
Label of each node.
|
|
23
|
+
Returns
|
|
24
|
+
-------
|
|
25
|
+
new_labels : np.ndarray
|
|
26
|
+
New label of each node.
|
|
27
|
+
|
|
28
|
+
Example
|
|
29
|
+
-------
|
|
30
|
+
>>> from sknetwork.clustering import reindex_labels
|
|
31
|
+
>>> labels = np.array([0, 1, 1])
|
|
32
|
+
>>> reindex_labels(labels)
|
|
33
|
+
array([1, 0, 0])
|
|
34
|
+
"""
|
|
35
|
+
_, index, counts = np.unique(labels, return_inverse=True, return_counts=True)
|
|
36
|
+
_, new_index = np.unique(np.argsort(-counts), return_index=True)
|
|
37
|
+
return new_index[index]
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def aggregate_graph(input_matrix: sparse.csr_matrix, labels: Optional[np.ndarray] = None,
|
|
41
|
+
labels_row: Optional[np.ndarray] = None, labels_col: Optional[np.ndarray] = None) \
|
|
42
|
+
-> sparse.csr_matrix:
|
|
43
|
+
"""Aggregate graph per label. All nodes with the same label become a single node.
|
|
44
|
+
Negative labels are ignored (corresponding nodes are discarded).
|
|
45
|
+
|
|
46
|
+
Parameters
|
|
47
|
+
----------
|
|
48
|
+
input_matrix: sparse matrix
|
|
49
|
+
Adjacency or biadjacency matrix of the graph.
|
|
50
|
+
labels: np.ndarray
|
|
51
|
+
Labels of nodes.
|
|
52
|
+
labels_row: np.ndarray
|
|
53
|
+
Labels of rows (for bipartite graphs). Alias for labels.
|
|
54
|
+
labels_col: np.ndarray
|
|
55
|
+
Labels of columns (for bipartite graphs).
|
|
56
|
+
"""
|
|
57
|
+
if labels_row is not None:
|
|
58
|
+
membership_row = get_membership(labels_row)
|
|
59
|
+
else:
|
|
60
|
+
membership_row = get_membership(labels)
|
|
61
|
+
if labels_col is not None:
|
|
62
|
+
membership_col = get_membership(labels_col)
|
|
63
|
+
else:
|
|
64
|
+
membership_col = membership_row
|
|
65
|
+
aggregate_matrix = membership_row.T.dot(input_matrix).dot(membership_col)
|
|
66
|
+
return aggregate_matrix.tocsr()
|
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# coding: utf-8
|
|
3
|
+
"""
|
|
4
|
+
Created on May, 2020
|
|
5
|
+
@author: Thomas Bonald <tbonald@enst.fr>
|
|
6
|
+
"""
|
|
7
|
+
from typing import Union
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
from scipy import sparse
|
|
11
|
+
|
|
12
|
+
from sknetwork.classification.propagation import Propagation
|
|
13
|
+
from sknetwork.clustering.base import BaseClustering
|
|
14
|
+
from sknetwork.utils.format import check_format, get_adjacency
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class PropagationClustering(BaseClustering, Propagation):
|
|
18
|
+
"""Clustering by label propagation.
|
|
19
|
+
|
|
20
|
+
Parameters
|
|
21
|
+
----------
|
|
22
|
+
n_iter : int
|
|
23
|
+
Maximum number of iterations (-1 for infinity).
|
|
24
|
+
node_order : str
|
|
25
|
+
* `'random'`: node labels are updated in random order.
|
|
26
|
+
* `'increasing'`: node labels are updated by increasing order of weight.
|
|
27
|
+
* `'decreasing'`: node labels are updated by decreasing order of weight.
|
|
28
|
+
* Otherwise, node labels are updated by index order.
|
|
29
|
+
weighted : bool
|
|
30
|
+
If ``True``, the vote of each neighbor is proportional to the edge weight.
|
|
31
|
+
Otherwise, all votes have weight 1.
|
|
32
|
+
sort_clusters : bool
|
|
33
|
+
If ``True``, sort labels in decreasing order of cluster size.
|
|
34
|
+
return_probs : bool
|
|
35
|
+
If ``True``, return the probability distribution over clusters (soft clustering).
|
|
36
|
+
return_aggregate : bool
|
|
37
|
+
If ``True``, return the aggregate adjacency matrix or biadjacency matrix between clusters.
|
|
38
|
+
|
|
39
|
+
Attributes
|
|
40
|
+
----------
|
|
41
|
+
labels_ : np.ndarray, shape (n_labels,)
|
|
42
|
+
Label of each node.
|
|
43
|
+
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
44
|
+
Probability distribution over labels.
|
|
45
|
+
labels_row_, labels_col_ : np.ndarray
|
|
46
|
+
Labels of rows and columns, for bipartite graphs.
|
|
47
|
+
probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
48
|
+
Probability distributions over labels for rows and columns (for bipartite graphs).
|
|
49
|
+
aggregate_ : sparse.csr_matrix
|
|
50
|
+
Aggregate adjacency matrix or biadjacency matrix between clusters.
|
|
51
|
+
|
|
52
|
+
Example
|
|
53
|
+
-------
|
|
54
|
+
>>> from sknetwork.clustering import PropagationClustering
|
|
55
|
+
>>> from sknetwork.data import karate_club
|
|
56
|
+
>>> propagation = PropagationClustering()
|
|
57
|
+
>>> graph = karate_club(metadata=True)
|
|
58
|
+
>>> adjacency = graph.adjacency
|
|
59
|
+
>>> labels = propagation.fit_predict(adjacency)
|
|
60
|
+
>>> len(set(labels))
|
|
61
|
+
2
|
|
62
|
+
|
|
63
|
+
References
|
|
64
|
+
----------
|
|
65
|
+
Raghavan, U. N., Albert, R., & Kumara, S. (2007).
|
|
66
|
+
`Near linear time algorithm to detect community structures in large-scale networks.
|
|
67
|
+
<https://arxiv.org/pdf/0709.2938.pdf>`_
|
|
68
|
+
Physical review E, 76(3), 036106.
|
|
69
|
+
"""
|
|
70
|
+
def __init__(self, n_iter: int = 5, node_order: str = 'decreasing', weighted: bool = True,
|
|
71
|
+
sort_clusters: bool = True, return_probs: bool = True, return_aggregate: bool = True):
|
|
72
|
+
Propagation.__init__(self, n_iter, node_order, weighted)
|
|
73
|
+
BaseClustering.__init__(self, sort_clusters, return_probs, return_aggregate)
|
|
74
|
+
self.bipartite = None
|
|
75
|
+
|
|
76
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray]) -> 'PropagationClustering':
|
|
77
|
+
"""Clustering by label propagation.
|
|
78
|
+
|
|
79
|
+
Parameters
|
|
80
|
+
----------
|
|
81
|
+
input_matrix : sparse.csr_matrix, np.ndarray
|
|
82
|
+
Adjacency matrix or biadjacency matrix of the graph.
|
|
83
|
+
|
|
84
|
+
Returns
|
|
85
|
+
-------
|
|
86
|
+
self: :class:`PropagationClustering`
|
|
87
|
+
"""
|
|
88
|
+
self._init_vars()
|
|
89
|
+
|
|
90
|
+
# input
|
|
91
|
+
input_matrix = check_format(input_matrix)
|
|
92
|
+
adjacency, bipartite = get_adjacency(input_matrix)
|
|
93
|
+
|
|
94
|
+
# propagation
|
|
95
|
+
Propagation.fit(self, adjacency)
|
|
96
|
+
|
|
97
|
+
# output
|
|
98
|
+
_, self.labels_ = np.unique(self.labels_, return_inverse=True)
|
|
99
|
+
if bipartite:
|
|
100
|
+
self._split_vars(input_matrix.shape)
|
|
101
|
+
self.bipartite = True
|
|
102
|
+
self._secondary_outputs(input_matrix)
|
|
103
|
+
|
|
104
|
+
return self
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""tests for clustering"""
|