scikit-learn-intelex 2025.4.0__py313-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +696 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_device_offload.py +204 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +175 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +105 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +557 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +112 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_policy.py +55 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +128 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +122 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +161 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +121 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +475 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +214 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +285 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +736 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +292 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +325 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +247 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +259 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +763 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +152 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/validation.py +464 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__init__.py +66 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_config.py +116 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_utils.py +177 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +261 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +197 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +397 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +405 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +427 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +58 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +534 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +2029 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +140 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +30 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +495 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +432 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +346 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +415 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +390 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +142 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +26 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +250 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +22 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +22 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +310 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +231 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +207 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +178 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +142 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +244 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +71 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +371 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +170 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +399 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +167 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +93 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +491 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +43 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +347 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +377 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +326 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +436 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +208 -0
- scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.4.0.dist-info/METADATA +192 -0
- scikit_learn_intelex-2025.4.0.dist-info/RECORD +259 -0
- scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,242 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from scipy import sparse as sp
|
|
21
|
+
|
|
22
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
23
|
+
from onedal.basic_statistics import BasicStatistics
|
|
24
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
25
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
26
|
+
|
|
27
|
+
options_and_tests_csr = [
|
|
28
|
+
("sum", "sum", (5e-6, 1e-9)),
|
|
29
|
+
("min", "min", (0, 0)),
|
|
30
|
+
("max", "max", (0, 0)),
|
|
31
|
+
("mean", "mean", (5e-6, 1e-9)),
|
|
32
|
+
]
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
36
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
37
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
38
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
39
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
40
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
41
|
+
def test_single_option_on_random_data(
|
|
42
|
+
queue, result_option, row_count, column_count, weighted, dtype
|
|
43
|
+
):
|
|
44
|
+
function, tols = options_and_tests[result_option]
|
|
45
|
+
fp32tol, fp64tol = tols
|
|
46
|
+
seed = 77
|
|
47
|
+
gen = np.random.default_rng(seed)
|
|
48
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
49
|
+
data = data.astype(dtype=dtype)
|
|
50
|
+
if weighted:
|
|
51
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
52
|
+
weights = weights.astype(dtype=dtype)
|
|
53
|
+
else:
|
|
54
|
+
weights = None
|
|
55
|
+
|
|
56
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
57
|
+
|
|
58
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
59
|
+
|
|
60
|
+
res = getattr(result, result_option)
|
|
61
|
+
if weighted:
|
|
62
|
+
weighted_data = np.diag(weights) @ data
|
|
63
|
+
gtr = function(weighted_data)
|
|
64
|
+
else:
|
|
65
|
+
gtr = function(data)
|
|
66
|
+
|
|
67
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
68
|
+
assert_allclose(gtr, res, atol=tol)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
72
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
73
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
74
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
75
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
76
|
+
def test_multiple_options_on_random_data(queue, row_count, column_count, weighted, dtype):
|
|
77
|
+
seed = 42
|
|
78
|
+
gen = np.random.default_rng(seed)
|
|
79
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
80
|
+
data = data.astype(dtype=dtype)
|
|
81
|
+
|
|
82
|
+
if weighted:
|
|
83
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
84
|
+
weights = weights.astype(dtype=dtype)
|
|
85
|
+
else:
|
|
86
|
+
weights = None
|
|
87
|
+
|
|
88
|
+
basicstat = BasicStatistics(result_options=["mean", "max", "sum"])
|
|
89
|
+
|
|
90
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
91
|
+
|
|
92
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
93
|
+
if weighted:
|
|
94
|
+
weighted_data = np.diag(weights) @ data
|
|
95
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
96
|
+
options_and_tests["mean"][0](weighted_data),
|
|
97
|
+
options_and_tests["max"][0](weighted_data),
|
|
98
|
+
options_and_tests["sum"][0](weighted_data),
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
102
|
+
options_and_tests["mean"][0](data),
|
|
103
|
+
options_and_tests["max"][0](data),
|
|
104
|
+
options_and_tests["sum"][0](data),
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
tol = 5e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
108
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
109
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
110
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
114
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
115
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
116
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
117
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
118
|
+
def test_all_option_on_random_data(queue, row_count, column_count, weighted, dtype):
|
|
119
|
+
seed = 77
|
|
120
|
+
gen = np.random.default_rng(seed)
|
|
121
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
122
|
+
data = data.astype(dtype=dtype)
|
|
123
|
+
if weighted:
|
|
124
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
125
|
+
weights = weights.astype(dtype=dtype)
|
|
126
|
+
else:
|
|
127
|
+
weights = None
|
|
128
|
+
|
|
129
|
+
basicstat = BasicStatistics(result_options="all")
|
|
130
|
+
|
|
131
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
132
|
+
|
|
133
|
+
if weighted:
|
|
134
|
+
weighted_data = np.diag(weights) @ data
|
|
135
|
+
|
|
136
|
+
for result_option in options_and_tests:
|
|
137
|
+
function, tols = options_and_tests[result_option]
|
|
138
|
+
fp32tol, fp64tol = tols
|
|
139
|
+
res = getattr(result, result_option)
|
|
140
|
+
if weighted:
|
|
141
|
+
gtr = function(weighted_data)
|
|
142
|
+
else:
|
|
143
|
+
gtr = function(data)
|
|
144
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
145
|
+
assert_allclose(gtr, res, atol=tol)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
149
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
150
|
+
@pytest.mark.parametrize("data_size", [100, 1000])
|
|
151
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
152
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
153
|
+
def test_1d_input_on_random_data(queue, result_option, data_size, weighted, dtype):
|
|
154
|
+
|
|
155
|
+
function, tols = options_and_tests[result_option]
|
|
156
|
+
fp32tol, fp64tol = tols
|
|
157
|
+
seed = 77
|
|
158
|
+
gen = np.random.default_rng(seed)
|
|
159
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=data_size)
|
|
160
|
+
data = data.astype(dtype=dtype)
|
|
161
|
+
if weighted:
|
|
162
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=data_size)
|
|
163
|
+
weights = weights.astype(dtype=dtype)
|
|
164
|
+
else:
|
|
165
|
+
weights = None
|
|
166
|
+
|
|
167
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
168
|
+
|
|
169
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
170
|
+
|
|
171
|
+
res = getattr(result, result_option)
|
|
172
|
+
if weighted:
|
|
173
|
+
weighted_data = weights * data
|
|
174
|
+
gtr = function(weighted_data)
|
|
175
|
+
else:
|
|
176
|
+
gtr = function(data)
|
|
177
|
+
|
|
178
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
179
|
+
assert_allclose(gtr, res, atol=tol)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@pytest.mark.skipif(not hasattr(sp, "random_array"), reason="requires scipy>=1.12.0")
|
|
183
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
184
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
185
|
+
def test_basic_csr(queue, dtype):
|
|
186
|
+
seed = 42
|
|
187
|
+
row_count, column_count = 5000, 3008
|
|
188
|
+
|
|
189
|
+
gen = np.random.default_rng(seed)
|
|
190
|
+
|
|
191
|
+
data = sp.random_array(
|
|
192
|
+
shape=(row_count, column_count),
|
|
193
|
+
density=0.01,
|
|
194
|
+
format="csr",
|
|
195
|
+
dtype=dtype,
|
|
196
|
+
random_state=gen,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
basicstat = BasicStatistics(result_options="mean")
|
|
200
|
+
result = basicstat.fit(data, queue=queue)
|
|
201
|
+
|
|
202
|
+
res_mean = result.mean
|
|
203
|
+
gtr_mean = data.mean(axis=0)
|
|
204
|
+
tol = 5e-6 if res_mean.dtype == np.float32 else 1e-9
|
|
205
|
+
assert_allclose(gtr_mean, res_mean, rtol=tol)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
@pytest.mark.skipif(not hasattr(sp, "random_array"), reason="requires scipy>=1.12.0")
|
|
209
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
210
|
+
@pytest.mark.parametrize("option", options_and_tests_csr)
|
|
211
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
212
|
+
def test_options_csr(queue, option, dtype):
|
|
213
|
+
result_option, function, tols = option
|
|
214
|
+
fp32tol, fp64tol = tols
|
|
215
|
+
|
|
216
|
+
if result_option == "max":
|
|
217
|
+
pytest.skip("There is a bug in oneDAL's max computations on GPU")
|
|
218
|
+
|
|
219
|
+
seed = 42
|
|
220
|
+
row_count, column_count = 20046, 4007
|
|
221
|
+
|
|
222
|
+
gen = np.random.default_rng(seed)
|
|
223
|
+
|
|
224
|
+
data = sp.random_array(
|
|
225
|
+
shape=(row_count, column_count),
|
|
226
|
+
density=0.002,
|
|
227
|
+
format="csr",
|
|
228
|
+
dtype=dtype,
|
|
229
|
+
random_state=gen,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
233
|
+
result = basicstat.fit(data, queue=queue)
|
|
234
|
+
|
|
235
|
+
res = getattr(result, result_option)
|
|
236
|
+
func = getattr(data, function)
|
|
237
|
+
gtr = func(axis=0)
|
|
238
|
+
if type(gtr).__name__ != "ndarray":
|
|
239
|
+
gtr = gtr.toarray().flatten()
|
|
240
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
241
|
+
|
|
242
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.basic_statistics import IncrementalBasicStatistics
|
|
22
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
23
|
+
from onedal.datatypes import from_table
|
|
24
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
28
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
29
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
30
|
+
def test_multiple_options_on_gold_data(queue, weighted, dtype):
|
|
31
|
+
X = np.array([[0, 0], [1, 1]])
|
|
32
|
+
X = X.astype(dtype=dtype)
|
|
33
|
+
X_split = np.array_split(X, 2)
|
|
34
|
+
if weighted:
|
|
35
|
+
weights = np.array([1, 0.5])
|
|
36
|
+
weights = weights.astype(dtype=dtype)
|
|
37
|
+
weights_split = np.array_split(weights, 2)
|
|
38
|
+
|
|
39
|
+
incbs = IncrementalBasicStatistics()
|
|
40
|
+
for i in range(2):
|
|
41
|
+
if weighted:
|
|
42
|
+
incbs.partial_fit(X_split[i], weights_split[i], queue=queue)
|
|
43
|
+
else:
|
|
44
|
+
incbs.partial_fit(X_split[i], queue=queue)
|
|
45
|
+
|
|
46
|
+
result = incbs.finalize_fit()
|
|
47
|
+
|
|
48
|
+
if weighted:
|
|
49
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
50
|
+
expected_weighted_min = np.array([0, 0])
|
|
51
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
52
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
53
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
54
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
55
|
+
else:
|
|
56
|
+
expected_mean = np.array([0.5, 0.5])
|
|
57
|
+
expected_min = np.array([0, 0])
|
|
58
|
+
expected_max = np.array([1, 1])
|
|
59
|
+
assert_allclose(expected_mean, result.mean)
|
|
60
|
+
assert_allclose(expected_max, result.max)
|
|
61
|
+
assert_allclose(expected_min, result.min)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
65
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
66
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
67
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
68
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
69
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
70
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
71
|
+
def test_single_option_on_random_data(
|
|
72
|
+
queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
73
|
+
):
|
|
74
|
+
function, tols = options_and_tests[result_option]
|
|
75
|
+
fp32tol, fp64tol = tols
|
|
76
|
+
seed = 77
|
|
77
|
+
gen = np.random.default_rng(seed)
|
|
78
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
79
|
+
data = data.astype(dtype=dtype)
|
|
80
|
+
data_split = np.array_split(data, num_batches)
|
|
81
|
+
if weighted:
|
|
82
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
83
|
+
weights = weights.astype(dtype=dtype)
|
|
84
|
+
weights_split = np.array_split(weights, num_batches)
|
|
85
|
+
incbs = IncrementalBasicStatistics(result_options=result_option)
|
|
86
|
+
|
|
87
|
+
for i in range(num_batches):
|
|
88
|
+
if weighted:
|
|
89
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
90
|
+
else:
|
|
91
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
92
|
+
result = incbs.finalize_fit()
|
|
93
|
+
|
|
94
|
+
res = getattr(result, result_option)
|
|
95
|
+
if weighted:
|
|
96
|
+
weighted_data = np.diag(weights) @ data
|
|
97
|
+
gtr = function(weighted_data)
|
|
98
|
+
else:
|
|
99
|
+
gtr = function(data)
|
|
100
|
+
|
|
101
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
102
|
+
assert_allclose(gtr, res, atol=tol)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
106
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
107
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
108
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
109
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
110
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
111
|
+
def test_multiple_options_on_random_data(
|
|
112
|
+
queue, num_batches, row_count, column_count, weighted, dtype
|
|
113
|
+
):
|
|
114
|
+
seed = 42
|
|
115
|
+
gen = np.random.default_rng(seed)
|
|
116
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
117
|
+
data = data.astype(dtype=dtype)
|
|
118
|
+
data_split = np.array_split(data, num_batches)
|
|
119
|
+
if weighted:
|
|
120
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
121
|
+
weights = weights.astype(dtype=dtype)
|
|
122
|
+
weights_split = np.array_split(weights, num_batches)
|
|
123
|
+
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
|
|
124
|
+
|
|
125
|
+
for i in range(num_batches):
|
|
126
|
+
if weighted:
|
|
127
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
128
|
+
else:
|
|
129
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
130
|
+
result = incbs.finalize_fit()
|
|
131
|
+
|
|
132
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
133
|
+
if weighted:
|
|
134
|
+
weighted_data = np.diag(weights) @ data
|
|
135
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
136
|
+
options_and_tests["mean"][0](weighted_data),
|
|
137
|
+
options_and_tests["max"][0](weighted_data),
|
|
138
|
+
options_and_tests["sum"][0](weighted_data),
|
|
139
|
+
)
|
|
140
|
+
else:
|
|
141
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
142
|
+
options_and_tests["mean"][0](data),
|
|
143
|
+
options_and_tests["max"][0](data),
|
|
144
|
+
options_and_tests["sum"][0](data),
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
148
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
149
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
150
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
154
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
155
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
156
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
157
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
158
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
159
|
+
def test_all_option_on_random_data(
|
|
160
|
+
queue, num_batches, row_count, column_count, weighted, dtype
|
|
161
|
+
):
|
|
162
|
+
seed = 77
|
|
163
|
+
gen = np.random.default_rng(seed)
|
|
164
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
165
|
+
data = data.astype(dtype=dtype)
|
|
166
|
+
data_split = np.array_split(data, num_batches)
|
|
167
|
+
if weighted:
|
|
168
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
169
|
+
weights = weights.astype(dtype=dtype)
|
|
170
|
+
weights_split = np.array_split(weights, num_batches)
|
|
171
|
+
incbs = IncrementalBasicStatistics(result_options="all")
|
|
172
|
+
|
|
173
|
+
for i in range(num_batches):
|
|
174
|
+
if weighted:
|
|
175
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
176
|
+
else:
|
|
177
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
178
|
+
result = incbs.finalize_fit()
|
|
179
|
+
|
|
180
|
+
if weighted:
|
|
181
|
+
weighted_data = np.diag(weights) @ data
|
|
182
|
+
|
|
183
|
+
for result_option in options_and_tests:
|
|
184
|
+
function, tols = options_and_tests[result_option]
|
|
185
|
+
fp32tol, fp64tol = tols
|
|
186
|
+
res = getattr(result, result_option)
|
|
187
|
+
if weighted:
|
|
188
|
+
gtr = function(weighted_data)
|
|
189
|
+
else:
|
|
190
|
+
gtr = function(data)
|
|
191
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
192
|
+
assert_allclose(gtr, res, atol=tol)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
196
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
197
|
+
def test_incremental_estimator_pickle(queue, dtype):
|
|
198
|
+
import pickle
|
|
199
|
+
|
|
200
|
+
from onedal.basic_statistics import IncrementalBasicStatistics
|
|
201
|
+
|
|
202
|
+
incbs = IncrementalBasicStatistics()
|
|
203
|
+
|
|
204
|
+
# Check that estimator can be serialized without any data.
|
|
205
|
+
dump = pickle.dumps(incbs)
|
|
206
|
+
incbs_loaded = pickle.loads(dump)
|
|
207
|
+
seed = 77
|
|
208
|
+
gen = np.random.default_rng(seed)
|
|
209
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
210
|
+
X = X.astype(dtype)
|
|
211
|
+
X_split = np.array_split(X, 2)
|
|
212
|
+
incbs.partial_fit(X_split[0], queue=queue)
|
|
213
|
+
incbs_loaded.partial_fit(X_split[0], queue=queue)
|
|
214
|
+
|
|
215
|
+
assert incbs._need_to_finalize == True
|
|
216
|
+
assert incbs_loaded._need_to_finalize == True
|
|
217
|
+
|
|
218
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
219
|
+
dump = pickle.dumps(incbs)
|
|
220
|
+
incbs_loaded = pickle.loads(dump)
|
|
221
|
+
assert incbs._need_to_finalize == False
|
|
222
|
+
# Finalize is called during serialization to make sure partial results are finalized correctly.
|
|
223
|
+
assert incbs_loaded._need_to_finalize == False
|
|
224
|
+
|
|
225
|
+
partial_n_rows = from_table(incbs._partial_result.partial_n_rows)
|
|
226
|
+
partial_n_rows_loaded = from_table(incbs_loaded._partial_result.partial_n_rows)
|
|
227
|
+
assert_allclose(partial_n_rows, partial_n_rows_loaded)
|
|
228
|
+
|
|
229
|
+
partial_min = from_table(incbs._partial_result.partial_min)
|
|
230
|
+
partial_min_loaded = from_table(incbs_loaded._partial_result.partial_min)
|
|
231
|
+
assert_allclose(partial_min, partial_min_loaded)
|
|
232
|
+
|
|
233
|
+
partial_max = from_table(incbs._partial_result.partial_max)
|
|
234
|
+
partial_max_loaded = from_table(incbs_loaded._partial_result.partial_max)
|
|
235
|
+
assert_allclose(partial_max, partial_max_loaded)
|
|
236
|
+
|
|
237
|
+
partial_sum = from_table(incbs._partial_result.partial_sum)
|
|
238
|
+
partial_sum_loaded = from_table(incbs_loaded._partial_result.partial_sum)
|
|
239
|
+
assert_allclose(partial_sum, partial_sum_loaded)
|
|
240
|
+
|
|
241
|
+
partial_sum_squares = from_table(incbs._partial_result.partial_sum_squares)
|
|
242
|
+
partial_sum_squares_loaded = from_table(
|
|
243
|
+
incbs_loaded._partial_result.partial_sum_squares
|
|
244
|
+
)
|
|
245
|
+
assert_allclose(partial_sum_squares, partial_sum_squares_loaded)
|
|
246
|
+
|
|
247
|
+
partial_sum_squares_centered = from_table(
|
|
248
|
+
incbs._partial_result.partial_sum_squares_centered
|
|
249
|
+
)
|
|
250
|
+
partial_sum_squares_centered_loaded = from_table(
|
|
251
|
+
incbs_loaded._partial_result.partial_sum_squares_centered
|
|
252
|
+
)
|
|
253
|
+
assert_allclose(partial_sum_squares_centered, partial_sum_squares_centered_loaded)
|
|
254
|
+
|
|
255
|
+
incbs.partial_fit(X_split[1], queue=queue)
|
|
256
|
+
incbs_loaded.partial_fit(X_split[1], queue=queue)
|
|
257
|
+
assert incbs._need_to_finalize == True
|
|
258
|
+
assert incbs_loaded._need_to_finalize == True
|
|
259
|
+
|
|
260
|
+
dump = pickle.dumps(incbs_loaded)
|
|
261
|
+
incbs_loaded = pickle.loads(dump)
|
|
262
|
+
|
|
263
|
+
assert incbs._need_to_finalize == True
|
|
264
|
+
assert incbs_loaded._need_to_finalize == False
|
|
265
|
+
|
|
266
|
+
incbs.finalize_fit()
|
|
267
|
+
incbs_loaded.finalize_fit()
|
|
268
|
+
|
|
269
|
+
# Check that finalized estimator can be serialized.
|
|
270
|
+
dump = pickle.dumps(incbs_loaded)
|
|
271
|
+
incbs_loaded = pickle.loads(dump)
|
|
272
|
+
|
|
273
|
+
for result_option in options_and_tests:
|
|
274
|
+
_, tols = options_and_tests[result_option]
|
|
275
|
+
fp32tol, fp64tol = tols
|
|
276
|
+
res = getattr(incbs, result_option)
|
|
277
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
278
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
279
|
+
assert_allclose(res, res_loaded, atol=tol)
|
scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# Compute unbiased variation for the columns of array-like X
|
|
21
|
+
def variation(X):
|
|
22
|
+
X_mean = np.mean(X, axis=0)
|
|
23
|
+
if np.all(X_mean):
|
|
24
|
+
# Avoid division by zero
|
|
25
|
+
return np.std(X, axis=0, ddof=1) / X_mean
|
|
26
|
+
else:
|
|
27
|
+
return np.array(
|
|
28
|
+
[
|
|
29
|
+
x / y if y != 0 else np.nan
|
|
30
|
+
for x, y in zip(np.std(X, axis=0, ddof=1), X_mean)
|
|
31
|
+
]
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
options_and_tests = {
|
|
36
|
+
"sum": (lambda X: np.sum(X, axis=0), (5e-4, 1e-7)),
|
|
37
|
+
"min": (lambda X: np.min(X, axis=0), (1e-7, 1e-7)),
|
|
38
|
+
"max": (lambda X: np.max(X, axis=0), (1e-7, 1e-7)),
|
|
39
|
+
"mean": (lambda X: np.mean(X, axis=0), (5e-7, 1e-7)),
|
|
40
|
+
# sklearnex computes unbiased variance and standard deviation that is why ddof=1
|
|
41
|
+
"variance": (lambda X: np.var(X, axis=0, ddof=1), (2e-4, 1e-7)),
|
|
42
|
+
"variation": (lambda X: variation(X), (1e-3, 1e-6)),
|
|
43
|
+
"sum_squares": (lambda X: np.sum(np.square(X), axis=0), (2e-4, 1e-7)),
|
|
44
|
+
"sum_squares_centered": (
|
|
45
|
+
lambda X: np.sum(np.square(X - np.mean(X, axis=0)), axis=0),
|
|
46
|
+
(1e-3, 1e-7),
|
|
47
|
+
),
|
|
48
|
+
"standard_deviation": (lambda X: np.std(X, axis=0, ddof=1), (2e-3, 1e-7)),
|
|
49
|
+
"second_order_raw_moment": (lambda X: np.mean(np.square(X), axis=0), (1e-6, 1e-7)),
|
|
50
|
+
}
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
from .dbscan import DBSCAN
|
|
20
|
+
from .kmeans import KMeans, k_means
|
|
21
|
+
|
|
22
|
+
__all__ = ["DBSCAN", "KMeans", "k_means"]
|
|
23
|
+
|
|
24
|
+
if daal_check_version((2023, "P", 200)):
|
|
25
|
+
from .kmeans_init import KMeansInit, kmeans_plusplus
|
|
26
|
+
|
|
27
|
+
__all__ += ["KMeansInit", "kmeans_plusplus"]
|