scikit-network 0.33.0__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (216) hide show
  1. scikit_network-0.33.0.dist-info/AUTHORS.rst +43 -0
  2. scikit_network-0.33.0.dist-info/LICENSE +34 -0
  3. scikit_network-0.33.0.dist-info/METADATA +517 -0
  4. scikit_network-0.33.0.dist-info/RECORD +216 -0
  5. scikit_network-0.33.0.dist-info/WHEEL +5 -0
  6. scikit_network-0.33.0.dist-info/top_level.txt +1 -0
  7. sknetwork/__init__.py +21 -0
  8. sknetwork/base.py +67 -0
  9. sknetwork/classification/__init__.py +8 -0
  10. sknetwork/classification/base.py +142 -0
  11. sknetwork/classification/base_rank.py +133 -0
  12. sknetwork/classification/diffusion.py +134 -0
  13. sknetwork/classification/knn.py +139 -0
  14. sknetwork/classification/metrics.py +205 -0
  15. sknetwork/classification/pagerank.py +66 -0
  16. sknetwork/classification/propagation.py +152 -0
  17. sknetwork/classification/tests/__init__.py +1 -0
  18. sknetwork/classification/tests/test_API.py +30 -0
  19. sknetwork/classification/tests/test_diffusion.py +77 -0
  20. sknetwork/classification/tests/test_knn.py +23 -0
  21. sknetwork/classification/tests/test_metrics.py +53 -0
  22. sknetwork/classification/tests/test_pagerank.py +20 -0
  23. sknetwork/classification/tests/test_propagation.py +24 -0
  24. sknetwork/classification/vote.cpython-312-darwin.so +0 -0
  25. sknetwork/classification/vote.pyx +56 -0
  26. sknetwork/clustering/__init__.py +8 -0
  27. sknetwork/clustering/base.py +172 -0
  28. sknetwork/clustering/kcenters.py +253 -0
  29. sknetwork/clustering/leiden.py +242 -0
  30. sknetwork/clustering/leiden_core.cpython-312-darwin.so +0 -0
  31. sknetwork/clustering/leiden_core.pyx +124 -0
  32. sknetwork/clustering/louvain.py +286 -0
  33. sknetwork/clustering/louvain_core.cpython-312-darwin.so +0 -0
  34. sknetwork/clustering/louvain_core.pyx +124 -0
  35. sknetwork/clustering/metrics.py +91 -0
  36. sknetwork/clustering/postprocess.py +66 -0
  37. sknetwork/clustering/propagation_clustering.py +104 -0
  38. sknetwork/clustering/tests/__init__.py +1 -0
  39. sknetwork/clustering/tests/test_API.py +38 -0
  40. sknetwork/clustering/tests/test_kcenters.py +60 -0
  41. sknetwork/clustering/tests/test_leiden.py +34 -0
  42. sknetwork/clustering/tests/test_louvain.py +129 -0
  43. sknetwork/clustering/tests/test_metrics.py +50 -0
  44. sknetwork/clustering/tests/test_postprocess.py +39 -0
  45. sknetwork/data/__init__.py +6 -0
  46. sknetwork/data/base.py +33 -0
  47. sknetwork/data/load.py +406 -0
  48. sknetwork/data/models.py +459 -0
  49. sknetwork/data/parse.py +644 -0
  50. sknetwork/data/test_graphs.py +84 -0
  51. sknetwork/data/tests/__init__.py +1 -0
  52. sknetwork/data/tests/test_API.py +30 -0
  53. sknetwork/data/tests/test_base.py +14 -0
  54. sknetwork/data/tests/test_load.py +95 -0
  55. sknetwork/data/tests/test_models.py +52 -0
  56. sknetwork/data/tests/test_parse.py +250 -0
  57. sknetwork/data/tests/test_test_graphs.py +29 -0
  58. sknetwork/data/tests/test_toy_graphs.py +68 -0
  59. sknetwork/data/timeout.py +38 -0
  60. sknetwork/data/toy_graphs.py +611 -0
  61. sknetwork/embedding/__init__.py +8 -0
  62. sknetwork/embedding/base.py +94 -0
  63. sknetwork/embedding/force_atlas.py +198 -0
  64. sknetwork/embedding/louvain_embedding.py +148 -0
  65. sknetwork/embedding/random_projection.py +135 -0
  66. sknetwork/embedding/spectral.py +141 -0
  67. sknetwork/embedding/spring.py +198 -0
  68. sknetwork/embedding/svd.py +359 -0
  69. sknetwork/embedding/tests/__init__.py +1 -0
  70. sknetwork/embedding/tests/test_API.py +49 -0
  71. sknetwork/embedding/tests/test_force_atlas.py +35 -0
  72. sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
  73. sknetwork/embedding/tests/test_random_projection.py +28 -0
  74. sknetwork/embedding/tests/test_spectral.py +81 -0
  75. sknetwork/embedding/tests/test_spring.py +50 -0
  76. sknetwork/embedding/tests/test_svd.py +43 -0
  77. sknetwork/gnn/__init__.py +10 -0
  78. sknetwork/gnn/activation.py +117 -0
  79. sknetwork/gnn/base.py +181 -0
  80. sknetwork/gnn/base_activation.py +89 -0
  81. sknetwork/gnn/base_layer.py +109 -0
  82. sknetwork/gnn/gnn_classifier.py +305 -0
  83. sknetwork/gnn/layer.py +153 -0
  84. sknetwork/gnn/loss.py +180 -0
  85. sknetwork/gnn/neighbor_sampler.py +65 -0
  86. sknetwork/gnn/optimizer.py +164 -0
  87. sknetwork/gnn/tests/__init__.py +1 -0
  88. sknetwork/gnn/tests/test_activation.py +56 -0
  89. sknetwork/gnn/tests/test_base.py +75 -0
  90. sknetwork/gnn/tests/test_base_layer.py +37 -0
  91. sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
  92. sknetwork/gnn/tests/test_layers.py +80 -0
  93. sknetwork/gnn/tests/test_loss.py +33 -0
  94. sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
  95. sknetwork/gnn/tests/test_optimizer.py +43 -0
  96. sknetwork/gnn/tests/test_utils.py +41 -0
  97. sknetwork/gnn/utils.py +127 -0
  98. sknetwork/hierarchy/__init__.py +6 -0
  99. sknetwork/hierarchy/base.py +96 -0
  100. sknetwork/hierarchy/louvain_hierarchy.py +272 -0
  101. sknetwork/hierarchy/metrics.py +234 -0
  102. sknetwork/hierarchy/paris.cpython-312-darwin.so +0 -0
  103. sknetwork/hierarchy/paris.pyx +316 -0
  104. sknetwork/hierarchy/postprocess.py +350 -0
  105. sknetwork/hierarchy/tests/__init__.py +1 -0
  106. sknetwork/hierarchy/tests/test_API.py +24 -0
  107. sknetwork/hierarchy/tests/test_algos.py +34 -0
  108. sknetwork/hierarchy/tests/test_metrics.py +62 -0
  109. sknetwork/hierarchy/tests/test_postprocess.py +57 -0
  110. sknetwork/linalg/__init__.py +9 -0
  111. sknetwork/linalg/basics.py +37 -0
  112. sknetwork/linalg/diteration.cpython-312-darwin.so +0 -0
  113. sknetwork/linalg/diteration.pyx +47 -0
  114. sknetwork/linalg/eig_solver.py +93 -0
  115. sknetwork/linalg/laplacian.py +15 -0
  116. sknetwork/linalg/normalizer.py +86 -0
  117. sknetwork/linalg/operators.py +225 -0
  118. sknetwork/linalg/polynome.py +76 -0
  119. sknetwork/linalg/ppr_solver.py +170 -0
  120. sknetwork/linalg/push.cpython-312-darwin.so +0 -0
  121. sknetwork/linalg/push.pyx +71 -0
  122. sknetwork/linalg/sparse_lowrank.py +142 -0
  123. sknetwork/linalg/svd_solver.py +91 -0
  124. sknetwork/linalg/tests/__init__.py +1 -0
  125. sknetwork/linalg/tests/test_eig.py +44 -0
  126. sknetwork/linalg/tests/test_laplacian.py +18 -0
  127. sknetwork/linalg/tests/test_normalization.py +34 -0
  128. sknetwork/linalg/tests/test_operators.py +66 -0
  129. sknetwork/linalg/tests/test_polynome.py +38 -0
  130. sknetwork/linalg/tests/test_ppr.py +50 -0
  131. sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
  132. sknetwork/linalg/tests/test_svd.py +38 -0
  133. sknetwork/linkpred/__init__.py +2 -0
  134. sknetwork/linkpred/base.py +46 -0
  135. sknetwork/linkpred/nn.py +126 -0
  136. sknetwork/linkpred/tests/__init__.py +1 -0
  137. sknetwork/linkpred/tests/test_nn.py +27 -0
  138. sknetwork/log.py +19 -0
  139. sknetwork/path/__init__.py +5 -0
  140. sknetwork/path/dag.py +54 -0
  141. sknetwork/path/distances.py +98 -0
  142. sknetwork/path/search.py +31 -0
  143. sknetwork/path/shortest_path.py +61 -0
  144. sknetwork/path/tests/__init__.py +1 -0
  145. sknetwork/path/tests/test_dag.py +37 -0
  146. sknetwork/path/tests/test_distances.py +62 -0
  147. sknetwork/path/tests/test_search.py +40 -0
  148. sknetwork/path/tests/test_shortest_path.py +40 -0
  149. sknetwork/ranking/__init__.py +8 -0
  150. sknetwork/ranking/base.py +61 -0
  151. sknetwork/ranking/betweenness.cpython-312-darwin.so +0 -0
  152. sknetwork/ranking/betweenness.pyx +97 -0
  153. sknetwork/ranking/closeness.py +92 -0
  154. sknetwork/ranking/hits.py +94 -0
  155. sknetwork/ranking/katz.py +83 -0
  156. sknetwork/ranking/pagerank.py +110 -0
  157. sknetwork/ranking/postprocess.py +37 -0
  158. sknetwork/ranking/tests/__init__.py +1 -0
  159. sknetwork/ranking/tests/test_API.py +32 -0
  160. sknetwork/ranking/tests/test_betweenness.py +38 -0
  161. sknetwork/ranking/tests/test_closeness.py +30 -0
  162. sknetwork/ranking/tests/test_hits.py +20 -0
  163. sknetwork/ranking/tests/test_pagerank.py +62 -0
  164. sknetwork/ranking/tests/test_postprocess.py +26 -0
  165. sknetwork/regression/__init__.py +4 -0
  166. sknetwork/regression/base.py +61 -0
  167. sknetwork/regression/diffusion.py +210 -0
  168. sknetwork/regression/tests/__init__.py +1 -0
  169. sknetwork/regression/tests/test_API.py +32 -0
  170. sknetwork/regression/tests/test_diffusion.py +56 -0
  171. sknetwork/sknetwork.py +3 -0
  172. sknetwork/test_base.py +35 -0
  173. sknetwork/test_log.py +15 -0
  174. sknetwork/topology/__init__.py +8 -0
  175. sknetwork/topology/cliques.cpython-312-darwin.so +0 -0
  176. sknetwork/topology/cliques.pyx +149 -0
  177. sknetwork/topology/core.cpython-312-darwin.so +0 -0
  178. sknetwork/topology/core.pyx +90 -0
  179. sknetwork/topology/cycles.py +243 -0
  180. sknetwork/topology/minheap.cpython-312-darwin.so +0 -0
  181. sknetwork/topology/minheap.pxd +20 -0
  182. sknetwork/topology/minheap.pyx +109 -0
  183. sknetwork/topology/structure.py +194 -0
  184. sknetwork/topology/tests/__init__.py +1 -0
  185. sknetwork/topology/tests/test_cliques.py +28 -0
  186. sknetwork/topology/tests/test_core.py +19 -0
  187. sknetwork/topology/tests/test_cycles.py +65 -0
  188. sknetwork/topology/tests/test_structure.py +85 -0
  189. sknetwork/topology/tests/test_triangles.py +38 -0
  190. sknetwork/topology/tests/test_wl.py +72 -0
  191. sknetwork/topology/triangles.cpython-312-darwin.so +0 -0
  192. sknetwork/topology/triangles.pyx +151 -0
  193. sknetwork/topology/weisfeiler_lehman.py +133 -0
  194. sknetwork/topology/weisfeiler_lehman_core.cpython-312-darwin.so +0 -0
  195. sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
  196. sknetwork/utils/__init__.py +7 -0
  197. sknetwork/utils/check.py +355 -0
  198. sknetwork/utils/format.py +221 -0
  199. sknetwork/utils/membership.py +82 -0
  200. sknetwork/utils/neighbors.py +115 -0
  201. sknetwork/utils/tests/__init__.py +1 -0
  202. sknetwork/utils/tests/test_check.py +190 -0
  203. sknetwork/utils/tests/test_format.py +63 -0
  204. sknetwork/utils/tests/test_membership.py +24 -0
  205. sknetwork/utils/tests/test_neighbors.py +41 -0
  206. sknetwork/utils/tests/test_tfidf.py +18 -0
  207. sknetwork/utils/tests/test_values.py +66 -0
  208. sknetwork/utils/tfidf.py +37 -0
  209. sknetwork/utils/values.py +76 -0
  210. sknetwork/visualization/__init__.py +4 -0
  211. sknetwork/visualization/colors.py +34 -0
  212. sknetwork/visualization/dendrograms.py +277 -0
  213. sknetwork/visualization/graphs.py +1039 -0
  214. sknetwork/visualization/tests/__init__.py +1 -0
  215. sknetwork/visualization/tests/test_dendrograms.py +53 -0
  216. sknetwork/visualization/tests/test_graphs.py +176 -0
@@ -0,0 +1,253 @@
1
+ """
2
+ Created in March 2024
3
+ @author: Laurène David <laurene.david@ip-paris.fr>
4
+ @author: Thomas Bonald <bonald@enst.fr>
5
+ """
6
+
7
+ from typing import Union
8
+
9
+ import numpy as np
10
+ from scipy import sparse
11
+
12
+ from sknetwork.clustering import BaseClustering
13
+ from sknetwork.ranking import PageRank
14
+ from sknetwork.clustering import get_modularity
15
+ from sknetwork.classification.pagerank import PageRankClassifier
16
+ from sknetwork.utils.format import get_adjacency, directed2undirected
17
+
18
+
19
+ class KCenters(BaseClustering):
20
+ """K-center clustering algorithm. The center of each cluster is obtained by the PageRank algorithm.
21
+
22
+ Parameters
23
+ ----------
24
+ n_clusters : int
25
+ Number of clusters.
26
+ directed : bool, default False
27
+ If ``True``, the graph is considered directed.
28
+ center_position : str, default "row"
29
+ Force centers to correspond to the nodes on the rows or columns of the biadjacency matrix.
30
+ Can be ``row``, ``col`` or ``both``. Only considered for bipartite graphs.
31
+ n_init : int, default 5
32
+ Number of reruns of the k-centers algorithm with different centers.
33
+ The run that produce the best modularity is chosen as the final result.
34
+ max_iter : int, default 20
35
+ Maximum number of iterations of the k-centers algorithm for a single run.
36
+
37
+ Attributes
38
+ ----------
39
+ labels_ : np.ndarray, shape (n_nodes,)
40
+ Label of each node.
41
+ labels_row_, labels_col_ : np.ndarray
42
+ Labels of rows and columns, for bipartite graphs.
43
+ centers_ : np.ndarray, shape (n_nodes,)
44
+ Cluster centers.
45
+ centers_row_, centers_col_ : np.ndarray
46
+ Cluster centers of rows and columns, for bipartite graphs.
47
+
48
+ Example
49
+ -------
50
+ >>> from sknetwork.clustering import KCenters
51
+ >>> from sknetwork.data import karate_club
52
+ >>> kcenters = KCenters(n_clusters=2)
53
+ >>> adjacency = karate_club()
54
+ >>> labels = kcenters.fit_predict(adjacency)
55
+ >>> len(set(labels))
56
+ 2
57
+
58
+ """
59
+ def __init__(self, n_clusters: int, directed: bool = False, center_position: str = "row", n_init: int = 5,
60
+ max_iter: int = 20):
61
+ super(BaseClustering, self).__init__()
62
+ self.n_clusters = n_clusters
63
+ self.directed = directed
64
+ self.bipartite = None
65
+ self.center_position = center_position
66
+ self.n_init = n_init
67
+ self.max_iter = max_iter
68
+ self.labels_ = None
69
+ self.centers_ = None
70
+ self.centers_row_ = None
71
+ self.centers_col_ = None
72
+
73
+ def _compute_mask_centers(self, input_matrix: Union[sparse.csr_matrix, np.ndarray]):
74
+ """Generate mask to filter nodes that can be cluster centers.
75
+
76
+ Parameters
77
+ ----------
78
+ input_matrix :
79
+ Adjacency matrix or biadjacency matrix of the graph.
80
+
81
+ Return
82
+ ------
83
+ mask : np.array, shape (n_nodes,)
84
+ Mask for possible cluster centers.
85
+
86
+ """
87
+ n_row, n_col = input_matrix.shape
88
+ if self.bipartite:
89
+ n_nodes = n_row + n_col
90
+ mask = np.zeros(n_nodes, dtype=bool)
91
+ if self.center_position == "row":
92
+ mask[:n_row] = True
93
+ elif self.center_position == "col":
94
+ mask[n_row:] = True
95
+ elif self.center_position == "both":
96
+ mask[:] = True
97
+ else:
98
+ raise ValueError('Unknown center position')
99
+ else:
100
+ mask = np.ones(n_row, dtype=bool)
101
+
102
+ return mask
103
+
104
+ @staticmethod
105
+ def _init_centers(adjacency: Union[sparse.csr_matrix, np.ndarray], mask: np.ndarray, n_clusters: int):
106
+ """
107
+ Kcenters++ initialization to select cluster centers.
108
+ This algorithm is an adaptation of the Kmeans++ algorithm to graphs.
109
+
110
+ Parameters
111
+ ----------
112
+ adjacency :
113
+ Adjacency matrix of the graph.
114
+ mask :
115
+ Initial mask for allowed positions of centers.
116
+ n_clusters : int
117
+ Number of centers to initialize.
118
+
119
+ Returns
120
+ ---------
121
+ centers : np.array, shape (n_clusters,)
122
+ Initial cluster centers.
123
+ """
124
+ mask = mask.copy()
125
+ n_nodes = adjacency.shape[0]
126
+ nodes = np.arange(n_nodes)
127
+ centers = []
128
+
129
+ # Choose the first center uniformly at random
130
+ center = np.random.choice(nodes[mask])
131
+ mask[center] = 0
132
+ centers.append(center)
133
+
134
+ pagerank = PageRank()
135
+ weights = {center: 1}
136
+
137
+ for k in range(n_clusters - 1):
138
+ # select nodes that are far from existing centers
139
+ ppr_scores = pagerank.fit_predict(adjacency, weights)
140
+ ppr_scores = ppr_scores[mask]
141
+
142
+ if min(ppr_scores) == 0:
143
+ center = np.random.choice(nodes[mask][ppr_scores == 0])
144
+ else:
145
+ probs = 1 / ppr_scores
146
+ probs = probs / np.sum(probs)
147
+ center = np.random.choice(nodes[mask], p=probs)
148
+
149
+ mask[center] = 0
150
+ centers.append(center)
151
+ weights.update({center: 1})
152
+
153
+ centers = np.array(centers)
154
+ return centers
155
+
156
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> "KCenters":
157
+ """Compute the clustering of the graph by k-centers.
158
+
159
+ Parameters
160
+ ----------
161
+ input_matrix :
162
+ Adjacency matrix or biadjacency matrix of the graph.
163
+ force_bipartite :
164
+ If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
165
+
166
+ Returns
167
+ -------
168
+ self : :class:`KCenters`
169
+ """
170
+
171
+ if self.n_clusters < 2:
172
+ raise ValueError("The number of clusters must be at least 2.")
173
+
174
+ if self.n_init < 1:
175
+ raise ValueError("The n_init parameter must be at least 1.")
176
+
177
+ if self.directed:
178
+ input_matrix = directed2undirected(input_matrix)
179
+
180
+ adjacency, self.bipartite = get_adjacency(input_matrix, force_bipartite=force_bipartite)
181
+ n_row = input_matrix.shape[0]
182
+ n_nodes = adjacency.shape[0]
183
+ nodes = np.arange(n_nodes)
184
+
185
+ mask = self._compute_mask_centers(input_matrix)
186
+ if self.n_clusters > np.sum(mask):
187
+ raise ValueError("The number of clusters is to high. This might be due to the center_position parameter.")
188
+
189
+ pagerank_clf = PageRankClassifier()
190
+ pagerank = PageRank()
191
+
192
+ labels_ = []
193
+ centers_ = []
194
+ modularity_ = []
195
+
196
+ # Restarts
197
+ for i in range(self.n_init):
198
+
199
+ # Initialization
200
+ centers = self._init_centers(adjacency, mask, self.n_clusters)
201
+ prev_centers = None
202
+ labels = None
203
+ n_iter = 0
204
+
205
+ while not np.equal(prev_centers, centers).all() and (n_iter < self.max_iter):
206
+
207
+ # Assign nodes to centers
208
+ labels_center = {center: label for label, center in enumerate(centers)}
209
+ labels = pagerank_clf.fit_predict(adjacency, labels_center)
210
+
211
+ # Find new centers
212
+ prev_centers = centers.copy()
213
+ new_centers = []
214
+
215
+ for label in np.unique(labels):
216
+ mask_cluster = labels == label
217
+ mask_cluster &= mask
218
+ scores = pagerank.fit_predict(adjacency, weights=mask_cluster)
219
+ scores[~mask_cluster] = 0
220
+ new_centers.append(nodes[np.argmax(scores)])
221
+
222
+ n_iter += 1
223
+
224
+ # Store results
225
+ if self.bipartite:
226
+ labels_row = labels[:n_row]
227
+ labels_col = labels[n_row:]
228
+ modularity = get_modularity(input_matrix, labels_row, labels_col)
229
+ else:
230
+ modularity = get_modularity(adjacency, labels)
231
+
232
+ labels_.append(labels)
233
+ centers_.append(centers)
234
+ modularity_.append(modularity)
235
+
236
+ # Select restart with the highest modularity
237
+ idx_max = np.argmax(modularity_)
238
+ self.labels_ = np.array(labels_[idx_max])
239
+ self.centers_ = np.array(centers_[idx_max])
240
+
241
+ if self.bipartite:
242
+ self._split_vars(input_matrix.shape)
243
+
244
+ # Define centers based on center position
245
+ if self.center_position == "row":
246
+ self.centers_row_ = self.centers_
247
+ elif self.center_position == "col":
248
+ self.centers_col_ = self.centers_ - n_row
249
+ else:
250
+ self.centers_row_ = self.centers_[self.centers_ < n_row]
251
+ self.centers_col_ = self.centers_[~np.isin(self.centers_, self.centers_row_)] - n_row
252
+
253
+ return self
@@ -0,0 +1,242 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ Created in March 2024
5
+ @author: Thomas Bonald <bonald@enst.fr>
6
+ @author: Ahmed Zaiou <ahmed.zaiou@capgemini.com>
7
+ """
8
+ from typing import Union, Optional
9
+
10
+ import numpy as np
11
+ from scipy import sparse
12
+
13
+ from sknetwork.clustering import Louvain
14
+ from sknetwork.clustering.louvain_core import optimize_core
15
+ from sknetwork.clustering.leiden_core import optimize_refine_core
16
+ from sknetwork.utils.membership import get_membership
17
+ from sknetwork.utils.check import check_random_state
18
+ from sknetwork.log import Log
19
+
20
+
21
+ class Leiden(Louvain):
22
+ """Leiden algorithm for clustering graphs by maximization of modularity.
23
+ Compared to the Louvain algorithm, the partition is refined before each aggregation.
24
+
25
+ For bipartite graphs, the algorithm maximizes Barber's modularity by default.
26
+
27
+ Parameters
28
+ ----------
29
+ resolution :
30
+ Resolution parameter.
31
+ modularity : str
32
+ Type of modularity to maximize. Can be ``'Dugue'``, ``'Newman'`` or ``'Potts'`` (default = ``'dugue'``).
33
+ tol_optimization :
34
+ Minimum increase in modularity to enter a new optimization pass in the local search.
35
+ tol_aggregation :
36
+ Minimum increase in modularity to enter a new aggregation pass.
37
+ n_aggregations :
38
+ Maximum number of aggregations.
39
+ A negative value is interpreted as no limit.
40
+ shuffle_nodes :
41
+ Enables node shuffling before optimization.
42
+ sort_clusters :
43
+ If ``True``, sort labels in decreasing order of cluster size.
44
+ return_probs :
45
+ If ``True``, return the probability distribution over clusters (soft clustering).
46
+ return_aggregate :
47
+ If ``True``, return the adjacency matrix of the graph between clusters.
48
+ random_state :
49
+ Random number generator or random seed. If None, numpy.random is used.
50
+ verbose :
51
+ Verbose mode.
52
+
53
+ Attributes
54
+ ----------
55
+ labels_ : np.ndarray, shape (n_labels,)
56
+ Label of each node.
57
+ probs_ : sparse.csr_matrix, shape (n_row, n_labels)
58
+ Probability distribution over labels.
59
+ labels_row_, labels_col_ : np.ndarray
60
+ Labels of rows and columns, for bipartite graphs.
61
+ probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
62
+ Probability distributions over labels for rows and columns (for bipartite graphs).
63
+ aggregate_ : sparse.csr_matrix
64
+ Aggregate adjacency matrix or biadjacency matrix between clusters.
65
+
66
+ Example
67
+ -------
68
+ >>> from sknetwork.clustering import Leiden
69
+ >>> from sknetwork.data import karate_club
70
+ >>> leiden = Leiden()
71
+ >>> adjacency = karate_club()
72
+ >>> labels = leiden.fit_predict(adjacency)
73
+ >>> len(set(labels))
74
+ 4
75
+
76
+ References
77
+ ----------
78
+ * Traag, V. A., Waltman, L., & Van Eck, N. J. (2019).
79
+ `From Louvain to Leiden: guaranteeing well-connected communities`, Scientific reports.
80
+
81
+ """
82
+
83
+ def __init__(self, resolution: float = 1, modularity: str = 'dugue', tol_optimization: float = 1e-3,
84
+ tol_aggregation: float = 1e-3, n_aggregations: int = -1, shuffle_nodes: bool = False,
85
+ sort_clusters: bool = True, return_probs: bool = True, return_aggregate: bool = True,
86
+ random_state: Optional[Union[np.random.RandomState, int]] = None, verbose: bool = False):
87
+ super(Leiden, self).__init__(sort_clusters=sort_clusters, return_probs=return_probs,
88
+ return_aggregate=return_aggregate)
89
+ Log.__init__(self, verbose)
90
+
91
+ self.labels_ = None
92
+ self.resolution = resolution
93
+ self.modularity = modularity.lower()
94
+ self.tol_optimization = tol_optimization
95
+ self.tol_aggregation = tol_aggregation
96
+ self.n_aggregations = n_aggregations
97
+ self.shuffle_nodes = shuffle_nodes
98
+ self.random_state = check_random_state(random_state)
99
+ self.bipartite = None
100
+
101
+ def _optimize(self, labels, adjacency, out_weights, in_weights):
102
+ """One optimization pass of the Leiden algorithm.
103
+
104
+ Parameters
105
+ ----------
106
+ labels :
107
+ Labels of nodes.
108
+ adjacency :
109
+ Adjacency matrix.
110
+ out_weights :
111
+ Out-weights of nodes.
112
+ in_weights :
113
+ In-weights of nodes
114
+
115
+ Returns
116
+ -------
117
+ labels :
118
+ Labels of nodes after optimization.
119
+ increase :
120
+ Gain in modularity after optimization.
121
+ """
122
+ indices = adjacency.indices
123
+ indptr = adjacency.indptr
124
+ data = adjacency.data.astype(np.float32)
125
+ out_weights = out_weights.astype(np.float32)
126
+ in_weights = in_weights.astype(np.float32)
127
+ membership = get_membership(labels)
128
+ out_cluster_weights = membership.T.dot(out_weights)
129
+ in_cluster_weights = membership.T.dot(in_weights)
130
+ cluster_weights = np.zeros_like(out_cluster_weights).astype(np.float32)
131
+ labels = labels.astype(np.int32)
132
+ self_loops = adjacency.diagonal().astype(np.float32)
133
+ return optimize_core(labels, indices, indptr, data, out_weights, in_weights, out_cluster_weights,
134
+ in_cluster_weights, cluster_weights, self_loops, self.resolution, self.tol_optimization)
135
+
136
+ def _optimize_refine(self, labels, labels_refined, adjacency, out_weights, in_weights):
137
+ """Get the refined partition optimizing modularity.
138
+
139
+ Parameters
140
+ ----------
141
+ labels :
142
+ Labels of nodes.
143
+ labels_refined :
144
+ Refined labels of nodes.
145
+ adjacency :
146
+ Adjacency matrix.
147
+ out_weights :
148
+ Out-weights of nodes.
149
+ in_weights :
150
+ In-weights of nodes
151
+
152
+ Returns
153
+ -------
154
+ labels_refined :
155
+ Refined labels of nodes.
156
+ """
157
+ indices = adjacency.indices
158
+ indptr = adjacency.indptr
159
+ data = adjacency.data.astype(np.float32)
160
+ out_weights = out_weights.astype(np.float32)
161
+ in_weights = in_weights.astype(np.float32)
162
+ membership = get_membership(labels_refined)
163
+ out_cluster_weights = membership.T.dot(out_weights)
164
+ in_cluster_weights = membership.T.dot(in_weights)
165
+ cluster_weights = np.zeros_like(out_cluster_weights).astype(np.float32)
166
+ self_loops = adjacency.diagonal().astype(np.float32)
167
+ labels = labels.astype(np.int32)
168
+ labels_refined = labels_refined.astype(np.int32)
169
+ return optimize_refine_core(labels, labels_refined, indices, indptr, data, out_weights, in_weights,
170
+ out_cluster_weights, in_cluster_weights, cluster_weights, self_loops,
171
+ self.resolution)
172
+
173
+ @staticmethod
174
+ def _aggregate_refine(labels, labels_refined, adjacency, out_weights, in_weights):
175
+ """Aggregate nodes according to refined labels.
176
+
177
+ Parameters
178
+ ----------
179
+ labels :
180
+ Labels of nodes.
181
+ labels_refined :
182
+ Refined labels of nodes.
183
+ adjacency :
184
+ Adjacency matrix.
185
+ out_weights :
186
+ Out-weights of nodes.
187
+ in_weights :
188
+ In-weights of nodes.
189
+
190
+ Returns
191
+ -------
192
+ Aggregate graph (labels, adjacency matrix, out-weights, in-weights).
193
+ """
194
+ membership = get_membership(labels)
195
+ membership_refined = get_membership(labels_refined)
196
+ adjacency_ = membership_refined.T.tocsr().dot(adjacency.dot(membership_refined))
197
+ out_weights_ = membership_refined.T.dot(out_weights)
198
+ in_weights_ = membership_refined.T.dot(in_weights)
199
+ labels_ = membership_refined.T.tocsr().dot(membership).indices
200
+ return labels_, adjacency_, out_weights_, in_weights_
201
+
202
+ def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> 'Leiden':
203
+ """Fit algorithm to data.
204
+
205
+ Parameters
206
+ ----------
207
+ input_matrix :
208
+ Adjacency matrix or biadjacency matrix of the graph.
209
+ force_bipartite :
210
+ If ``True``, force the input matrix to be considered as a biadjacency matrix even if square.
211
+
212
+ Returns
213
+ -------
214
+ self : :class:`Leiden`
215
+ """
216
+ adjacency, out_weights, in_weights, membership, index = self._pre_processing(input_matrix, force_bipartite)
217
+ n = adjacency.shape[0]
218
+ labels = np.arange(n)
219
+ count = 0
220
+ stop = False
221
+ while not stop:
222
+ count += 1
223
+ labels, increase = self._optimize(labels, adjacency, out_weights, in_weights)
224
+ _, labels = np.unique(labels, return_inverse=True)
225
+ labels_original = labels.copy()
226
+ labels_refined = np.arange(len(labels))
227
+ labels_refined = self._optimize_refine(labels, labels_refined, adjacency, out_weights, in_weights)
228
+ _, labels_refined = np.unique(labels_refined, return_inverse=True)
229
+ labels, adjacency, out_weights, in_weights = self._aggregate_refine(labels, labels_refined, adjacency,
230
+ out_weights, in_weights)
231
+ n = adjacency.shape[0]
232
+ stop = n == 1
233
+ stop |= increase <= self.tol_aggregation
234
+ stop |= count == self.n_aggregations
235
+ if stop:
236
+ membership = membership.dot(get_membership(labels_original))
237
+ else:
238
+ membership = membership.dot(get_membership(labels_refined))
239
+ self.print_log("Aggregation:", count, " Clusters:", n, " Increase:", increase)
240
+
241
+ self._post_processing(input_matrix, membership, index)
242
+ return self
@@ -0,0 +1,124 @@
1
+ # distutils: language=c++
2
+ # cython: language_level=3
3
+ from libcpp.set cimport set
4
+ from libc.stdlib cimport rand
5
+
6
+ cimport cython
7
+
8
+ ctypedef fused int_or_long:
9
+ int
10
+ long
11
+
12
+ @cython.boundscheck(False)
13
+ @cython.wraparound(False)
14
+ def optimize_refine_core(int_or_long[:] labels, int_or_long[:] labels_refined, int_or_long[:] indices,
15
+ int_or_long[:] indptr, float[:] data, float[:] out_weights, float[:] in_weights, float[:] out_cluster_weights,
16
+ float[:] in_cluster_weights, float[:] cluster_weights, float[:] self_loops, float resolution): # pragma: no cover
17
+ """Refine clusters while maximizing modularity.
18
+
19
+ Parameters
20
+ ----------
21
+ labels :
22
+ Labels (initial partition).
23
+ labels_refined :
24
+ Refined labels.
25
+ indices :
26
+ CSR format index array of the normalized adjacency matrix.
27
+ indptr :
28
+ CSR format index pointer array of the normalized adjacency matrix.
29
+ data :
30
+ CSR format data array of the normalized adjacency matrix.
31
+ out_weights :
32
+ Out-weights of nodes (sum to 1).
33
+ in_weights :
34
+ In-weights of nodes (sum to 1).
35
+ out_cluster_weights :
36
+ Out-weights of clusters (sum to 1).
37
+ in_cluster_weights :
38
+ In-weights of clusters (sum to 1).
39
+ cluster_weights :
40
+ Weights of clusters (initialized to 0).
41
+ self_loops :
42
+ Weights of self loops.
43
+ resolution :
44
+ Resolution parameter (positive).
45
+
46
+ Returns
47
+ -------
48
+ labels_refined :
49
+ Refined labels.
50
+ """
51
+ cdef int_or_long n
52
+ cdef int_or_long label
53
+ cdef int_or_long label_refined
54
+ cdef int_or_long label_target
55
+ cdef int_or_long label_best
56
+ cdef int_or_long i
57
+ cdef int_or_long j
58
+ cdef int_or_long start
59
+ cdef int_or_long end
60
+
61
+ cdef float increase = 1
62
+ cdef float delta
63
+ cdef float delta_local
64
+ cdef float delta_best
65
+ cdef float in_weight
66
+ cdef float out_weight
67
+
68
+ cdef set[int_or_long] label_set
69
+ cdef set[int_or_long] label_target_set
70
+
71
+ n = labels.shape[0]
72
+ while increase:
73
+ increase = 0
74
+
75
+ for i in range(n):
76
+ label_set = ()
77
+ label = labels[i]
78
+ label_refined = labels_refined[i]
79
+ start = indptr[i]
80
+ end = indptr[i+1]
81
+
82
+ # neighboring clusters
83
+ for j in range(start, end):
84
+ if labels[indices[j]] == label:
85
+ label_target = labels_refined[indices[j]]
86
+ label_set.insert(label_target)
87
+ cluster_weights[label_target] += data[j]
88
+ label_set.erase(label_refined)
89
+
90
+ if not label_set.empty():
91
+ out_weight = out_weights[i]
92
+ in_weight = in_weights[i]
93
+
94
+ # node leaving the current cluster
95
+ delta = 2 * (cluster_weights[label_refined] - self_loops[i])
96
+ delta -= resolution * out_weight * (in_cluster_weights[label_refined] - in_weight)
97
+ delta -= resolution * in_weight * (out_cluster_weights[label_refined] - out_weight)
98
+
99
+ label_target_set = ()
100
+ for label_target in label_set:
101
+ delta_local = 2 * cluster_weights[label_target]
102
+ delta_local -= resolution * out_weight * in_cluster_weights[label_target]
103
+ delta_local -= resolution * in_weight * out_cluster_weights[label_target]
104
+ delta_local -= delta
105
+ if delta_local > 0:
106
+ label_target_set.insert(label_target)
107
+ cluster_weights[label_target] = 0
108
+
109
+ if not label_target_set.empty():
110
+ increase = 1
111
+ k = rand() % label_target_set.size()
112
+ for label_target in label_target_set:
113
+ k -= 1
114
+ if k == 0:
115
+ break
116
+ labels_refined[i] = label_target
117
+ # update weights
118
+ out_cluster_weights[label_refined] -= out_weight
119
+ in_cluster_weights[label_refined] -= in_weight
120
+ out_cluster_weights[label_target] += out_weight
121
+ in_cluster_weights[label_target] += in_weight
122
+ cluster_weights[label_refined] = 0
123
+
124
+ return labels_refined