scikit-learn-intelex 2025.4.0__py313-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (259) hide show
  1. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
  2. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
  3. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
  4. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
  5. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
  6. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
  7. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
  8. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
  9. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
  10. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
  11. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
  12. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
  13. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
  14. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
  16. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
  17. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
  20. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
  23. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
  25. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
  28. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
  31. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
  34. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
  36. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
  38. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
  39. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
  40. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
  48. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
  49. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
  50. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
  51. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
  54. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
  55. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
  56. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
  57. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +696 -0
  59. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
  60. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
  61. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_device_offload.py +204 -0
  62. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
  63. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
  64. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
  65. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
  66. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  67. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  68. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  69. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
  70. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
  71. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +105 -0
  72. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +557 -0
  73. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +112 -0
  74. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
  75. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
  76. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
  78. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
  79. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
  80. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_policy.py +55 -0
  81. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
  82. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
  83. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
  84. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +128 -0
  85. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
  86. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +122 -0
  87. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +161 -0
  88. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
  89. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
  90. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
  91. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +121 -0
  92. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
  93. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +475 -0
  94. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
  95. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +214 -0
  96. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
  97. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +285 -0
  98. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
  99. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +736 -0
  100. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
  101. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
  102. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +292 -0
  103. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +325 -0
  104. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +247 -0
  105. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  106. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  107. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +259 -0
  108. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
  109. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
  110. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
  111. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +763 -0
  112. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
  113. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
  114. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
  115. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +152 -0
  116. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
  117. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
  118. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
  119. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
  120. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
  121. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
  122. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
  123. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
  124. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
  125. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
  126. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
  127. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
  128. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
  129. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
  130. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
  131. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/onedal/utils/validation.py +464 -0
  132. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__init__.py +66 -0
  133. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
  134. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_config.py +116 -0
  135. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
  136. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/_utils.py +177 -0
  137. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
  138. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +261 -0
  139. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  140. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  141. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  142. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
  143. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +197 -0
  144. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +397 -0
  145. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
  146. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
  147. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
  148. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  149. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +405 -0
  150. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  151. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
  152. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +427 -0
  153. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +58 -0
  154. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +534 -0
  155. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +424 -0
  156. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
  157. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +2029 -0
  158. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +140 -0
  159. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
  160. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
  161. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
  162. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +30 -0
  163. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +495 -0
  164. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +432 -0
  165. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +346 -0
  166. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +415 -0
  167. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +390 -0
  168. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  169. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  170. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +142 -0
  171. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
  172. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
  173. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
  174. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +26 -0
  175. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +250 -0
  176. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
  177. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +22 -0
  178. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
  179. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
  180. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
  181. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +22 -0
  182. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
  183. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
  184. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
  185. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +310 -0
  186. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +231 -0
  187. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +207 -0
  188. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +178 -0
  189. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
  190. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
  191. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
  192. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +142 -0
  193. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  194. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  195. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +244 -0
  196. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  197. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
  198. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
  199. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  200. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  201. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  202. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  203. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
  204. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
  205. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
  206. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  207. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  208. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
  209. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  210. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  211. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  212. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  213. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
  214. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  215. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +21 -0
  216. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  217. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  218. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
  219. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +71 -0
  220. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  221. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
  222. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  223. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +21 -0
  224. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  225. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  226. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  227. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  228. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +19 -0
  229. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +25 -0
  230. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  231. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
  232. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
  233. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +371 -0
  234. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +170 -0
  235. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +399 -0
  236. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +167 -0
  237. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +93 -0
  238. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +491 -0
  239. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
  240. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +43 -0
  241. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +347 -0
  242. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
  243. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
  244. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
  245. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +377 -0
  246. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +326 -0
  247. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
  248. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +436 -0
  249. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
  250. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
  251. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
  252. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
  253. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
  254. scikit_learn_intelex-2025.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +208 -0
  255. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  256. scikit_learn_intelex-2025.4.0.dist-info/METADATA +192 -0
  257. scikit_learn_intelex-2025.4.0.dist-info/RECORD +259 -0
  258. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  259. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,213 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+ from sklearn.datasets import load_diabetes
21
+ from sklearn.metrics import mean_squared_error
22
+ from sklearn.model_selection import train_test_split
23
+
24
+ from onedal.datatypes import from_table
25
+ from onedal.linear_model import IncrementalLinearRegression
26
+ from onedal.tests.utils._device_selection import get_queues
27
+
28
+
29
+ @pytest.mark.parametrize("queue", get_queues())
30
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
31
+ def test_diabetes(queue, dtype):
32
+ X, y = load_diabetes(return_X_y=True)
33
+ X, y = X.astype(dtype), y.astype(dtype)
34
+ X_train, X_test, y_train, y_test = train_test_split(
35
+ X, y, train_size=0.8, random_state=777
36
+ )
37
+ X_train_split = np.array_split(X_train, 2)
38
+ y_train_split = np.array_split(y_train, 2)
39
+ model = IncrementalLinearRegression(fit_intercept=True)
40
+ for i in range(2):
41
+ model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
42
+ model.finalize_fit()
43
+ y_pred = model.predict(X_test, queue=queue)
44
+ assert mean_squared_error(y_test, y_pred) < 2396
45
+
46
+
47
+ @pytest.mark.parametrize("queue", get_queues())
48
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
49
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
50
+ def test_full_results(queue, num_blocks, dtype):
51
+ seed = 42
52
+ num_features, num_targets = 19, 7
53
+ num_samples_train, num_samples_test = 3500, 1999
54
+
55
+ gen = np.random.default_rng(seed)
56
+ intercept = gen.random(size=num_targets, dtype=dtype)
57
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
58
+
59
+ X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
60
+ y = X @ coef + intercept[np.newaxis, :]
61
+ X_split = np.array_split(X, num_blocks)
62
+ y_split = np.array_split(y, num_blocks)
63
+
64
+ model = IncrementalLinearRegression(fit_intercept=True)
65
+ for i in range(num_blocks):
66
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
67
+ model.finalize_fit()
68
+
69
+ if queue and queue.sycl_device.is_gpu:
70
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
71
+ else:
72
+ tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-5
73
+ atol = 1e-4 if model.coef_.dtype == np.float32 else 1e-6
74
+ assert_allclose(coef, model.coef_.T, rtol=tol, atol=atol)
75
+
76
+ tol = 3e-3 if model.intercept_.dtype == np.float32 else 1e-5
77
+ assert_allclose(intercept, model.intercept_, rtol=tol)
78
+
79
+ Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
80
+ gtr = Xt @ coef + intercept[np.newaxis, :]
81
+
82
+ res = model.predict(Xt, queue=queue)
83
+
84
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
85
+ assert_allclose(gtr, res, rtol=tol)
86
+
87
+
88
+ @pytest.mark.parametrize("queue", get_queues())
89
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
90
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
91
+ def test_no_intercept_results(queue, num_blocks, dtype):
92
+ seed = 42
93
+ num_features, num_targets = 19, 7
94
+ num_samples_train, num_samples_test = 3500, 1999
95
+
96
+ gen = np.random.default_rng(seed)
97
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
98
+
99
+ X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
100
+ y = X @ coef
101
+
102
+ X_split = np.array_split(X, num_blocks)
103
+ y_split = np.array_split(y, num_blocks)
104
+
105
+ model = IncrementalLinearRegression(fit_intercept=False)
106
+ for i in range(num_blocks):
107
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
108
+ model.finalize_fit()
109
+
110
+ # TODO Find out is it necessary to have accuracy so different for float32 and float64
111
+ if queue and queue.sycl_device.is_gpu:
112
+ tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
113
+ else:
114
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
115
+ assert_allclose(coef, model.coef_.T, rtol=tol)
116
+
117
+ Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
118
+ gtr = Xt @ coef
119
+
120
+ res = model.predict(Xt, queue=queue)
121
+
122
+ tol = 5e-5 if res.dtype == np.float32 else 1e-7
123
+ assert_allclose(gtr, res, rtol=tol)
124
+
125
+
126
+ @pytest.mark.parametrize("queue", get_queues())
127
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
128
+ def test_reconstruct_model(queue, dtype):
129
+ seed = 42
130
+ num_samples = 3500
131
+ num_features, num_targets = 14, 9
132
+
133
+ gen = np.random.default_rng(seed)
134
+ intercept = gen.random(size=num_targets, dtype=dtype)
135
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
136
+
137
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
138
+ gtr = X @ coef + intercept[np.newaxis, :]
139
+
140
+ model = IncrementalLinearRegression(fit_intercept=True)
141
+ model.coef_ = coef.T
142
+ model.intercept_ = intercept
143
+
144
+ res = model.predict(X, queue=queue)
145
+
146
+ tol = 1e-5 if res.dtype == np.float32 else 1e-7
147
+ assert_allclose(gtr, res, rtol=tol)
148
+
149
+
150
+ @pytest.mark.parametrize("queue", get_queues())
151
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
152
+ def test_incremental_estimator_pickle(queue, dtype):
153
+ import pickle
154
+
155
+ from onedal.linear_model import IncrementalLinearRegression
156
+
157
+ inclr = IncrementalLinearRegression()
158
+
159
+ # Check that estimator can be serialized without any data.
160
+ dump = pickle.dumps(inclr)
161
+ inclr_loaded = pickle.loads(dump)
162
+ seed = 77
163
+ gen = np.random.default_rng(seed)
164
+ X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
165
+ X = X.astype(dtype)
166
+ coef = gen.random(size=(1, 10), dtype=dtype).T
167
+ y = X @ coef
168
+ X_split = np.array_split(X, 2)
169
+ y_split = np.array_split(y, 2)
170
+ inclr.partial_fit(X_split[0], y_split[0], queue=queue)
171
+ inclr_loaded.partial_fit(X_split[0], y_split[0], queue=queue)
172
+
173
+ # inclr.finalize_fit()
174
+
175
+ assert inclr._need_to_finalize == True
176
+ assert inclr_loaded._need_to_finalize == True
177
+
178
+ # Check that estimator can be serialized after partial_fit call.
179
+ dump = pickle.dumps(inclr)
180
+ inclr_loaded = pickle.loads(dump)
181
+
182
+ partial_xtx = from_table(inclr._partial_result.partial_xtx)
183
+ partial_xtx_loaded = from_table(inclr_loaded._partial_result.partial_xtx)
184
+ assert_allclose(partial_xtx, partial_xtx_loaded)
185
+
186
+ partial_xty = from_table(inclr._partial_result.partial_xty)
187
+ partial_xty_loaded = from_table(inclr_loaded._partial_result.partial_xty)
188
+ assert_allclose(partial_xty, partial_xty_loaded)
189
+
190
+ assert inclr._need_to_finalize == False
191
+ # Finalize is called during serialization to make sure partial results are finalized correctly.
192
+ assert inclr_loaded._need_to_finalize == False
193
+
194
+ inclr.partial_fit(X_split[1], y_split[1], queue=queue)
195
+ inclr_loaded.partial_fit(X_split[1], y_split[1], queue=queue)
196
+ assert inclr._need_to_finalize == True
197
+ assert inclr_loaded._need_to_finalize == True
198
+
199
+ dump = pickle.dumps(inclr_loaded)
200
+ inclr_loaded = pickle.loads(dump)
201
+
202
+ assert inclr._need_to_finalize == True
203
+ assert inclr_loaded._need_to_finalize == False
204
+
205
+ inclr.finalize_fit()
206
+ inclr_loaded.finalize_fit()
207
+
208
+ # Check that finalized estimator can be serialized.
209
+ dump = pickle.dumps(inclr_loaded)
210
+ inclr_loaded = pickle.loads(dump)
211
+
212
+ assert_allclose(inclr.coef_, inclr_loaded.coef_, atol=1e-6)
213
+ assert_allclose(inclr.intercept_, inclr_loaded.intercept_, atol=1e-6)
@@ -0,0 +1,171 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from daal4py.sklearn._utils import daal_check_version
18
+
19
+ if daal_check_version((2024, "P", 600)):
20
+ import numpy as np
21
+ import pytest
22
+ from numpy.testing import assert_allclose, assert_array_equal
23
+ from sklearn.datasets import load_diabetes
24
+ from sklearn.metrics import mean_squared_error
25
+ from sklearn.model_selection import train_test_split
26
+
27
+ from onedal.datatypes import from_table
28
+ from onedal.linear_model import IncrementalRidge
29
+ from onedal.tests.utils._device_selection import get_queues
30
+
31
+ @pytest.mark.parametrize("queue", get_queues())
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_diabetes(queue, dtype):
34
+ X, y = load_diabetes(return_X_y=True)
35
+ X, y = X.astype(dtype), y.astype(dtype)
36
+ X_train, X_test, y_train, y_test = train_test_split(
37
+ X, y, train_size=0.8, random_state=777
38
+ )
39
+ X_train_split = np.array_split(X_train, 2)
40
+ y_train_split = np.array_split(y_train, 2)
41
+ model = IncrementalRidge(fit_intercept=True, alpha=0.1)
42
+ for i in range(2):
43
+ model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
44
+ model.finalize_fit()
45
+ y_pred = model.predict(X_test, queue=queue)
46
+ assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
47
+
48
+ @pytest.mark.parametrize("queue", get_queues())
49
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
50
+ @pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
51
+ def test_pickle(queue, dtype):
52
+ # TODO Implement pickling for oneDAL entities
53
+ X, y = load_diabetes(return_X_y=True)
54
+ X, y = X.astype(dtype), y.astype(dtype)
55
+ model = IncrementalRidge(fit_intercept=True, alpha=0.5)
56
+ model.partial_fit(X, y, queue=queue)
57
+ model.finalize_fit()
58
+ expected = model.predict(X, queue=queue)
59
+
60
+ import pickle
61
+
62
+ dump = pickle.dumps(model)
63
+ model2 = pickle.loads(dump)
64
+
65
+ assert isinstance(model2, model.__class__)
66
+ result = model2.predict(X, queue=queue)
67
+
68
+ assert_array_equal(expected, result)
69
+
70
+ @pytest.mark.parametrize("queue", get_queues())
71
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
72
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
73
+ def test_no_intercept_results(queue, num_blocks, dtype):
74
+ seed = 42
75
+ n_features, n_targets = 19, 7
76
+ n_train_samples, n_test_samples = 3500, 1999
77
+
78
+ gen = np.random.default_rng(seed)
79
+
80
+ X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
81
+ y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
82
+ X_split = np.array_split(X, num_blocks)
83
+ y_split = np.array_split(y, num_blocks)
84
+ alpha = 0.5
85
+
86
+ lambda_identity = alpha * np.eye(X.shape[1])
87
+ inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
88
+ xt_y = np.dot(X.T, y)
89
+ coef = np.dot(inverse_term, xt_y)
90
+
91
+ model = IncrementalRidge(fit_intercept=False, alpha=alpha)
92
+ for i in range(num_blocks):
93
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
94
+ model.finalize_fit()
95
+
96
+ if queue and queue.sycl_device.is_gpu:
97
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
98
+ else:
99
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
100
+ assert_allclose(coef, model.coef_.T, rtol=tol)
101
+
102
+ Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
103
+ gtr = Xt @ coef
104
+
105
+ res = model.predict(Xt, queue=queue)
106
+
107
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
108
+ assert_allclose(gtr, res, rtol=tol)
109
+
110
+ @pytest.mark.parametrize("queue", get_queues())
111
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
112
+ def test_incremental_estimator_pickle(queue, dtype):
113
+ import pickle
114
+
115
+ model = IncrementalRidge()
116
+
117
+ # Check that estimator can be serialized without any data.
118
+ dump = pickle.dumps(model)
119
+ model_loaded = pickle.loads(dump)
120
+ seed = 77
121
+ gen = np.random.default_rng(seed)
122
+ X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
123
+ X = X.astype(dtype)
124
+ coef = gen.random(size=(1, 10), dtype=dtype).T
125
+ y = X @ coef
126
+ X_split = np.array_split(X, 2)
127
+ y_split = np.array_split(y, 2)
128
+ model.partial_fit(X_split[0], y_split[0], queue=queue)
129
+ model_loaded.partial_fit(X_split[0], y_split[0], queue=queue)
130
+
131
+ # model.finalize_fit()
132
+
133
+ assert model._need_to_finalize == True
134
+ assert model_loaded._need_to_finalize == True
135
+
136
+ # Check that estimator can be serialized after partial_fit call.
137
+ dump = pickle.dumps(model)
138
+ model_loaded = pickle.loads(dump)
139
+
140
+ partial_xtx = from_table(model._partial_result.partial_xtx)
141
+ partial_xtx_loaded = from_table(model_loaded._partial_result.partial_xtx)
142
+ assert_allclose(partial_xtx, partial_xtx_loaded)
143
+
144
+ partial_xty = from_table(model._partial_result.partial_xty)
145
+ partial_xty_loaded = from_table(model_loaded._partial_result.partial_xty)
146
+ assert_allclose(partial_xty, partial_xty_loaded)
147
+
148
+ assert model._need_to_finalize == False
149
+ # Finalize is called during serialization to make sure partial results are finalized correctly.
150
+ assert model_loaded._need_to_finalize == False
151
+
152
+ model.partial_fit(X_split[1], y_split[1], queue=queue)
153
+ model_loaded.partial_fit(X_split[1], y_split[1], queue=queue)
154
+ assert model._need_to_finalize == True
155
+ assert model_loaded._need_to_finalize == True
156
+
157
+ dump = pickle.dumps(model_loaded)
158
+ model_loaded = pickle.loads(dump)
159
+
160
+ assert model._need_to_finalize == True
161
+ assert model_loaded._need_to_finalize == False
162
+
163
+ model.finalize_fit()
164
+ model_loaded.finalize_fit()
165
+
166
+ # Check that finalized estimator can be serialized.
167
+ dump = pickle.dumps(model_loaded)
168
+ model_loaded = pickle.loads(dump)
169
+
170
+ assert_allclose(model.coef_, model_loaded.coef_, atol=1e-6)
171
+ assert_allclose(model.intercept_, model_loaded.intercept_, atol=1e-6)
@@ -0,0 +1,259 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose, assert_array_equal
20
+ from sklearn.datasets import load_diabetes
21
+ from sklearn.metrics import mean_squared_error
22
+ from sklearn.model_selection import train_test_split
23
+
24
+ from daal4py.sklearn._utils import daal_check_version
25
+ from onedal.linear_model import LinearRegression
26
+ from onedal.tests.utils._device_selection import get_queues
27
+
28
+
29
+ @pytest.mark.parametrize("queue", get_queues())
30
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
31
+ def test_diabetes(queue, dtype):
32
+ X, y = load_diabetes(return_X_y=True)
33
+ X, y = X.astype(dtype), y.astype(dtype)
34
+ X_train, X_test, y_train, y_test = train_test_split(
35
+ X, y, train_size=0.8, random_state=777
36
+ )
37
+ model = LinearRegression(fit_intercept=True)
38
+ model.fit(X_train, y_train, queue=queue)
39
+ y_pred = model.predict(X_test, queue=queue)
40
+ assert_allclose(mean_squared_error(y_test, y_pred), 2395.567, rtol=1e-5)
41
+
42
+
43
+ @pytest.mark.parametrize("queue", get_queues())
44
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
45
+ def test_pickle(queue, dtype):
46
+ X, y = load_diabetes(return_X_y=True)
47
+ X, y = X.astype(dtype), y.astype(dtype)
48
+ model = LinearRegression(fit_intercept=True)
49
+ model.fit(X, y, queue=queue)
50
+ expected = model.predict(X, queue=queue)
51
+
52
+ import pickle
53
+
54
+ dump = pickle.dumps(model)
55
+ model2 = pickle.loads(dump)
56
+
57
+ assert isinstance(model2, model.__class__)
58
+ result = model2.predict(X, queue=queue)
59
+
60
+ assert_array_equal(expected, result)
61
+
62
+
63
+ @pytest.mark.parametrize("queue", get_queues())
64
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
65
+ def test_full_results(queue, dtype):
66
+ seed = 42
67
+ f_count, r_count = 19, 7
68
+ s_count, t_count = 3500, 1999
69
+
70
+ gen = np.random.default_rng(seed)
71
+ intp = gen.random(size=r_count, dtype=dtype)
72
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
73
+
74
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
75
+ y = X @ coef + intp[np.newaxis, :]
76
+
77
+ model = LinearRegression(fit_intercept=True)
78
+ model.fit(X, y, queue=queue)
79
+
80
+ if queue and queue.sycl_device.is_gpu:
81
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
82
+ else:
83
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
84
+ assert_allclose(coef, model.coef_.T, rtol=tol)
85
+
86
+ tol = 2e-3 if model.intercept_.dtype == np.float32 else 1e-5
87
+ assert_allclose(intp, model.intercept_, rtol=tol)
88
+
89
+ Xt = gen.random(size=(t_count, f_count), dtype=dtype)
90
+ gtr = Xt @ coef + intp[np.newaxis, :]
91
+
92
+ res = model.predict(Xt, queue=queue)
93
+
94
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
95
+ assert_allclose(gtr, res, rtol=tol)
96
+
97
+
98
+ @pytest.mark.parametrize("queue", get_queues())
99
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
100
+ def test_no_intercept_results(queue, dtype):
101
+ seed = 42
102
+ f_count, r_count = 19, 7
103
+ s_count, t_count = 3500, 1999
104
+
105
+ gen = np.random.default_rng(seed)
106
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
107
+
108
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
109
+ y = X @ coef
110
+
111
+ model = LinearRegression(fit_intercept=False)
112
+ model.fit(X, y, queue=queue)
113
+
114
+ if queue and queue.sycl_device.is_gpu:
115
+ tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
116
+ else:
117
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
118
+ assert_allclose(coef, model.coef_.T, rtol=tol)
119
+
120
+ Xt = gen.random(size=(t_count, f_count), dtype=dtype)
121
+ gtr = Xt @ coef
122
+
123
+ res = model.predict(Xt, queue=queue)
124
+
125
+ tol = 5e-5 if res.dtype == np.float32 else 1e-7
126
+ assert_allclose(gtr, res, rtol=tol)
127
+
128
+
129
+ @pytest.mark.parametrize("queue", get_queues())
130
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
131
+ def test_reconstruct_model(queue, dtype):
132
+ seed = 42
133
+ s_count = 3500
134
+ f_count, r_count = 14, 9
135
+
136
+ gen = np.random.default_rng(seed)
137
+ intp = gen.random(size=r_count, dtype=dtype)
138
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
139
+
140
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
141
+ gtr = X @ coef + intp[np.newaxis, :]
142
+
143
+ model = LinearRegression(fit_intercept=True)
144
+ model.coef_ = coef.T
145
+ model.intercept_ = intp
146
+
147
+ res = model.predict(X, queue=queue)
148
+
149
+ tol = 1e-5 if res.dtype == np.float32 else 1e-7
150
+ assert_allclose(gtr, res, rtol=tol)
151
+
152
+
153
+ @pytest.mark.parametrize("queue", get_queues())
154
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
155
+ @pytest.mark.parametrize("fit_intercept", [False, True])
156
+ @pytest.mark.skipif(
157
+ not daal_check_version((2025, "P", 1)),
158
+ reason="Functionality introduced in later versions",
159
+ )
160
+ def test_overdetermined_system(queue, dtype, fit_intercept):
161
+ if queue and queue.sycl_device.is_gpu and not daal_check_version((2025, "P", 200)):
162
+ pytest.skip("Functionality introduced in later versions")
163
+ gen = np.random.default_rng(seed=123)
164
+ X = gen.standard_normal(size=(10, 20))
165
+ y = gen.standard_normal(size=X.shape[0])
166
+
167
+ model = LinearRegression(fit_intercept=fit_intercept).fit(X, y)
168
+ if not fit_intercept:
169
+ A = X.T @ X
170
+ b = X.T @ y
171
+ x = model.coef_
172
+ else:
173
+ Xi = np.c_[X, np.ones((X.shape[0], 1))]
174
+ A = Xi.T @ Xi
175
+ b = Xi.T @ y
176
+ x = np.r_[model.coef_, model.intercept_]
177
+ residual = A @ x - b
178
+ assert np.all(np.abs(residual) < 1e-6)
179
+
180
+
181
+ @pytest.mark.parametrize("queue", get_queues())
182
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
183
+ @pytest.mark.parametrize("fit_intercept", [False, True])
184
+ @pytest.mark.skipif(
185
+ not daal_check_version((2025, "P", 1)),
186
+ reason="Functionality introduced in later versions",
187
+ )
188
+ def test_singular_matrix(queue, dtype, fit_intercept):
189
+ if queue and queue.sycl_device.is_gpu and not daal_check_version((2025, "P", 200)):
190
+ pytest.skip("Functionality introduced in later versions")
191
+ gen = np.random.default_rng(seed=123)
192
+ X = gen.standard_normal(size=(20, 4))
193
+ X[:, 2] = X[:, 3]
194
+ y = gen.standard_normal(size=X.shape[0])
195
+
196
+ model = LinearRegression(fit_intercept=fit_intercept).fit(X, y)
197
+ if not fit_intercept:
198
+ A = X.T @ X
199
+ b = X.T @ y
200
+ x = model.coef_
201
+ else:
202
+ Xi = np.c_[X, np.ones((X.shape[0], 1))]
203
+ A = Xi.T @ Xi
204
+ b = Xi.T @ y
205
+ x = np.r_[model.coef_, model.intercept_]
206
+ residual = A @ x - b
207
+ assert np.all(np.abs(residual) < 1e-6)
208
+
209
+
210
+ @pytest.mark.parametrize("queue", get_queues())
211
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
212
+ @pytest.mark.parametrize("fit_intercept", [False, True])
213
+ @pytest.mark.parametrize("problem_type", ["regular", "overdetermined", "singular"])
214
+ @pytest.mark.skipif(
215
+ not daal_check_version((2025, "P", 1)),
216
+ reason="Functionality introduced in the versions >= 2025.0",
217
+ )
218
+ def test_multioutput_regression(queue, dtype, fit_intercept, problem_type):
219
+ if (
220
+ problem_type != "regular"
221
+ and queue
222
+ and queue.sycl_device.is_gpu
223
+ and not daal_check_version((2025, "P", 200))
224
+ ):
225
+ pytest.skip("Functionality introduced in later versions")
226
+ gen = np.random.default_rng(seed=123)
227
+ if problem_type == "regular":
228
+ X = gen.standard_normal(size=(20, 5))
229
+ elif problem_type == "singular":
230
+ X = gen.standard_normal(size=(20, 4))
231
+ X[:, 3] = X[:, 2]
232
+ else:
233
+ X = gen.standard_normal(size=(10, 20))
234
+ Y = gen.standard_normal(size=(X.shape[0], 3), dtype=dtype)
235
+
236
+ model = LinearRegression(fit_intercept=fit_intercept).fit(X, Y)
237
+ if not fit_intercept:
238
+ A = X.T @ X
239
+ b = X.T @ Y
240
+ x = model.coef_.T
241
+ else:
242
+ Xi = np.c_[X, np.ones((X.shape[0], 1))]
243
+ A = Xi.T @ Xi
244
+ b = Xi.T @ Y
245
+ x = np.r_[model.coef_.T, model.intercept_.reshape((1, -1))]
246
+ residual = A @ x - b
247
+ assert np.all(np.abs(residual) < 1e-5)
248
+
249
+ pred = model.predict(X, queue=queue)
250
+ expected_pred = X @ model.coef_.T + model.intercept_.reshape((1, -1))
251
+ tol = 1e-5 if pred.dtype == np.float32 else 1e-7
252
+ assert_allclose(pred, expected_pred, rtol=tol)
253
+
254
+ # check that it also works when 'y' is a list of lists
255
+ Y_lists = Y.tolist()
256
+ model_lists = LinearRegression(fit_intercept=fit_intercept).fit(X, Y_lists)
257
+ assert_allclose(model.coef_, model_lists.coef_)
258
+ if fit_intercept:
259
+ assert_allclose(model.intercept_, model_lists.intercept_)