scikit-learn-intelex 2025.1.0__py312-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,265 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from sklearn.datasets import make_regression
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests.utils.spmd import (
26
+ _generate_classification_data,
27
+ _generate_regression_data,
28
+ _get_local_tensor,
29
+ _mpi_libs_and_gpu_available,
30
+ _spmd_assert_allclose,
31
+ )
32
+
33
+
34
+ @pytest.mark.skipif(
35
+ not _mpi_libs_and_gpu_available,
36
+ reason="GPU device and MPI libs required for test",
37
+ )
38
+ @pytest.mark.parametrize(
39
+ "dataframe,queue",
40
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
41
+ )
42
+ @pytest.mark.mpi
43
+ def test_rfcls_spmd_gold(dataframe, queue):
44
+ # Import spmd and batch algo
45
+ from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
46
+ from sklearnex.spmd.ensemble import (
47
+ RandomForestClassifier as RandomForestClassifier_SPMD,
48
+ )
49
+
50
+ # Create gold data and convert to dataframe
51
+ X_train = np.array(
52
+ [
53
+ [0.0, 0.0],
54
+ [0.0, 1.0],
55
+ [1.0, 0.0],
56
+ [0.0, 2.0],
57
+ [2.0, 0.0],
58
+ [1.0, 1.0],
59
+ [0.0, -1.0],
60
+ [-1.0, 0.0],
61
+ [-1.0, -1.0],
62
+ ]
63
+ )
64
+ y_train = np.array([0, 2, 1, 2, 1, 0, 1, 2, 0])
65
+ X_test = np.array(
66
+ [
67
+ [1.0, -1.0],
68
+ [-1.0, 1.0],
69
+ [0.0, 1.0],
70
+ [10.0, -10.0],
71
+ ]
72
+ )
73
+
74
+ local_dpt_X_train = _convert_to_dataframe(
75
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
76
+ )
77
+ local_dpt_y_train = _convert_to_dataframe(
78
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
79
+ )
80
+ local_dpt_X_test = _convert_to_dataframe(
81
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
82
+ )
83
+
84
+ # Ensure predictions of batch algo match spmd
85
+ spmd_model = RandomForestClassifier_SPMD(n_estimators=3, random_state=0).fit(
86
+ local_dpt_X_train, local_dpt_y_train
87
+ )
88
+ batch_model = RandomForestClassifier_Batch(n_estimators=3, random_state=0).fit(
89
+ X_train, y_train
90
+ )
91
+ spmd_result = spmd_model.predict(local_dpt_X_test)
92
+ batch_result = batch_model.predict(X_test)
93
+
94
+ pytest.skip("SPMD and batch random forest results not aligned")
95
+ _spmd_assert_allclose(spmd_result, batch_result)
96
+
97
+
98
+ @pytest.mark.skipif(
99
+ not _mpi_libs_and_gpu_available,
100
+ reason="GPU device and MPI libs required for test",
101
+ )
102
+ @pytest.mark.parametrize("n_samples", [200, 1000])
103
+ @pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
104
+ @pytest.mark.parametrize("n_estimators", [10, 100])
105
+ @pytest.mark.parametrize("max_depth", [3, None])
106
+ @pytest.mark.parametrize(
107
+ "dataframe,queue",
108
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
109
+ )
110
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
111
+ @pytest.mark.mpi
112
+ def test_rfcls_spmd_synthetic(
113
+ n_samples, n_features_and_classes, n_estimators, max_depth, dataframe, queue, dtype
114
+ ):
115
+ n_features, n_classes = n_features_and_classes
116
+ # Import spmd and batch algo
117
+ from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
118
+ from sklearnex.spmd.ensemble import (
119
+ RandomForestClassifier as RandomForestClassifier_SPMD,
120
+ )
121
+
122
+ # Generate data and convert to dataframe
123
+ X_train, X_test, y_train, _ = _generate_classification_data(
124
+ n_samples, n_features, n_classes, dtype=dtype
125
+ )
126
+
127
+ local_dpt_X_train = _convert_to_dataframe(
128
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
129
+ )
130
+ local_dpt_y_train = _convert_to_dataframe(
131
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
132
+ )
133
+ local_dpt_X_test = _convert_to_dataframe(
134
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
135
+ )
136
+
137
+ # Ensure predictions of batch algo match spmd
138
+ spmd_model = RandomForestClassifier_SPMD(
139
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
140
+ ).fit(local_dpt_X_train, local_dpt_y_train)
141
+ batch_model = RandomForestClassifier_Batch(
142
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
143
+ ).fit(X_train, y_train)
144
+ spmd_result = spmd_model.predict(local_dpt_X_test)
145
+ batch_result = batch_model.predict(X_test)
146
+
147
+ pytest.skip("SPMD and batch random forest results not aligned")
148
+ _spmd_assert_allclose(spmd_result, batch_result)
149
+
150
+
151
+ @pytest.mark.skipif(
152
+ not _mpi_libs_and_gpu_available,
153
+ reason="GPU device and MPI libs required for test",
154
+ )
155
+ @pytest.mark.parametrize(
156
+ "dataframe,queue",
157
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
158
+ )
159
+ @pytest.mark.mpi
160
+ def test_rfreg_spmd_gold(dataframe, queue):
161
+ # Import spmd and batch algo
162
+ from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
163
+ from sklearnex.spmd.ensemble import (
164
+ RandomForestRegressor as RandomForestRegressor_SPMD,
165
+ )
166
+
167
+ # Create gold data and convert to dataframe
168
+ X_train = np.array(
169
+ [
170
+ [0.0, 0.0],
171
+ [0.0, 1.0],
172
+ [1.0, 0.0],
173
+ [0.0, 2.0],
174
+ [2.0, 0.0],
175
+ [1.0, 1.0],
176
+ [0.0, -1.0],
177
+ [-1.0, 0.0],
178
+ [-1.0, -1.0],
179
+ ]
180
+ )
181
+ y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
182
+ X_test = np.array(
183
+ [
184
+ [1.0, -1.0],
185
+ [-1.0, 1.0],
186
+ [0.0, 1.0],
187
+ [10.0, -10.0],
188
+ ]
189
+ )
190
+
191
+ local_dpt_X_train = _convert_to_dataframe(
192
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
193
+ )
194
+ local_dpt_y_train = _convert_to_dataframe(
195
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
196
+ )
197
+ local_dpt_X_test = _convert_to_dataframe(
198
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
199
+ )
200
+
201
+ # Ensure predictions of batch algo match spmd
202
+ spmd_model = RandomForestRegressor_SPMD(n_estimators=3, random_state=0).fit(
203
+ local_dpt_X_train, local_dpt_y_train
204
+ )
205
+ batch_model = RandomForestRegressor_Batch(n_estimators=3, random_state=0).fit(
206
+ X_train, y_train
207
+ )
208
+ spmd_result = spmd_model.predict(local_dpt_X_test)
209
+ batch_result = batch_model.predict(X_test)
210
+
211
+ pytest.skip("SPMD and batch random forest results not aligned")
212
+ _spmd_assert_allclose(spmd_result, batch_result)
213
+
214
+
215
+ @pytest.mark.skipif(
216
+ not _mpi_libs_and_gpu_available,
217
+ reason="GPU device and MPI libs required for test",
218
+ )
219
+ @pytest.mark.parametrize("n_samples", [200, 1000])
220
+ @pytest.mark.parametrize("n_features", [5, 25])
221
+ @pytest.mark.parametrize("n_estimators", [10, 100])
222
+ @pytest.mark.parametrize("max_depth", [3, None])
223
+ @pytest.mark.parametrize(
224
+ "dataframe,queue",
225
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
226
+ )
227
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
228
+ @pytest.mark.mpi
229
+ def test_rfreg_spmd_synthetic(
230
+ n_samples, n_features, n_estimators, max_depth, dataframe, queue, dtype
231
+ ):
232
+ # Import spmd and batch algo
233
+ from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
234
+ from sklearnex.spmd.ensemble import (
235
+ RandomForestRegressor as RandomForestRegressor_SPMD,
236
+ )
237
+
238
+ # Generate data and convert to dataframe
239
+ X_train, X_test, y_train, _ = _generate_regression_data(
240
+ n_samples, n_features, dtype=dtype
241
+ )
242
+
243
+ local_dpt_X_train = _convert_to_dataframe(
244
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
245
+ )
246
+ local_dpt_y_train = _convert_to_dataframe(
247
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
248
+ )
249
+ local_dpt_X_test = _convert_to_dataframe(
250
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
251
+ )
252
+
253
+ # Ensure predictions of batch algo match spmd
254
+ spmd_model = RandomForestRegressor_Batch(
255
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
256
+ ).fit(local_dpt_X_train, local_dpt_y_train)
257
+ batch_model = RandomForestRegressor_Batch(
258
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
259
+ ).fit(X_train, y_train)
260
+ spmd_result = spmd_model.predict(local_dpt_X_test)
261
+ batch_result = batch_model.predict(X_test)
262
+
263
+ # TODO: remove skips when SPMD and batch are aligned
264
+ pytest.skip("SPMD and batch random forest results not aligned")
265
+ _spmd_assert_allclose(spmd_result, batch_result)
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .incremental_linear_model import IncrementalLinearRegression
18
+ from .linear_model import LinearRegression
19
+ from .logistic_regression import LogisticRegression
20
+
21
+ __all__ = ["IncrementalLinearRegression", "LinearRegression", "LogisticRegression"]
@@ -0,0 +1,35 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+
18
+ from onedal.spmd.linear_model import (
19
+ IncrementalLinearRegression as onedalSPMD_IncrementalLinearRegression,
20
+ )
21
+
22
+ from ...linear_model import (
23
+ IncrementalLinearRegression as base_IncrementalLinearRegression,
24
+ )
25
+
26
+
27
+ class IncrementalLinearRegression(base_IncrementalLinearRegression):
28
+ """
29
+ Distributed incremental estimator for linear regression.
30
+ Allows for distributed training of linear regression if data is split into batches.
31
+
32
+ API is the same as for `sklearnex.linear_model.IncrementalLinearRegression`.
33
+ """
34
+
35
+ _onedal_incremental_linear = staticmethod(onedalSPMD_IncrementalLinearRegression)
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.linear_model import LinearRegression
18
+
19
+ # TODO:
20
+ # Currently it uses `onedal` module interface.
21
+ # Add sklearnex dispatching.
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.linear_model import LogisticRegression
18
+
19
+ # TODO:
20
+ # Currently it uses `onedal` module interface.
21
+ # Add sklearnex dispatching.
@@ -0,0 +1,329 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.tests.utils.spmd import (
27
+ _generate_regression_data,
28
+ _get_local_tensor,
29
+ _mpi_libs_and_gpu_available,
30
+ )
31
+
32
+
33
+ @pytest.mark.skipif(
34
+ not _mpi_libs_and_gpu_available,
35
+ reason="GPU device and MPI libs required for test",
36
+ )
37
+ @pytest.mark.parametrize(
38
+ "dataframe,queue",
39
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
40
+ )
41
+ @pytest.mark.parametrize("fit_intercept", [True, False])
42
+ @pytest.mark.parametrize("macro_block", [None, 1024])
43
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
44
+ @pytest.mark.mpi
45
+ def test_incremental_linear_regression_fit_spmd_gold(
46
+ dataframe, queue, fit_intercept, macro_block, dtype
47
+ ):
48
+ # Import spmd and non-SPMD algo
49
+ from sklearnex.linear_model import IncrementalLinearRegression
50
+ from sklearnex.spmd.linear_model import (
51
+ IncrementalLinearRegression as IncrementalLinearRegression_SPMD,
52
+ )
53
+
54
+ # Create gold data and process into dpt
55
+ X = np.array(
56
+ [
57
+ [0.0, 0.0],
58
+ [1.0, 2.0],
59
+ [2.0, 4.0],
60
+ [3.0, 8.0],
61
+ [4.0, 16.0],
62
+ [5.0, 32.0],
63
+ [6.0, 64.0],
64
+ [7.0, 128.0],
65
+ [8.0, 0.0],
66
+ [9.0, 2.0],
67
+ [10.0, 4.0],
68
+ [11.0, 8.0],
69
+ [12.0, 16.0],
70
+ [13.0, 32.0],
71
+ [14.0, 64.0],
72
+ [15.0, 128.0],
73
+ ],
74
+ dtype=dtype,
75
+ )
76
+ dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
77
+ local_X = _get_local_tensor(X)
78
+ local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
79
+
80
+ y = np.dot(X, [1, 2]) + 3
81
+ dpt_y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
82
+ local_y = _get_local_tensor(y)
83
+ local_dpt_y = _convert_to_dataframe(local_y, sycl_queue=queue, target_df=dataframe)
84
+
85
+ inclin_spmd = IncrementalLinearRegression_SPMD(fit_intercept=fit_intercept)
86
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
87
+
88
+ if macro_block is not None:
89
+ hparams = inclin.get_hyperparameters("fit")
90
+ hparams.cpu_macro_block = macro_block
91
+ hparams.gpu_macro_block = macro_block
92
+
93
+ hparams_spmd = inclin_spmd.get_hyperparameters("fit")
94
+ hparams_spmd.cpu_macro_block = macro_block
95
+ hparams_spmd.gpu_macro_block = macro_block
96
+
97
+ inclin_spmd.fit(local_dpt_X, local_dpt_y)
98
+ inclin.fit(dpt_X, dpt_y)
99
+
100
+ assert_allclose(inclin.coef_, inclin_spmd.coef_)
101
+ if fit_intercept:
102
+ assert_allclose(inclin.intercept_, inclin_spmd.intercept_)
103
+
104
+
105
+ @pytest.mark.skipif(
106
+ not _mpi_libs_and_gpu_available,
107
+ reason="GPU device and MPI libs required for test",
108
+ )
109
+ @pytest.mark.parametrize(
110
+ "dataframe,queue",
111
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
112
+ )
113
+ @pytest.mark.parametrize("fit_intercept", [True, False])
114
+ @pytest.mark.parametrize("num_blocks", [1, 2])
115
+ @pytest.mark.parametrize("macro_block", [None, 1024])
116
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
117
+ @pytest.mark.mpi
118
+ def test_incremental_linear_regression_partial_fit_spmd_gold(
119
+ dataframe, queue, fit_intercept, num_blocks, macro_block, dtype
120
+ ):
121
+ # Import spmd and non-SPMD algo
122
+ from sklearnex.linear_model import IncrementalLinearRegression
123
+ from sklearnex.spmd.linear_model import (
124
+ IncrementalLinearRegression as IncrementalLinearRegression_SPMD,
125
+ )
126
+
127
+ # Create gold data and process into dpt
128
+ X = np.array(
129
+ [
130
+ [0.0, 0.0],
131
+ [1.0, 2.0],
132
+ [2.0, 4.0],
133
+ [3.0, 8.0],
134
+ [4.0, 16.0],
135
+ [5.0, 32.0],
136
+ [6.0, 64.0],
137
+ [7.0, 128.0],
138
+ [8.0, 0.0],
139
+ [9.0, 2.0],
140
+ [10.0, 4.0],
141
+ [11.0, 8.0],
142
+ [12.0, 16.0],
143
+ [13.0, 32.0],
144
+ [14.0, 64.0],
145
+ [15.0, 128.0],
146
+ ],
147
+ dtype=dtype,
148
+ )
149
+ dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
150
+ local_X = _get_local_tensor(X)
151
+ split_local_X = np.array_split(local_X, num_blocks)
152
+
153
+ y = np.dot(X, [1, 2]) + 3
154
+ dpt_y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
155
+ local_y = _get_local_tensor(y)
156
+ split_local_y = np.array_split(local_y, num_blocks)
157
+
158
+ inclin_spmd = IncrementalLinearRegression_SPMD(fit_intercept=fit_intercept)
159
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
160
+
161
+ if macro_block is not None:
162
+ hparams = inclin.get_hyperparameters("fit")
163
+ hparams.cpu_macro_block = macro_block
164
+ hparams.gpu_macro_block = macro_block
165
+
166
+ hparams_spmd = inclin_spmd.get_hyperparameters("fit")
167
+ hparams_spmd.cpu_macro_block = macro_block
168
+ hparams_spmd.gpu_macro_block = macro_block
169
+
170
+ for i in range(num_blocks):
171
+ local_dpt_X = _convert_to_dataframe(
172
+ split_local_X[i], sycl_queue=queue, target_df=dataframe
173
+ )
174
+ local_dpt_y = _convert_to_dataframe(
175
+ split_local_y[i], sycl_queue=queue, target_df=dataframe
176
+ )
177
+ inclin_spmd.partial_fit(local_dpt_X, local_dpt_y)
178
+
179
+ inclin.fit(dpt_X, dpt_y)
180
+
181
+ assert_allclose(inclin.coef_, inclin_spmd.coef_)
182
+ if fit_intercept:
183
+ assert_allclose(inclin.intercept_, inclin_spmd.intercept_)
184
+
185
+
186
+ @pytest.mark.skipif(
187
+ not _mpi_libs_and_gpu_available,
188
+ reason="GPU device and MPI libs required for test",
189
+ )
190
+ @pytest.mark.parametrize(
191
+ "dataframe,queue",
192
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
193
+ )
194
+ @pytest.mark.parametrize("fit_intercept", [True, False])
195
+ @pytest.mark.parametrize("num_samples", [100, 1000])
196
+ @pytest.mark.parametrize("num_features", [5, 10])
197
+ @pytest.mark.parametrize("macro_block", [None, 1024])
198
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
199
+ @pytest.mark.mpi
200
+ def test_incremental_linear_regression_fit_spmd_random(
201
+ dataframe, queue, fit_intercept, num_samples, num_features, macro_block, dtype
202
+ ):
203
+ # Import spmd and non-SPMD algo
204
+ from sklearnex.linear_model import IncrementalLinearRegression
205
+ from sklearnex.spmd.linear_model import (
206
+ IncrementalLinearRegression as IncrementalLinearRegression_SPMD,
207
+ )
208
+
209
+ tol = 2e-4 if dtype == np.float32 else 1e-7
210
+
211
+ # Generate random data and process into dpt
212
+ X_train, X_test, y_train, _ = _generate_regression_data(
213
+ num_samples, num_features, dtype
214
+ )
215
+ dpt_X = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
216
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
217
+ local_X = _get_local_tensor(X_train)
218
+ local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
219
+
220
+ dpt_y = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
221
+ local_y = _get_local_tensor(y_train)
222
+ local_dpt_y = _convert_to_dataframe(local_y, sycl_queue=queue, target_df=dataframe)
223
+
224
+ inclin_spmd = IncrementalLinearRegression_SPMD(fit_intercept=fit_intercept)
225
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
226
+
227
+ if macro_block is not None:
228
+ hparams = inclin.get_hyperparameters("fit")
229
+ hparams.cpu_macro_block = macro_block
230
+ hparams.gpu_macro_block = macro_block
231
+
232
+ hparams_spmd = inclin_spmd.get_hyperparameters("fit")
233
+ hparams_spmd.cpu_macro_block = macro_block
234
+ hparams_spmd.gpu_macro_block = macro_block
235
+
236
+ inclin_spmd.fit(local_dpt_X, local_dpt_y)
237
+ inclin.fit(dpt_X, dpt_y)
238
+
239
+ assert_allclose(inclin.coef_, inclin_spmd.coef_, atol=tol)
240
+ if fit_intercept:
241
+ assert_allclose(inclin.intercept_, inclin_spmd.intercept_, atol=tol)
242
+
243
+ y_pred_spmd = inclin_spmd.predict(dpt_X_test)
244
+ y_pred = inclin.predict(dpt_X_test)
245
+
246
+ assert_allclose(_as_numpy(y_pred_spmd), _as_numpy(y_pred), atol=tol)
247
+
248
+
249
+ @pytest.mark.skipif(
250
+ not _mpi_libs_and_gpu_available,
251
+ reason="GPU device and MPI libs required for test",
252
+ )
253
+ @pytest.mark.parametrize(
254
+ "dataframe,queue",
255
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
256
+ )
257
+ @pytest.mark.parametrize("fit_intercept", [True, False])
258
+ @pytest.mark.parametrize("num_blocks", [1, 2])
259
+ @pytest.mark.parametrize("num_samples", [100, 1000])
260
+ @pytest.mark.parametrize("num_features", [5, 10])
261
+ @pytest.mark.parametrize("macro_block", [None, 1024])
262
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
263
+ @pytest.mark.mpi
264
+ def test_incremental_linear_regression_partial_fit_spmd_random(
265
+ dataframe,
266
+ queue,
267
+ fit_intercept,
268
+ num_blocks,
269
+ num_samples,
270
+ num_features,
271
+ macro_block,
272
+ dtype,
273
+ ):
274
+ # Import spmd and non-SPMD algo
275
+ from sklearnex.linear_model import IncrementalLinearRegression
276
+ from sklearnex.spmd.linear_model import (
277
+ IncrementalLinearRegression as IncrementalLinearRegression_SPMD,
278
+ )
279
+
280
+ tol = 3e-4 if dtype == np.float32 else 1e-7
281
+
282
+ # Generate random data and process into dpt
283
+ X_train, X_test, y_train, _ = _generate_regression_data(
284
+ num_samples, num_features, dtype, 573
285
+ )
286
+ dpt_X = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
287
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
288
+ local_X = _get_local_tensor(X_train)
289
+ X_split = np.array_split(X_train, num_blocks)
290
+ split_local_X = np.array_split(local_X, num_blocks)
291
+
292
+ dpt_y = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
293
+ y_split = np.array_split(y_train, num_blocks)
294
+ local_y = _get_local_tensor(y_train)
295
+ split_local_y = np.array_split(local_y, num_blocks)
296
+
297
+ inclin_spmd = IncrementalLinearRegression_SPMD(fit_intercept=fit_intercept)
298
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
299
+
300
+ if macro_block is not None:
301
+ hparams = inclin.get_hyperparameters("fit")
302
+ hparams.cpu_macro_block = macro_block
303
+ hparams.gpu_macro_block = macro_block
304
+
305
+ hparams_spmd = inclin_spmd.get_hyperparameters("fit")
306
+ hparams_spmd.cpu_macro_block = macro_block
307
+ hparams_spmd.gpu_macro_block = macro_block
308
+
309
+ for i in range(num_blocks):
310
+ local_dpt_X = _convert_to_dataframe(
311
+ split_local_X[i], sycl_queue=queue, target_df=dataframe
312
+ )
313
+ local_dpt_y = _convert_to_dataframe(
314
+ split_local_y[i], sycl_queue=queue, target_df=dataframe
315
+ )
316
+ dpt_X = _convert_to_dataframe(X_split[i], sycl_queue=queue, target_df=dataframe)
317
+ dpt_y = _convert_to_dataframe(y_split[i], sycl_queue=queue, target_df=dataframe)
318
+
319
+ inclin_spmd.partial_fit(local_dpt_X, local_dpt_y)
320
+ inclin.partial_fit(dpt_X, dpt_y)
321
+
322
+ assert_allclose(inclin.coef_, inclin_spmd.coef_, atol=tol)
323
+ if fit_intercept:
324
+ assert_allclose(inclin.intercept_, inclin_spmd.intercept_, atol=tol)
325
+
326
+ y_pred_spmd = inclin_spmd.predict(dpt_X_test)
327
+ y_pred = inclin.predict(dpt_X_test)
328
+
329
+ assert_allclose(_as_numpy(y_pred_spmd), _as_numpy(y_pred), atol=tol)