scikit-learn-intelex 2025.4.0__py313-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (259) hide show
  1. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
  2. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
  3. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
  4. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
  5. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
  6. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
  7. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
  8. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
  9. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
  10. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
  11. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
  12. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
  13. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
  14. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
  16. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
  17. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
  20. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
  23. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
  25. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
  28. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
  31. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
  34. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
  36. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
  38. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
  39. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
  40. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
  48. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
  49. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
  50. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
  51. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
  54. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
  55. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
  56. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
  57. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +696 -0
  59. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
  60. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
  61. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_device_offload.py +204 -0
  62. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
  63. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
  64. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
  65. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
  66. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  67. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  68. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  69. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
  70. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
  71. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +105 -0
  72. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +557 -0
  73. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +112 -0
  74. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
  75. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
  76. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
  78. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
  79. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
  80. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_policy.py +55 -0
  81. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
  82. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
  83. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
  84. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +128 -0
  85. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
  86. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +122 -0
  87. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +161 -0
  88. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
  89. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
  90. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
  91. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +121 -0
  92. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
  93. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +475 -0
  94. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
  95. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +214 -0
  96. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
  97. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +285 -0
  98. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
  99. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +736 -0
  100. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
  101. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
  102. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +292 -0
  103. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +325 -0
  104. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +247 -0
  105. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  106. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  107. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +259 -0
  108. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
  109. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
  110. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
  111. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +763 -0
  112. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
  113. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
  114. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
  115. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +152 -0
  116. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
  117. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
  118. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
  119. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
  120. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
  121. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
  122. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
  123. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
  124. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
  125. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
  126. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
  127. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
  128. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
  129. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
  130. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
  131. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/validation.py +464 -0
  132. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__init__.py +66 -0
  133. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
  134. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_config.py +116 -0
  135. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
  136. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_utils.py +177 -0
  137. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
  138. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +261 -0
  139. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  140. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  141. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  142. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
  143. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +197 -0
  144. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +397 -0
  145. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
  146. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
  147. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
  148. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  149. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +405 -0
  150. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  151. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
  152. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +427 -0
  153. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +58 -0
  154. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +534 -0
  155. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
  156. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
  157. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +2029 -0
  158. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +140 -0
  159. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
  160. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
  161. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
  162. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +30 -0
  163. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +495 -0
  164. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +432 -0
  165. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +346 -0
  166. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +415 -0
  167. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +390 -0
  168. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  169. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  170. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +142 -0
  171. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
  172. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
  173. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
  174. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +26 -0
  175. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +250 -0
  176. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
  177. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +22 -0
  178. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
  179. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
  180. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
  181. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +22 -0
  182. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
  183. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
  184. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
  185. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +310 -0
  186. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +231 -0
  187. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +207 -0
  188. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +178 -0
  189. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
  190. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
  191. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
  192. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +142 -0
  193. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  194. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  195. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +244 -0
  196. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  197. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
  198. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
  199. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  200. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  201. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  202. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  203. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
  204. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
  205. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
  206. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  207. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  208. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
  209. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  210. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  211. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  212. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  213. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
  214. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  215. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
  216. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  217. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  218. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
  219. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +71 -0
  220. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  221. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
  222. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  223. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
  224. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  225. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  226. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  227. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  228. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
  229. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
  230. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  231. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
  232. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
  233. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +371 -0
  234. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +170 -0
  235. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +399 -0
  236. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +167 -0
  237. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +93 -0
  238. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +491 -0
  239. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
  240. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +43 -0
  241. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +347 -0
  242. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
  243. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
  244. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
  245. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +377 -0
  246. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +326 -0
  247. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
  248. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +436 -0
  249. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
  250. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
  251. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
  252. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
  253. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
  254. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +208 -0
  255. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  256. scikit_learn_intelex-2025.4.0.dist-info/METADATA +192 -0
  257. scikit_learn_intelex-2025.4.0.dist-info/RECORD +259 -0
  258. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  259. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,455 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.basic_statistics.tests.utils import options_and_tests
23
+ from onedal.tests.utils._dataframes_support import (
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
27
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
28
+
29
+
30
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
31
+ @pytest.mark.parametrize("weighted", [True, False])
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
34
+ X = np.array([[0, 0], [1, 1]])
35
+ X = X.astype(dtype=dtype)
36
+ X_split = np.array_split(X, 2)
37
+ if weighted:
38
+ weights = np.array([1, 0.5])
39
+ weights = weights.astype(dtype=dtype)
40
+ weights_split = np.array_split(weights, 2)
41
+
42
+ incbs = IncrementalBasicStatistics()
43
+ for i in range(2):
44
+ X_split_df = _convert_to_dataframe(
45
+ X_split[i], sycl_queue=queue, target_df=dataframe
46
+ )
47
+ if weighted:
48
+ weights_split_df = _convert_to_dataframe(
49
+ weights_split[i], sycl_queue=queue, target_df=dataframe
50
+ )
51
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
52
+ else:
53
+ result = incbs.partial_fit(X_split_df)
54
+
55
+ if weighted:
56
+ expected_weighted_mean = np.array([0.25, 0.25])
57
+ expected_weighted_min = np.array([0, 0])
58
+ expected_weighted_max = np.array([0.5, 0.5])
59
+ assert_allclose(expected_weighted_mean, result.mean)
60
+ assert_allclose(expected_weighted_max, result.max)
61
+ assert_allclose(expected_weighted_min, result.min)
62
+ else:
63
+ expected_mean = np.array([0.5, 0.5])
64
+ expected_min = np.array([0, 0])
65
+ expected_max = np.array([1, 1])
66
+ assert_allclose(expected_mean, result.mean)
67
+ assert_allclose(expected_max, result.max)
68
+ assert_allclose(expected_min, result.min)
69
+
70
+
71
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
72
+ @pytest.mark.parametrize("num_batches", [2, 10])
73
+ @pytest.mark.parametrize("result_option", options_and_tests.keys())
74
+ @pytest.mark.parametrize("row_count", [100, 1000])
75
+ @pytest.mark.parametrize("column_count", [10, 100])
76
+ @pytest.mark.parametrize("weighted", [True, False])
77
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
78
+ def test_partial_fit_single_option_on_random_data(
79
+ dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
80
+ ):
81
+ function, tols = options_and_tests[result_option]
82
+ fp32tol, fp64tol = tols
83
+ seed = 77
84
+ gen = np.random.default_rng(seed)
85
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
86
+ X = X.astype(dtype=dtype)
87
+ X_split = np.array_split(X, num_batches)
88
+ if weighted:
89
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
90
+ weights = weights.astype(dtype=dtype)
91
+ weights_split = np.array_split(weights, num_batches)
92
+ incbs = IncrementalBasicStatistics(result_options=result_option)
93
+
94
+ for i in range(num_batches):
95
+ X_split_df = _convert_to_dataframe(
96
+ X_split[i], sycl_queue=queue, target_df=dataframe
97
+ )
98
+ if weighted:
99
+ weights_split_df = _convert_to_dataframe(
100
+ weights_split[i], sycl_queue=queue, target_df=dataframe
101
+ )
102
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
103
+ else:
104
+ result = incbs.partial_fit(X_split_df)
105
+
106
+ res = getattr(result, result_option)
107
+ if weighted:
108
+ weighted_data = np.diag(weights) @ X
109
+ gtr = function(weighted_data)
110
+ else:
111
+ gtr = function(X)
112
+
113
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
114
+ assert_allclose(gtr, res, atol=tol)
115
+
116
+
117
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
118
+ @pytest.mark.parametrize("num_batches", [2, 10])
119
+ @pytest.mark.parametrize("row_count", [100, 1000])
120
+ @pytest.mark.parametrize("column_count", [10, 100])
121
+ @pytest.mark.parametrize("weighted", [True, False])
122
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
123
+ def test_partial_fit_multiple_options_on_random_data(
124
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
125
+ ):
126
+ seed = 42
127
+ gen = np.random.default_rng(seed)
128
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
129
+ X = X.astype(dtype=dtype)
130
+ X_split = np.array_split(X, num_batches)
131
+ if weighted:
132
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
133
+ weights = weights.astype(dtype=dtype)
134
+ weights_split = np.array_split(weights, num_batches)
135
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
136
+
137
+ for i in range(num_batches):
138
+ X_split_df = _convert_to_dataframe(
139
+ X_split[i], sycl_queue=queue, target_df=dataframe
140
+ )
141
+ if weighted:
142
+ weights_split_df = _convert_to_dataframe(
143
+ weights_split[i], sycl_queue=queue, target_df=dataframe
144
+ )
145
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
146
+ else:
147
+ result = incbs.partial_fit(X_split_df)
148
+
149
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
150
+ if weighted:
151
+ weighted_data = np.diag(weights) @ X
152
+ gtr_mean, gtr_max, gtr_sum = (
153
+ options_and_tests["mean"][0](weighted_data),
154
+ options_and_tests["max"][0](weighted_data),
155
+ options_and_tests["sum"][0](weighted_data),
156
+ )
157
+ else:
158
+ gtr_mean, gtr_max, gtr_sum = (
159
+ options_and_tests["mean"][0](X),
160
+ options_and_tests["max"][0](X),
161
+ options_and_tests["sum"][0](X),
162
+ )
163
+
164
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
165
+ assert_allclose(gtr_mean, res_mean, atol=tol)
166
+ assert_allclose(gtr_max, res_max, atol=tol)
167
+ assert_allclose(gtr_sum, res_sum, atol=tol)
168
+
169
+
170
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
171
+ @pytest.mark.parametrize("num_batches", [2, 10])
172
+ @pytest.mark.parametrize("row_count", [100, 1000])
173
+ @pytest.mark.parametrize("column_count", [10, 100])
174
+ @pytest.mark.parametrize("weighted", [True, False])
175
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
176
+ def test_partial_fit_all_option_on_random_data(
177
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
178
+ ):
179
+ seed = 77
180
+ gen = np.random.default_rng(seed)
181
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
182
+ X = X.astype(dtype=dtype)
183
+ X_split = np.array_split(X, num_batches)
184
+ if weighted:
185
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
186
+ weights = weights.astype(dtype=dtype)
187
+ weights_split = np.array_split(weights, num_batches)
188
+ incbs = IncrementalBasicStatistics(result_options="all")
189
+
190
+ for i in range(num_batches):
191
+ X_split_df = _convert_to_dataframe(
192
+ X_split[i], sycl_queue=queue, target_df=dataframe
193
+ )
194
+ if weighted:
195
+ weights_split_df = _convert_to_dataframe(
196
+ weights_split[i], sycl_queue=queue, target_df=dataframe
197
+ )
198
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
199
+ else:
200
+ result = incbs.partial_fit(X_split_df)
201
+
202
+ if weighted:
203
+ weighted_data = np.diag(weights) @ X
204
+
205
+ for result_option in options_and_tests:
206
+ function, tols = options_and_tests[result_option]
207
+ fp32tol, fp64tol = tols
208
+ res = getattr(result, result_option)
209
+ if weighted:
210
+ gtr = function(weighted_data)
211
+ else:
212
+ gtr = function(X)
213
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
214
+ assert_allclose(gtr, res, atol=tol)
215
+
216
+
217
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
218
+ @pytest.mark.parametrize("weighted", [True, False])
219
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
220
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
221
+ X = np.array([[0, 0], [1, 1]])
222
+ X = X.astype(dtype=dtype)
223
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
224
+ if weighted:
225
+ weights = np.array([1, 0.5])
226
+ weights = weights.astype(dtype=dtype)
227
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
228
+ incbs = IncrementalBasicStatistics(batch_size=1)
229
+
230
+ if weighted:
231
+ result = incbs.fit(X_df, sample_weight=weights_df)
232
+ else:
233
+ result = incbs.fit(X_df)
234
+
235
+ if weighted:
236
+ expected_weighted_mean = np.array([0.25, 0.25])
237
+ expected_weighted_min = np.array([0, 0])
238
+ expected_weighted_max = np.array([0.5, 0.5])
239
+ assert_allclose(expected_weighted_mean, result.mean)
240
+ assert_allclose(expected_weighted_max, result.max)
241
+ assert_allclose(expected_weighted_min, result.min)
242
+ else:
243
+ expected_mean = np.array([0.5, 0.5])
244
+ expected_min = np.array([0, 0])
245
+ expected_max = np.array([1, 1])
246
+ assert_allclose(expected_mean, result.mean)
247
+ assert_allclose(expected_max, result.max)
248
+ assert_allclose(expected_min, result.min)
249
+
250
+
251
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
252
+ @pytest.mark.parametrize("num_batches", [2, 10])
253
+ @pytest.mark.parametrize("result_option", options_and_tests.keys())
254
+ @pytest.mark.parametrize("row_count", [100, 1000])
255
+ @pytest.mark.parametrize("column_count", [10, 100])
256
+ @pytest.mark.parametrize("weighted", [True, False])
257
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
258
+ def test_fit_single_option_on_random_data(
259
+ dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
260
+ ):
261
+ function, tols = options_and_tests[result_option]
262
+ fp32tol, fp64tol = tols
263
+ seed = 77
264
+ gen = np.random.default_rng(seed)
265
+ batch_size = row_count // num_batches
266
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
267
+ X = X.astype(dtype=dtype)
268
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
269
+ if weighted:
270
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
271
+ weights = weights.astype(dtype=dtype)
272
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
273
+ incbs = IncrementalBasicStatistics(
274
+ result_options=result_option, batch_size=batch_size
275
+ )
276
+
277
+ if weighted:
278
+ result = incbs.fit(X_df, sample_weight=weights_df)
279
+ else:
280
+ result = incbs.fit(X_df)
281
+
282
+ res = getattr(result, result_option)
283
+ if weighted:
284
+ weighted_data = np.diag(weights) @ X
285
+ gtr = function(weighted_data)
286
+ else:
287
+ gtr = function(X)
288
+
289
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
290
+ assert_allclose(gtr, res, atol=tol)
291
+
292
+
293
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
294
+ @pytest.mark.parametrize("num_batches", [2, 10])
295
+ @pytest.mark.parametrize("row_count", [100, 1000])
296
+ @pytest.mark.parametrize("column_count", [10, 100])
297
+ @pytest.mark.parametrize("weighted", [True, False])
298
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
299
+ def test_fit_multiple_options_on_random_data(
300
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
301
+ ):
302
+ seed = 77
303
+ gen = np.random.default_rng(seed)
304
+ batch_size = row_count // num_batches
305
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
306
+ X = X.astype(dtype=dtype)
307
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
308
+ if weighted:
309
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
310
+ weights = weights.astype(dtype=dtype)
311
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
312
+ incbs = IncrementalBasicStatistics(
313
+ result_options=["mean", "max", "sum"], batch_size=batch_size
314
+ )
315
+
316
+ if weighted:
317
+ result = incbs.fit(X_df, sample_weight=weights_df)
318
+ else:
319
+ result = incbs.fit(X_df)
320
+
321
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
322
+ if weighted:
323
+ weighted_data = np.diag(weights) @ X
324
+ gtr_mean, gtr_max, gtr_sum = (
325
+ options_and_tests["mean"][0](weighted_data),
326
+ options_and_tests["max"][0](weighted_data),
327
+ options_and_tests["sum"][0](weighted_data),
328
+ )
329
+ else:
330
+ gtr_mean, gtr_max, gtr_sum = (
331
+ options_and_tests["mean"][0](X),
332
+ options_and_tests["max"][0](X),
333
+ options_and_tests["sum"][0](X),
334
+ )
335
+
336
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
337
+ assert_allclose(gtr_mean, res_mean, atol=tol)
338
+ assert_allclose(gtr_max, res_max, atol=tol)
339
+ assert_allclose(gtr_sum, res_sum, atol=tol)
340
+
341
+
342
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
343
+ @pytest.mark.parametrize("num_batches", [2, 10])
344
+ @pytest.mark.parametrize("row_count", [100, 1000])
345
+ @pytest.mark.parametrize("column_count", [10, 100])
346
+ @pytest.mark.parametrize("weighted", [True, False])
347
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
348
+ def test_fit_all_option_on_random_data(
349
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
350
+ ):
351
+ seed = 77
352
+ gen = np.random.default_rng(seed)
353
+ batch_size = row_count // num_batches
354
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
355
+ X = X.astype(dtype=dtype)
356
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
357
+ if weighted:
358
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
359
+ weights = weights.astype(dtype=dtype)
360
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
361
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
362
+
363
+ if weighted:
364
+ result = incbs.fit(X_df, sample_weight=weights_df)
365
+ else:
366
+ result = incbs.fit(X_df)
367
+
368
+ if weighted:
369
+ weighted_data = np.diag(weights) @ X
370
+
371
+ for result_option in options_and_tests:
372
+ function, tols = options_and_tests[result_option]
373
+ fp32tol, fp64tol = tols
374
+ res = getattr(result, result_option)
375
+ if weighted:
376
+ gtr = function(weighted_data)
377
+ else:
378
+ gtr = function(X)
379
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
380
+ assert_allclose(gtr, res, atol=tol)
381
+
382
+
383
+ def test_warning():
384
+ basicstat = IncrementalBasicStatistics("all")
385
+ # Only 2d inputs supported into IncrementalBasicStatistics
386
+ data = np.array([[0.0], [1.0]])
387
+
388
+ basicstat.fit(data)
389
+ for i in basicstat._onedal_estimator.get_all_result_options():
390
+ with pytest.warns(
391
+ UserWarning,
392
+ match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
393
+ ) as warn_record:
394
+ getattr(basicstat, i)
395
+
396
+ if daal_check_version((2026, "P", 0)):
397
+ assert len(warn_record) == 0, i
398
+ else:
399
+ assert len(warn_record) == 1, i
400
+
401
+
402
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
403
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
404
+ def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, dtype):
405
+ import pickle
406
+
407
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
408
+
409
+ incbs = IncrementalBasicStatistics()
410
+
411
+ # Check that estimator can be serialized without any data.
412
+ dump = pickle.dumps(incbs)
413
+ incbs_loaded = pickle.loads(dump)
414
+ seed = 77
415
+ gen = np.random.default_rng(seed)
416
+ X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
417
+ X = X.astype(dtype)
418
+ X_split = np.array_split(X, 2)
419
+ X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
420
+ incbs.partial_fit(X_split_df)
421
+ incbs_loaded.partial_fit(X_split_df)
422
+
423
+ # Check that estimator can be serialized after partial_fit call.
424
+ dump = pickle.dumps(incbs_loaded)
425
+ incbs_loaded = pickle.loads(dump)
426
+
427
+ X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
428
+ incbs.partial_fit(X_split_df)
429
+ incbs_loaded.partial_fit(X_split_df)
430
+ dump = pickle.dumps(incbs)
431
+ incbs_loaded = pickle.loads(dump)
432
+ assert incbs.batch_size == incbs_loaded.batch_size
433
+ assert incbs.n_features_in_ == incbs_loaded.n_features_in_
434
+ assert incbs.n_samples_seen_ == incbs_loaded.n_samples_seen_
435
+ if hasattr(incbs, "_parameter_constraints"):
436
+ assert incbs._parameter_constraints == incbs_loaded._parameter_constraints
437
+ assert incbs.n_jobs == incbs_loaded.n_jobs
438
+ for result_option in options_and_tests:
439
+ _, tols = options_and_tests[result_option]
440
+ fp32tol, fp64tol = tols
441
+ res = getattr(incbs, result_option)
442
+ res_loaded = getattr(incbs_loaded, result_option)
443
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
444
+ assert_allclose(res, res_loaded, atol=tol)
445
+
446
+ # Check that finalized estimator can be serialized.
447
+ dump = pickle.dumps(incbs_loaded)
448
+ incbs_loaded = pickle.loads(dump)
449
+ for result_option in options_and_tests:
450
+ _, tols = options_and_tests[result_option]
451
+ fp32tol, fp64tol = tols
452
+ res = getattr(incbs, result_option)
453
+ res_loaded = getattr(incbs_loaded, result_option)
454
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
455
+ assert_allclose(res, res_loaded, atol=tol)
@@ -0,0 +1,20 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from .dbscan import DBSCAN
18
+ from .k_means import KMeans
19
+
20
+ __all__ = ["DBSCAN", "KMeans"]
@@ -0,0 +1,197 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ from abc import ABC
19
+
20
+ from scipy import sparse as sp
21
+ from sklearn.cluster import DBSCAN as _sklearn_DBSCAN
22
+ from sklearn.utils.validation import _check_sample_weight
23
+
24
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
25
+ from daal4py.sklearn._utils import sklearn_check_version
26
+ from onedal.cluster import DBSCAN as onedal_DBSCAN
27
+
28
+ from .._device_offload import dispatch
29
+ from .._utils import PatchableEstimator, PatchingConditionsChain
30
+
31
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
32
+ from sklearn.utils import check_scalar
33
+
34
+ if sklearn_check_version("1.6"):
35
+ from sklearn.utils.validation import validate_data
36
+ else:
37
+ validate_data = _sklearn_DBSCAN._validate_data
38
+
39
+
40
+ class BaseDBSCAN(ABC):
41
+ def _onedal_dbscan(self, **onedal_params):
42
+ return onedal_DBSCAN(**onedal_params)
43
+
44
+ def _save_attributes(self):
45
+ assert hasattr(self, "_onedal_estimator")
46
+
47
+ self.labels_ = self._onedal_estimator.labels_
48
+ self.core_sample_indices_ = self._onedal_estimator.core_sample_indices_
49
+ self.components_ = self._onedal_estimator.components_
50
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
51
+
52
+
53
+ @control_n_jobs(decorated_methods=["fit"])
54
+ class DBSCAN(PatchableEstimator, _sklearn_DBSCAN, BaseDBSCAN):
55
+ __doc__ = _sklearn_DBSCAN.__doc__
56
+
57
+ if sklearn_check_version("1.2"):
58
+ _parameter_constraints: dict = {**_sklearn_DBSCAN._parameter_constraints}
59
+
60
+ def __init__(
61
+ self,
62
+ eps=0.5,
63
+ *,
64
+ min_samples=5,
65
+ metric="euclidean",
66
+ metric_params=None,
67
+ algorithm="auto",
68
+ leaf_size=30,
69
+ p=None,
70
+ n_jobs=None,
71
+ ):
72
+ super(DBSCAN, self).__init__(
73
+ eps=eps,
74
+ min_samples=min_samples,
75
+ metric=metric,
76
+ metric_params=metric_params,
77
+ algorithm=algorithm,
78
+ leaf_size=leaf_size,
79
+ p=p,
80
+ n_jobs=n_jobs,
81
+ )
82
+ self.eps = eps
83
+ self.min_samples = min_samples
84
+ self.metric = metric
85
+ self.metric_params = metric_params
86
+ self.algorithm = algorithm
87
+ self.leaf_size = leaf_size
88
+ self.p = p
89
+ self.n_jobs = n_jobs
90
+
91
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
92
+ if sklearn_check_version("1.0"):
93
+ X = validate_data(self, X, force_all_finite=False)
94
+
95
+ onedal_params = {
96
+ "eps": self.eps,
97
+ "min_samples": self.min_samples,
98
+ "metric": self.metric,
99
+ "metric_params": self.metric_params,
100
+ "algorithm": self.algorithm,
101
+ "leaf_size": self.leaf_size,
102
+ "p": self.p,
103
+ "n_jobs": self.n_jobs,
104
+ }
105
+ self._onedal_estimator = self._onedal_dbscan(**onedal_params)
106
+
107
+ self._onedal_estimator.fit(X, y=y, sample_weight=sample_weight, queue=queue)
108
+ self._save_attributes()
109
+
110
+ def _onedal_supported(self, method_name, *data):
111
+ class_name = self.__class__.__name__
112
+ patching_status = PatchingConditionsChain(
113
+ f"sklearn.cluster.{class_name}.{method_name}"
114
+ )
115
+ if method_name == "fit":
116
+ X, y, sample_weight = data
117
+ patching_status.and_conditions(
118
+ [
119
+ (
120
+ self.algorithm in ["auto", "brute"],
121
+ f"'{self.algorithm}' algorithm is not supported. "
122
+ "Only 'auto' and 'brute' algorithms are supported",
123
+ ),
124
+ (
125
+ self.metric == "euclidean"
126
+ or (self.metric == "minkowski" and self.p == 2),
127
+ f"'{self.metric}' (p={self.p}) metric is not supported. "
128
+ "Only 'euclidean' or 'minkowski' with p=2 metrics are supported.",
129
+ ),
130
+ (not sp.issparse(X), "X is sparse. Sparse input is not supported."),
131
+ ]
132
+ )
133
+ return patching_status
134
+ raise RuntimeError(f"Unknown method {method_name} in {self.__class__.__name__}")
135
+
136
+ def _onedal_cpu_supported(self, method_name, *data):
137
+ return self._onedal_supported(method_name, *data)
138
+
139
+ def _onedal_gpu_supported(self, method_name, *data):
140
+ return self._onedal_supported(method_name, *data)
141
+
142
+ def fit(self, X, y=None, sample_weight=None):
143
+ if sklearn_check_version("1.2"):
144
+ self._validate_params()
145
+ elif sklearn_check_version("1.1"):
146
+ check_scalar(
147
+ self.eps,
148
+ "eps",
149
+ target_type=numbers.Real,
150
+ min_val=0.0,
151
+ include_boundaries="neither",
152
+ )
153
+ check_scalar(
154
+ self.min_samples,
155
+ "min_samples",
156
+ target_type=numbers.Integral,
157
+ min_val=1,
158
+ include_boundaries="left",
159
+ )
160
+ check_scalar(
161
+ self.leaf_size,
162
+ "leaf_size",
163
+ target_type=numbers.Integral,
164
+ min_val=1,
165
+ include_boundaries="left",
166
+ )
167
+ if self.p is not None:
168
+ check_scalar(
169
+ self.p,
170
+ "p",
171
+ target_type=numbers.Real,
172
+ min_val=0.0,
173
+ include_boundaries="left",
174
+ )
175
+ if self.n_jobs is not None:
176
+ check_scalar(self.n_jobs, "n_jobs", target_type=numbers.Integral)
177
+ else:
178
+ if self.eps <= 0.0:
179
+ raise ValueError(f"eps == {self.eps}, must be > 0.0.")
180
+
181
+ if sample_weight is not None:
182
+ sample_weight = _check_sample_weight(sample_weight, X)
183
+ dispatch(
184
+ self,
185
+ "fit",
186
+ {
187
+ "onedal": self.__class__._onedal_fit,
188
+ "sklearn": _sklearn_DBSCAN.fit,
189
+ },
190
+ X,
191
+ y,
192
+ sample_weight,
193
+ )
194
+
195
+ return self
196
+
197
+ fit.__doc__ = _sklearn_DBSCAN.fit.__doc__