scikit-network 0.33.0__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (216) hide show
  1. scikit_network-0.33.0.dist-info/AUTHORS.rst +43 -0
  2. scikit_network-0.33.0.dist-info/LICENSE +34 -0
  3. scikit_network-0.33.0.dist-info/METADATA +517 -0
  4. scikit_network-0.33.0.dist-info/RECORD +216 -0
  5. scikit_network-0.33.0.dist-info/WHEEL +5 -0
  6. scikit_network-0.33.0.dist-info/top_level.txt +1 -0
  7. sknetwork/__init__.py +21 -0
  8. sknetwork/base.py +67 -0
  9. sknetwork/classification/__init__.py +8 -0
  10. sknetwork/classification/base.py +142 -0
  11. sknetwork/classification/base_rank.py +133 -0
  12. sknetwork/classification/diffusion.py +134 -0
  13. sknetwork/classification/knn.py +139 -0
  14. sknetwork/classification/metrics.py +205 -0
  15. sknetwork/classification/pagerank.py +66 -0
  16. sknetwork/classification/propagation.py +152 -0
  17. sknetwork/classification/tests/__init__.py +1 -0
  18. sknetwork/classification/tests/test_API.py +30 -0
  19. sknetwork/classification/tests/test_diffusion.py +77 -0
  20. sknetwork/classification/tests/test_knn.py +23 -0
  21. sknetwork/classification/tests/test_metrics.py +53 -0
  22. sknetwork/classification/tests/test_pagerank.py +20 -0
  23. sknetwork/classification/tests/test_propagation.py +24 -0
  24. sknetwork/classification/vote.cpython-312-darwin.so +0 -0
  25. sknetwork/classification/vote.pyx +56 -0
  26. sknetwork/clustering/__init__.py +8 -0
  27. sknetwork/clustering/base.py +172 -0
  28. sknetwork/clustering/kcenters.py +253 -0
  29. sknetwork/clustering/leiden.py +242 -0
  30. sknetwork/clustering/leiden_core.cpython-312-darwin.so +0 -0
  31. sknetwork/clustering/leiden_core.pyx +124 -0
  32. sknetwork/clustering/louvain.py +286 -0
  33. sknetwork/clustering/louvain_core.cpython-312-darwin.so +0 -0
  34. sknetwork/clustering/louvain_core.pyx +124 -0
  35. sknetwork/clustering/metrics.py +91 -0
  36. sknetwork/clustering/postprocess.py +66 -0
  37. sknetwork/clustering/propagation_clustering.py +104 -0
  38. sknetwork/clustering/tests/__init__.py +1 -0
  39. sknetwork/clustering/tests/test_API.py +38 -0
  40. sknetwork/clustering/tests/test_kcenters.py +60 -0
  41. sknetwork/clustering/tests/test_leiden.py +34 -0
  42. sknetwork/clustering/tests/test_louvain.py +129 -0
  43. sknetwork/clustering/tests/test_metrics.py +50 -0
  44. sknetwork/clustering/tests/test_postprocess.py +39 -0
  45. sknetwork/data/__init__.py +6 -0
  46. sknetwork/data/base.py +33 -0
  47. sknetwork/data/load.py +406 -0
  48. sknetwork/data/models.py +459 -0
  49. sknetwork/data/parse.py +644 -0
  50. sknetwork/data/test_graphs.py +84 -0
  51. sknetwork/data/tests/__init__.py +1 -0
  52. sknetwork/data/tests/test_API.py +30 -0
  53. sknetwork/data/tests/test_base.py +14 -0
  54. sknetwork/data/tests/test_load.py +95 -0
  55. sknetwork/data/tests/test_models.py +52 -0
  56. sknetwork/data/tests/test_parse.py +250 -0
  57. sknetwork/data/tests/test_test_graphs.py +29 -0
  58. sknetwork/data/tests/test_toy_graphs.py +68 -0
  59. sknetwork/data/timeout.py +38 -0
  60. sknetwork/data/toy_graphs.py +611 -0
  61. sknetwork/embedding/__init__.py +8 -0
  62. sknetwork/embedding/base.py +94 -0
  63. sknetwork/embedding/force_atlas.py +198 -0
  64. sknetwork/embedding/louvain_embedding.py +148 -0
  65. sknetwork/embedding/random_projection.py +135 -0
  66. sknetwork/embedding/spectral.py +141 -0
  67. sknetwork/embedding/spring.py +198 -0
  68. sknetwork/embedding/svd.py +359 -0
  69. sknetwork/embedding/tests/__init__.py +1 -0
  70. sknetwork/embedding/tests/test_API.py +49 -0
  71. sknetwork/embedding/tests/test_force_atlas.py +35 -0
  72. sknetwork/embedding/tests/test_louvain_embedding.py +33 -0
  73. sknetwork/embedding/tests/test_random_projection.py +28 -0
  74. sknetwork/embedding/tests/test_spectral.py +81 -0
  75. sknetwork/embedding/tests/test_spring.py +50 -0
  76. sknetwork/embedding/tests/test_svd.py +43 -0
  77. sknetwork/gnn/__init__.py +10 -0
  78. sknetwork/gnn/activation.py +117 -0
  79. sknetwork/gnn/base.py +181 -0
  80. sknetwork/gnn/base_activation.py +89 -0
  81. sknetwork/gnn/base_layer.py +109 -0
  82. sknetwork/gnn/gnn_classifier.py +305 -0
  83. sknetwork/gnn/layer.py +153 -0
  84. sknetwork/gnn/loss.py +180 -0
  85. sknetwork/gnn/neighbor_sampler.py +65 -0
  86. sknetwork/gnn/optimizer.py +164 -0
  87. sknetwork/gnn/tests/__init__.py +1 -0
  88. sknetwork/gnn/tests/test_activation.py +56 -0
  89. sknetwork/gnn/tests/test_base.py +75 -0
  90. sknetwork/gnn/tests/test_base_layer.py +37 -0
  91. sknetwork/gnn/tests/test_gnn_classifier.py +130 -0
  92. sknetwork/gnn/tests/test_layers.py +80 -0
  93. sknetwork/gnn/tests/test_loss.py +33 -0
  94. sknetwork/gnn/tests/test_neigh_sampler.py +23 -0
  95. sknetwork/gnn/tests/test_optimizer.py +43 -0
  96. sknetwork/gnn/tests/test_utils.py +41 -0
  97. sknetwork/gnn/utils.py +127 -0
  98. sknetwork/hierarchy/__init__.py +6 -0
  99. sknetwork/hierarchy/base.py +96 -0
  100. sknetwork/hierarchy/louvain_hierarchy.py +272 -0
  101. sknetwork/hierarchy/metrics.py +234 -0
  102. sknetwork/hierarchy/paris.cpython-312-darwin.so +0 -0
  103. sknetwork/hierarchy/paris.pyx +316 -0
  104. sknetwork/hierarchy/postprocess.py +350 -0
  105. sknetwork/hierarchy/tests/__init__.py +1 -0
  106. sknetwork/hierarchy/tests/test_API.py +24 -0
  107. sknetwork/hierarchy/tests/test_algos.py +34 -0
  108. sknetwork/hierarchy/tests/test_metrics.py +62 -0
  109. sknetwork/hierarchy/tests/test_postprocess.py +57 -0
  110. sknetwork/linalg/__init__.py +9 -0
  111. sknetwork/linalg/basics.py +37 -0
  112. sknetwork/linalg/diteration.cpython-312-darwin.so +0 -0
  113. sknetwork/linalg/diteration.pyx +47 -0
  114. sknetwork/linalg/eig_solver.py +93 -0
  115. sknetwork/linalg/laplacian.py +15 -0
  116. sknetwork/linalg/normalizer.py +86 -0
  117. sknetwork/linalg/operators.py +225 -0
  118. sknetwork/linalg/polynome.py +76 -0
  119. sknetwork/linalg/ppr_solver.py +170 -0
  120. sknetwork/linalg/push.cpython-312-darwin.so +0 -0
  121. sknetwork/linalg/push.pyx +71 -0
  122. sknetwork/linalg/sparse_lowrank.py +142 -0
  123. sknetwork/linalg/svd_solver.py +91 -0
  124. sknetwork/linalg/tests/__init__.py +1 -0
  125. sknetwork/linalg/tests/test_eig.py +44 -0
  126. sknetwork/linalg/tests/test_laplacian.py +18 -0
  127. sknetwork/linalg/tests/test_normalization.py +34 -0
  128. sknetwork/linalg/tests/test_operators.py +66 -0
  129. sknetwork/linalg/tests/test_polynome.py +38 -0
  130. sknetwork/linalg/tests/test_ppr.py +50 -0
  131. sknetwork/linalg/tests/test_sparse_lowrank.py +61 -0
  132. sknetwork/linalg/tests/test_svd.py +38 -0
  133. sknetwork/linkpred/__init__.py +2 -0
  134. sknetwork/linkpred/base.py +46 -0
  135. sknetwork/linkpred/nn.py +126 -0
  136. sknetwork/linkpred/tests/__init__.py +1 -0
  137. sknetwork/linkpred/tests/test_nn.py +27 -0
  138. sknetwork/log.py +19 -0
  139. sknetwork/path/__init__.py +5 -0
  140. sknetwork/path/dag.py +54 -0
  141. sknetwork/path/distances.py +98 -0
  142. sknetwork/path/search.py +31 -0
  143. sknetwork/path/shortest_path.py +61 -0
  144. sknetwork/path/tests/__init__.py +1 -0
  145. sknetwork/path/tests/test_dag.py +37 -0
  146. sknetwork/path/tests/test_distances.py +62 -0
  147. sknetwork/path/tests/test_search.py +40 -0
  148. sknetwork/path/tests/test_shortest_path.py +40 -0
  149. sknetwork/ranking/__init__.py +8 -0
  150. sknetwork/ranking/base.py +61 -0
  151. sknetwork/ranking/betweenness.cpython-312-darwin.so +0 -0
  152. sknetwork/ranking/betweenness.pyx +97 -0
  153. sknetwork/ranking/closeness.py +92 -0
  154. sknetwork/ranking/hits.py +94 -0
  155. sknetwork/ranking/katz.py +83 -0
  156. sknetwork/ranking/pagerank.py +110 -0
  157. sknetwork/ranking/postprocess.py +37 -0
  158. sknetwork/ranking/tests/__init__.py +1 -0
  159. sknetwork/ranking/tests/test_API.py +32 -0
  160. sknetwork/ranking/tests/test_betweenness.py +38 -0
  161. sknetwork/ranking/tests/test_closeness.py +30 -0
  162. sknetwork/ranking/tests/test_hits.py +20 -0
  163. sknetwork/ranking/tests/test_pagerank.py +62 -0
  164. sknetwork/ranking/tests/test_postprocess.py +26 -0
  165. sknetwork/regression/__init__.py +4 -0
  166. sknetwork/regression/base.py +61 -0
  167. sknetwork/regression/diffusion.py +210 -0
  168. sknetwork/regression/tests/__init__.py +1 -0
  169. sknetwork/regression/tests/test_API.py +32 -0
  170. sknetwork/regression/tests/test_diffusion.py +56 -0
  171. sknetwork/sknetwork.py +3 -0
  172. sknetwork/test_base.py +35 -0
  173. sknetwork/test_log.py +15 -0
  174. sknetwork/topology/__init__.py +8 -0
  175. sknetwork/topology/cliques.cpython-312-darwin.so +0 -0
  176. sknetwork/topology/cliques.pyx +149 -0
  177. sknetwork/topology/core.cpython-312-darwin.so +0 -0
  178. sknetwork/topology/core.pyx +90 -0
  179. sknetwork/topology/cycles.py +243 -0
  180. sknetwork/topology/minheap.cpython-312-darwin.so +0 -0
  181. sknetwork/topology/minheap.pxd +20 -0
  182. sknetwork/topology/minheap.pyx +109 -0
  183. sknetwork/topology/structure.py +194 -0
  184. sknetwork/topology/tests/__init__.py +1 -0
  185. sknetwork/topology/tests/test_cliques.py +28 -0
  186. sknetwork/topology/tests/test_core.py +19 -0
  187. sknetwork/topology/tests/test_cycles.py +65 -0
  188. sknetwork/topology/tests/test_structure.py +85 -0
  189. sknetwork/topology/tests/test_triangles.py +38 -0
  190. sknetwork/topology/tests/test_wl.py +72 -0
  191. sknetwork/topology/triangles.cpython-312-darwin.so +0 -0
  192. sknetwork/topology/triangles.pyx +151 -0
  193. sknetwork/topology/weisfeiler_lehman.py +133 -0
  194. sknetwork/topology/weisfeiler_lehman_core.cpython-312-darwin.so +0 -0
  195. sknetwork/topology/weisfeiler_lehman_core.pyx +114 -0
  196. sknetwork/utils/__init__.py +7 -0
  197. sknetwork/utils/check.py +355 -0
  198. sknetwork/utils/format.py +221 -0
  199. sknetwork/utils/membership.py +82 -0
  200. sknetwork/utils/neighbors.py +115 -0
  201. sknetwork/utils/tests/__init__.py +1 -0
  202. sknetwork/utils/tests/test_check.py +190 -0
  203. sknetwork/utils/tests/test_format.py +63 -0
  204. sknetwork/utils/tests/test_membership.py +24 -0
  205. sknetwork/utils/tests/test_neighbors.py +41 -0
  206. sknetwork/utils/tests/test_tfidf.py +18 -0
  207. sknetwork/utils/tests/test_values.py +66 -0
  208. sknetwork/utils/tfidf.py +37 -0
  209. sknetwork/utils/values.py +76 -0
  210. sknetwork/visualization/__init__.py +4 -0
  211. sknetwork/visualization/colors.py +34 -0
  212. sknetwork/visualization/dendrograms.py +277 -0
  213. sknetwork/visualization/graphs.py +1039 -0
  214. sknetwork/visualization/tests/__init__.py +1 -0
  215. sknetwork/visualization/tests/test_dendrograms.py +53 -0
  216. sknetwork/visualization/tests/test_graphs.py +176 -0
@@ -0,0 +1 @@
1
+ """tests for classification"""
@@ -0,0 +1,30 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for classification API"""
4
+
5
+ import unittest
6
+
7
+ from sknetwork.classification import *
8
+ from sknetwork.data.test_graphs import *
9
+ from sknetwork.embedding import LouvainEmbedding
10
+
11
+
12
+ class TestClassificationAPI(unittest.TestCase):
13
+
14
+ def test_undirected(self):
15
+ for adjacency in [test_graph(), test_digraph()]:
16
+ n = adjacency.shape[0]
17
+ seeds_array = -np.ones(n)
18
+ seeds_array[:2] = np.arange(2)
19
+ seeds_dict = {0: 0, 1: 1}
20
+
21
+ classifiers = [PageRankClassifier(), DiffusionClassifier(),
22
+ NNClassifier(embedding_method=LouvainEmbedding(), n_neighbors=1), Propagation()]
23
+
24
+ for algo in classifiers:
25
+ labels1 = algo.fit_predict(adjacency, seeds_array)
26
+ labels2 = algo.fit_predict(adjacency, seeds_dict)
27
+ self.assertTrue((labels1 == labels2).all())
28
+ self.assertEqual(labels2.shape, (n,))
29
+ membership = algo.fit_transform(adjacency, seeds_array)
30
+ self.assertTupleEqual(membership.shape, (n, 2))
@@ -0,0 +1,77 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for DiffusionClassifier"""
4
+
5
+ import unittest
6
+
7
+ from sknetwork.classification import DiffusionClassifier
8
+ from sknetwork.data.test_graphs import *
9
+
10
+
11
+ class TestDiffusionClassifier(unittest.TestCase):
12
+
13
+ def test_graph(self):
14
+ adjacency = test_graph()
15
+ n_nodes = adjacency.shape[0]
16
+ labels = {0: 0, 1: 1}
17
+ algo = DiffusionClassifier()
18
+ algo.fit(adjacency, labels=labels)
19
+ self.assertTrue(len(algo.labels_) == n_nodes)
20
+ adjacency = test_digraph()
21
+ algo = DiffusionClassifier(centering=False)
22
+ algo.fit(adjacency, labels=labels)
23
+ self.assertTrue(len(algo.labels_) == n_nodes)
24
+ with self.assertRaises(ValueError):
25
+ DiffusionClassifier(n_iter=0)
26
+ algo = DiffusionClassifier(centering=True, scale=10)
27
+ probs = algo.fit_predict_proba(adjacency, labels=labels)[:, 1]
28
+ self.assertTrue(max(probs) > 0.99)
29
+
30
+ def test_bipartite(self):
31
+ biadjacency = test_bigraph()
32
+ n_row, n_col = biadjacency.shape
33
+ labels_row = {0: 0, 1: 1}
34
+ labels_col = {5: 1}
35
+ algo = DiffusionClassifier()
36
+ algo.fit(biadjacency, labels_row=labels_row, labels_col=labels_col)
37
+ self.assertTrue(len(algo.labels_row_) == n_row)
38
+ self.assertTrue(len(algo.labels_col_) == n_col)
39
+ self.assertTrue(all(algo.labels_col_ == algo.predict(columns=True)))
40
+
41
+ def test_predict(self):
42
+ adjacency = test_graph()
43
+ n_nodes = adjacency.shape[0]
44
+ labels = {0: 0, 1: 1}
45
+ algo = DiffusionClassifier()
46
+ labels_pred = algo.fit_predict(adjacency, labels=labels)
47
+ self.assertTrue(len(labels_pred) == n_nodes)
48
+ probs_pred = algo.fit_predict_proba(adjacency, labels=labels)
49
+ self.assertTrue(probs_pred.shape == (n_nodes, 2))
50
+ membership = algo.fit_transform(adjacency, labels=labels)
51
+ self.assertTrue(membership.shape == (n_nodes, 2))
52
+
53
+ biadjacency = test_bigraph()
54
+ n_row, n_col = biadjacency.shape
55
+ labels_row = {0: 0, 1: 1}
56
+ algo = DiffusionClassifier()
57
+ labels_pred = algo.fit_predict(biadjacency, labels_row=labels_row)
58
+ self.assertTrue(len(labels_pred) == n_row)
59
+ labels_pred = algo.predict(columns=True)
60
+ self.assertTrue(len(labels_pred) == n_col)
61
+ probs_pred = algo.fit_predict_proba(biadjacency, labels_row=labels_row)
62
+ self.assertTrue(probs_pred.shape == (n_row, 2))
63
+ probs_pred = algo.predict_proba(columns=True)
64
+ self.assertTrue(probs_pred.shape == (n_col, 2))
65
+ membership = algo.fit_transform(biadjacency, labels_row=labels_row)
66
+ self.assertTrue(membership.shape == (n_row, 2))
67
+ membership = algo.transform(columns=True)
68
+ self.assertTrue(membership.shape == (n_col, 2))
69
+
70
+ def test_reindex_label(self):
71
+ adjacency = test_graph()
72
+ n_nodes = adjacency.shape[0]
73
+ labels = {0: 0, 1: 2, 2: 3}
74
+ algo = DiffusionClassifier()
75
+ labels_pred = algo.fit_predict(adjacency, labels=labels)
76
+ self.assertTrue(len(labels_pred) == n_nodes)
77
+ self.assertTrue(set(list(labels_pred)) == {0, 2, 3})
@@ -0,0 +1,23 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for KNN"""
4
+ import unittest
5
+
6
+ from sknetwork.classification import NNClassifier
7
+ from sknetwork.data.test_graphs import *
8
+ from sknetwork.embedding import Spectral
9
+
10
+
11
+ class TestKNNClassifier(unittest.TestCase):
12
+
13
+ def test_classification(self):
14
+ for adjacency in [test_graph(), test_digraph(), test_bigraph()]:
15
+ labels = {0: 0, 1: 1}
16
+
17
+ algo = NNClassifier(n_neighbors=1)
18
+ labels_pred = algo.fit_predict(adjacency, labels)
19
+ self.assertTrue(len(set(labels_pred)) == 2)
20
+
21
+ algo = NNClassifier(n_neighbors=1, embedding_method=Spectral(2), normalize=False)
22
+ labels_pred = algo.fit_predict(adjacency, labels)
23
+ self.assertTrue(len(set(labels_pred)) == 2)
@@ -0,0 +1,53 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for classification metrics"""
4
+
5
+ import unittest
6
+
7
+ from sknetwork.classification.metrics import *
8
+
9
+
10
+ class TestMetrics(unittest.TestCase):
11
+
12
+ def setUp(self) -> None:
13
+ self.labels_true = np.array([0, 1, 1, 2, 2, -1])
14
+ self.labels_pred1 = np.array([0, -1, 1, 2, 0, 0])
15
+ self.labels_pred2 = np.array([-1, -1, -1, -1, -1, 0])
16
+
17
+ def test_accuracy(self):
18
+ self.assertEqual(get_accuracy_score(self.labels_true, self.labels_pred1), 0.75)
19
+ with self.assertRaises(ValueError):
20
+ get_accuracy_score(self.labels_true, self.labels_pred2)
21
+
22
+ def test_confusion(self):
23
+ confusion = get_confusion_matrix(self.labels_true, self.labels_pred1)
24
+ self.assertEqual(confusion.data.sum(), 4)
25
+ self.assertEqual(confusion.diagonal().sum(), 3)
26
+ with self.assertRaises(ValueError):
27
+ get_accuracy_score(self.labels_true, self.labels_pred2)
28
+
29
+ def test_f1_score(self):
30
+ f1_score = get_f1_score(np.array([0, 0, 1]), np.array([0, 1, 1]))
31
+ self.assertAlmostEqual(f1_score, 0.67, 2)
32
+ with self.assertRaises(ValueError):
33
+ get_f1_score(self.labels_true, self.labels_pred1)
34
+
35
+ def test_f1_scores(self):
36
+ f1_scores = get_f1_scores(self.labels_true, self.labels_pred1)
37
+ self.assertAlmostEqual(min(f1_scores), 0.67, 2)
38
+ f1_scores, precisions, recalls = get_f1_scores(self.labels_true, self.labels_pred1, True)
39
+ self.assertAlmostEqual(min(f1_scores), 0.67, 2)
40
+ self.assertAlmostEqual(min(precisions), 0.5, 2)
41
+ self.assertAlmostEqual(min(recalls), 0.5, 2)
42
+ with self.assertRaises(ValueError):
43
+ get_f1_scores(self.labels_true, self.labels_pred2)
44
+
45
+ def test_average_f1_score(self):
46
+ f1_score = get_average_f1_score(self.labels_true, self.labels_pred1)
47
+ self.assertAlmostEqual(f1_score, 0.78, 2)
48
+ f1_score = get_average_f1_score(self.labels_true, self.labels_pred1, average='micro')
49
+ self.assertEqual(f1_score, 0.75)
50
+ f1_score = get_average_f1_score(self.labels_true, self.labels_pred1, average='weighted')
51
+ self.assertEqual(f1_score, 0.80)
52
+ with self.assertRaises(ValueError):
53
+ get_average_f1_score(self.labels_true, self.labels_pred2, 'toto')
@@ -0,0 +1,20 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for PageRankClassifier"""
4
+
5
+ import unittest
6
+
7
+ from sknetwork.classification import PageRankClassifier
8
+ from sknetwork.data.test_graphs import *
9
+
10
+
11
+ class TestPageRankClassifier(unittest.TestCase):
12
+
13
+ def test_solvers(self):
14
+ adjacency = test_graph()
15
+ labels = {0: 0, 1: 1}
16
+
17
+ ref = PageRankClassifier(solver='piteration').fit_predict(adjacency, labels)
18
+ for solver in ['lanczos', 'bicgstab']:
19
+ labels_pred = PageRankClassifier(solver=solver).fit_predict(adjacency, labels)
20
+ self.assertTrue((ref == labels_pred).all())
@@ -0,0 +1,24 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """Tests for label propagation"""
4
+
5
+ import unittest
6
+
7
+ from sknetwork.classification import Propagation
8
+ from sknetwork.data.test_graphs import *
9
+
10
+
11
+ class TestLabelPropagation(unittest.TestCase):
12
+
13
+ def test_algo(self):
14
+ for adjacency in [test_graph(), test_digraph(), test_bigraph()]:
15
+ n = adjacency.shape[0]
16
+ labels = {0: 0, 1: 1}
17
+ propagation = Propagation(n_iter=3, weighted=False)
18
+ labels_pred = propagation.fit_predict(adjacency, labels)
19
+ self.assertEqual(labels_pred.shape, (n,))
20
+
21
+ for order in ['random', 'decreasing', 'increasing']:
22
+ propagation = Propagation(node_order=order)
23
+ labels_pred = propagation.fit_predict(adjacency, labels)
24
+ self.assertEqual(labels_pred.shape, (n,))
@@ -0,0 +1,56 @@
1
+ # distutils: language = c++
2
+ # cython: language_level=3
3
+ """
4
+ Created in April 2020
5
+ @author: Nathan de Lara <nathan.delara@polytechnique.org>
6
+ """
7
+ from libcpp.set cimport set
8
+ from libcpp.vector cimport vector
9
+
10
+ cimport cython
11
+
12
+
13
+ @cython.boundscheck(False)
14
+ @cython.wraparound(False)
15
+ def vote_update(int[:] indptr, int[:] indices, float[:] data, int[:] labels, int[:] index):
16
+ """One pass of label updates over the graph by majority vote among neighbors."""
17
+ cdef int i
18
+ cdef int ii
19
+ cdef int j
20
+ cdef int jj
21
+ cdef int n_indices = index.shape[0]
22
+ cdef int label
23
+ cdef int label_neigh_size
24
+ cdef float best_score
25
+
26
+ cdef vector[int] labels_neigh
27
+ cdef vector[float] votes_neigh, votes
28
+ cdef set[int] labels_unique = ()
29
+
30
+ cdef int n = labels.shape[0]
31
+ for i in range(n):
32
+ votes.push_back(0)
33
+
34
+ for ii in range(n_indices):
35
+ i = index[ii]
36
+ labels_neigh.clear()
37
+ for j in range(indptr[i], indptr[i + 1]):
38
+ jj = indices[j]
39
+ labels_neigh.push_back(labels[jj])
40
+ votes_neigh.push_back(data[jj])
41
+
42
+ labels_unique.clear()
43
+ label_neigh_size = labels_neigh.size()
44
+ for jj in range(label_neigh_size):
45
+ label = labels_neigh[jj]
46
+ if label >= 0:
47
+ labels_unique.insert(label)
48
+ votes[label] += votes_neigh[jj]
49
+
50
+ best_score = -1
51
+ for label in labels_unique:
52
+ if votes[label] > best_score:
53
+ labels[i] = label
54
+ best_score = votes[label]
55
+ votes[label] = 0
56
+ return labels
@@ -0,0 +1,8 @@
1
+ """clustering module"""
2
+ from sknetwork.clustering.base import BaseClustering
3
+ from sknetwork.clustering.louvain import Louvain
4
+ from sknetwork.clustering.leiden import Leiden
5
+ from sknetwork.clustering.propagation_clustering import PropagationClustering
6
+ from sknetwork.clustering.metrics import get_modularity
7
+ from sknetwork.clustering.postprocess import reindex_labels, aggregate_graph
8
+ from sknetwork.clustering.kcenters import KCenters
@@ -0,0 +1,172 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ Created on Nov, 2019
5
+ @author: Nathan de Lara <nathan.delara@polytechnique.org>
6
+ """
7
+ from abc import ABC
8
+
9
+ import numpy as np
10
+ from scipy import sparse
11
+
12
+ from sknetwork.linalg.normalizer import normalize
13
+ from sknetwork.base import Algorithm
14
+ from sknetwork.utils.membership import get_membership
15
+
16
+
17
+ class BaseClustering(Algorithm, ABC):
18
+ """Base class for clustering algorithms.
19
+
20
+ Attributes
21
+ ----------
22
+ labels_ : np.ndarray, shape (n_labels,)
23
+ Label of each node.
24
+ probs_ : sparse.csr_matrix, shape (n_row, n_labels)
25
+ Probability distribution over labels.
26
+ labels_row_, labels_col_ : np.ndarray
27
+ Labels of rows and columns, for bipartite graphs.
28
+ probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
29
+ Probability distributions over labels for rows and columns (for bipartite graphs).
30
+ aggregate_ : sparse.csr_matrix
31
+ Aggregate adjacency matrix or biadjacency matrix between clusters.
32
+ """
33
+ def __init__(self, sort_clusters: bool = True, return_probs: bool = False, return_aggregate: bool = False):
34
+ self.sort_clusters = sort_clusters
35
+ self.return_probs = return_probs
36
+ self.return_aggregate = return_aggregate
37
+ self._init_vars()
38
+
39
+ def predict(self, columns=False) -> np.ndarray:
40
+ """Return the labels predicted by the algorithm.
41
+
42
+ Parameters
43
+ ----------
44
+ columns : bool
45
+ If ``True``, return the prediction for columns.
46
+
47
+ Returns
48
+ -------
49
+ labels : np.ndarray
50
+ Labels.
51
+ """
52
+ if columns:
53
+ return self.labels_col_
54
+ return self.labels_
55
+
56
+ def fit_predict(self, *args, **kwargs) -> np.ndarray:
57
+ """Fit algorithm to the data and return the labels. Same parameters as the ``fit`` method.
58
+
59
+ Returns
60
+ -------
61
+ labels : np.ndarray
62
+ Labels.
63
+ """
64
+ self.fit(*args, **kwargs)
65
+ return self.predict()
66
+
67
+ def predict_proba(self, columns=False) -> np.ndarray:
68
+ """Return the probability distribution over labels as predicted by the algorithm.
69
+
70
+ Parameters
71
+ ----------
72
+ columns : bool
73
+ If ``True``, return the prediction for columns.
74
+
75
+ Returns
76
+ -------
77
+ probs : np.ndarray
78
+ Probability distribution over labels.
79
+ """
80
+ if columns:
81
+ return self.probs_col_.toarray()
82
+ return self.probs_.toarray()
83
+
84
+ def fit_predict_proba(self, *args, **kwargs) -> np.ndarray:
85
+ """Fit algorithm to the data and return the probability distribution over labels.
86
+ Same parameters as the ``fit`` method.
87
+
88
+ Returns
89
+ -------
90
+ probs : np.ndarray
91
+ Probability of each label.
92
+ """
93
+ self.fit(*args, **kwargs)
94
+ return self.predict_proba()
95
+
96
+ def transform(self, columns=False) -> sparse.csr_matrix:
97
+ """Return the probability distribution over labels in sparse format.
98
+
99
+ Parameters
100
+ ----------
101
+ columns : bool
102
+ If ``True``, return the prediction for columns.
103
+
104
+ Returns
105
+ -------
106
+ probs : sparse.csr_matrix
107
+ Probability distribution over labels.
108
+ """
109
+ if columns:
110
+ return self.probs_col_
111
+ return self.probs_
112
+
113
+ def fit_transform(self, *args, **kwargs) -> np.ndarray:
114
+ """Fit algorithm to the data and return the membership matrix. Same parameters as the ``fit`` method.
115
+
116
+ Returns
117
+ -------
118
+ membership : np.ndarray
119
+ Membership matrix (distribution over clusters).
120
+ """
121
+ self.fit(*args, **kwargs)
122
+ return self.transform()
123
+
124
+ def _init_vars(self):
125
+ """Init variables."""
126
+ self.labels_ = None
127
+ self.labels_row_ = None
128
+ self.labels_col_ = None
129
+ self.probs_ = None
130
+ self.probs_row_ = None
131
+ self.probs_col_ = None
132
+ self.aggregate_ = None
133
+ self.bipartite = None
134
+ return self
135
+
136
+ def _split_vars(self, shape):
137
+ """Split labels_ into labels_row_ and labels_col_"""
138
+ n_row = shape[0]
139
+ self.labels_row_ = self.labels_[:n_row]
140
+ self.labels_col_ = self.labels_[n_row:]
141
+ self.labels_ = self.labels_row_
142
+ return self
143
+
144
+ def _secondary_outputs(self, input_matrix: sparse.csr_matrix):
145
+ """Compute different variables from labels_."""
146
+ if self.return_probs or self.return_aggregate:
147
+ input_matrix = input_matrix.astype(float)
148
+ if not self.bipartite:
149
+ probs = get_membership(self.labels_)
150
+ if self.return_probs:
151
+ self.probs_ = normalize(input_matrix.dot(probs))
152
+ if self.return_aggregate:
153
+ self.aggregate_ = sparse.csr_matrix(probs.T.dot(input_matrix.dot(probs)))
154
+ else:
155
+ if self.labels_col_ is None:
156
+ n_labels = max(self.labels_) + 1
157
+ probs_row = get_membership(self.labels_, n_labels=n_labels)
158
+ probs_col = normalize(input_matrix.T.dot(probs_row))
159
+ else:
160
+ n_labels = max(max(self.labels_row_), max(self.labels_col_)) + 1
161
+ probs_row = get_membership(self.labels_row_, n_labels=n_labels)
162
+ probs_col = get_membership(self.labels_col_, n_labels=n_labels)
163
+ if self.return_probs:
164
+ self.probs_row_ = normalize(input_matrix.dot(probs_col))
165
+ self.probs_col_ = normalize(input_matrix.T.dot(probs_row))
166
+ self.probs_ = self.probs_row_
167
+ if self.return_aggregate:
168
+ aggregate_ = sparse.csr_matrix(probs_row.T.dot(input_matrix))
169
+ aggregate_ = aggregate_.dot(probs_col)
170
+ self.aggregate_ = aggregate_
171
+
172
+ return self