scikit-learn-intelex 2025.1.0__py312-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,231 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-learn-intelex
3
+ Version: 2025.1.0
4
+ Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
+ Home-page: https://github.com/intel/scikit-learn-intelex
6
+ Author: Intel Corporation
7
+ Author-email: onedal.maintainers@intel.com
8
+ Maintainer-email: onedal.maintainers@intel.com
9
+ License: Apache v2.0
10
+ Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
11
+ Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
12
+ Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
13
+ Keywords: machine learning,scikit-learn,data science,data analytics
14
+ Platform: UNKNOWN
15
+ Classifier: Development Status :: 5 - Production/Stable
16
+ Classifier: Environment :: Console
17
+ Classifier: Intended Audience :: Developers
18
+ Classifier: Intended Audience :: Other Audience
19
+ Classifier: Intended Audience :: Science/Research
20
+ Classifier: License :: OSI Approved :: Apache Software License
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: POSIX :: Linux
23
+ Classifier: Programming Language :: Python :: 3.8
24
+ Classifier: Programming Language :: Python :: 3.9
25
+ Classifier: Programming Language :: Python :: 3.10
26
+ Classifier: Programming Language :: Python :: 3.11
27
+ Classifier: Programming Language :: Python :: 3.12
28
+ Classifier: Topic :: Scientific/Engineering
29
+ Classifier: Topic :: System
30
+ Classifier: Topic :: Software Development
31
+ Requires-Python: >=3.7
32
+ Description-Content-Type: text/markdown
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: daal (==2025.1.0)
35
+ Requires-Dist: numpy (>=1.19)
36
+ Requires-Dist: scikit-learn (>=0.22)
37
+
38
+
39
+ # Intel(R) Extension for Scikit-learn*
40
+
41
+ [![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
42
+ [![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
43
+ [![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)
44
+ [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
45
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
46
+
47
+ With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
48
+
49
+ The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
50
+
51
+ ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
52
+ You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
53
+
54
+ ## 👀 Follow us on Medium
55
+
56
+ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
57
+
58
+ - [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
59
+ - [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
60
+ - [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
61
+ - [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
62
+ - [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
63
+ - [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
64
+ - [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
65
+ - [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
66
+ - [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
67
+ - [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
68
+
69
+ ## 🔗 Important links
70
+ - [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
71
+ - [Documentation](https://intel.github.io/scikit-learn-intelex/)
72
+ - [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
73
+ - [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
74
+ - [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
75
+ - [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
76
+ - [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
77
+
78
+ ## 💬 Support
79
+
80
+ Report issues, ask questions, and provide suggestions using:
81
+
82
+ - [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
83
+ - [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
84
+ - [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
85
+
86
+ You may reach out to project maintainers privately at onedal.maintainers@intel.com
87
+
88
+ # 🛠 Installation
89
+ Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
90
+ on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
91
+ Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
92
+
93
+ - PyPi (recommended by default)
94
+
95
+ ```bash
96
+ pip install scikit-learn-intelex
97
+ ```
98
+
99
+ - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
100
+
101
+ ```bash
102
+ conda config --add channels conda-forge
103
+ conda config --set channel_priority strict
104
+ conda install scikit-learn-intelex
105
+ ```
106
+
107
+ - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
108
+
109
+ ```bash
110
+ conda config --add channels intel
111
+ conda config --set channel_priority strict
112
+ conda install scikit-learn-intelex
113
+ ```
114
+
115
+ <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
116
+
117
+ #### 📦 PyPi channel
118
+
119
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
120
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
121
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
122
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
123
+
124
+ #### 📦 Anaconda Cloud: Conda-Forge channel
125
+
126
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
127
+ | :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
128
+ | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
129
+ | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
130
+
131
+ #### 📦 Anaconda Cloud: Intel channel
132
+
133
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
134
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
135
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
136
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
137
+
138
+ </details>
139
+
140
+ ⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
141
+ will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
142
+
143
+ <details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
144
+
145
+ - PyPi
146
+
147
+ ```bash
148
+ pip install --upgrade dpcpp_cpp_rt
149
+ ```
150
+
151
+ - Anaconda Cloud
152
+
153
+ ```bash
154
+ conda install dpcpp_cpp_rt -c intel
155
+ ```
156
+
157
+ </details>
158
+
159
+ You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
160
+
161
+ # ⚡️ Get Started
162
+
163
+ Intel CPU optimizations patching
164
+ ```py
165
+ import numpy as np
166
+ from sklearnex import patch_sklearn
167
+ patch_sklearn()
168
+
169
+ from sklearn.cluster import DBSCAN
170
+
171
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
172
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
173
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
174
+ ```
175
+
176
+ Intel GPU optimizations patching
177
+ ```py
178
+ import numpy as np
179
+ import dpctl
180
+ from sklearnex import patch_sklearn, config_context
181
+ patch_sklearn()
182
+
183
+ from sklearn.cluster import DBSCAN
184
+
185
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
186
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
187
+ with config_context(target_offload="gpu:0"):
188
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
189
+ ```
190
+
191
+ # 🚀 Scikit-learn patching
192
+
193
+ ![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
194
+ Configurations:
195
+ - HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
196
+ - SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
197
+
198
+ [Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
199
+
200
+ <details><summary>[Click to expand] ℹ️ Reproduce results </summary>
201
+
202
+ - With Intel® Extension for Scikit-learn enabled:
203
+
204
+ ```bash
205
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report
206
+ ```
207
+
208
+ - With the original Scikit-learn:
209
+
210
+ ```bash
211
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
212
+ ```
213
+ </details>
214
+
215
+ Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
216
+
217
+ ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
218
+
219
+ ## 📜 Intel(R) Extension for Scikit-learn verbose
220
+
221
+ To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
222
+ - On Linux: `export SKLEARNEX_VERBOSE=INFO`
223
+ - On Windows: `set SKLEARNEX_VERBOSE=INFO`
224
+
225
+ For example, for DBSCAN you get one of these print statements depending on which implementation is used:
226
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
227
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
228
+
229
+ [Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
230
+
231
+
@@ -0,0 +1,280 @@
1
+ daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
2
+ daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
3
+ daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so,sha256=rPDpAd9u_LYJRL7eXIiP3PAtfAGBa4JPO40hNR3oIO8,10823720
4
+ daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so,sha256=wxd3dvYgj171okMIOD__L_VerCP539A6-CyYUPHiKnQ,22904
5
+ daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
6
+ daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
7
+ daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
8
+ daal4py/sklearn/__init__.py,sha256=ljO7C5-OtnGwwtlFCDWGHzmc4pDH0M9QtlJbs--TeiQ,1410
9
+ daal4py/sklearn/_n_jobs_support.py,sha256=EltNq0g0YxqIyO7nxBpskXjKg9GqCOPogKpSOxD9wlk,9756
10
+ daal4py/sklearn/_utils.py,sha256=gEkrpJmWJZ3vH0saploNyeTc11JqobT-If666oA7orA,7619
11
+ daal4py/sklearn/cluster/__init__.py,sha256=qb3jlWeIF5XSxofmlnvtAWYINhsnnWBq_PJg_jp0F44,831
12
+ daal4py/sklearn/cluster/dbscan.py,sha256=3op03kXlvKYul28sl64K3xY4G6q7XBGXyShukBBLPjA,5726
13
+ daal4py/sklearn/cluster/k_means.py,sha256=LLlap2zDbHrp6wPILOQZ-GzG6WhVmUpNZLsJSLA-cyk,20218
14
+ daal4py/sklearn/cluster/tests/test_dbscan.py,sha256=j8PeJIt3zqpWFMDltt2-nYc2gWPujeZYYdwQfUHyEe0,3868
15
+ daal4py/sklearn/decomposition/__init__.py,sha256=L7T0brhrvz-9lrJjnou9U84u5y0C9bscg1y18KfA--Y,785
16
+ daal4py/sklearn/decomposition/_pca.py,sha256=nG-4L4N90QmmIlRJJgGXi5FoXeyNyOfUrkTMrYxn9Ag,18970
17
+ daal4py/sklearn/ensemble/AdaBoostClassifier.py,sha256=QdQwxoyLkVdhj9FpETNwq4FboAEbuaHQhAoV0YMh7nw,6773
18
+ daal4py/sklearn/ensemble/GBTDAAL.py,sha256=0scbxzKTf8ItjeF6afME9l1AvnbQz0MIs63yRcW5qFw,11482
19
+ daal4py/sklearn/ensemble/__init__.py,sha256=NE1py-RLgY6ubN6LIi4QlbXqMkLaygTK5uwQyjC3-d4,1068
20
+ daal4py/sklearn/ensemble/_forest.py,sha256=cG3pf7fAyAzvOt22fXPZeMB-2eq8Moq29OmonsTid88,53253
21
+ daal4py/sklearn/ensemble/tests/test_decision_forest.py,sha256=r0u7UkQrAntATP99EyCIpvvt3a1BgHMQEiqwqDeLGsk,6956
22
+ daal4py/sklearn/linear_model/__init__.py,sha256=qBjmXJW0bKX7FZZC9j559ZREUw7Ddb0vobKjDKkrXaw,1069
23
+ daal4py/sklearn/linear_model/_coordinate_descent.py,sha256=PE_6ZnoVygVPtgFgfm3jvoT6SyufIQ0UpNL8QhCfXvA,28380
24
+ daal4py/sklearn/linear_model/_linear.py,sha256=3EBj8q1TUDvYDaxw2dfOkAiWjWxFXeZ6LbeVrdOdYY8,8753
25
+ daal4py/sklearn/linear_model/_ridge.py,sha256=u_X0jRxUqR0u_WLfW7Ls1hYeXYnedBVxJdsF99I0JkM,10533
26
+ daal4py/sklearn/linear_model/coordinate_descent.py,sha256=upbKtmIQ3sVxr2H4z6GA1qWqXgT2hgP5OHZK7ASidis,779
27
+ daal4py/sklearn/linear_model/linear.py,sha256=na9FknpQlw2Up-jgIV7xYqSpHZKN1s9O5LWgP0oxMmk,767
28
+ daal4py/sklearn/linear_model/logistic_loss.py,sha256=PFX7HInSCjUsjWxEqz2AcWpNGkne1X_f2WgsVkvFkXk,5698
29
+ daal4py/sklearn/linear_model/logistic_path.py,sha256=D8HTC7r4obokccmoTjktGrKdbuF71yc3_4DQVYgorfs,37387
30
+ daal4py/sklearn/linear_model/ridge.py,sha256=87SL9602MtRaahCWkwqwzUOUW1tk-nOQah9BklU7a7c,766
31
+ daal4py/sklearn/linear_model/tests/test_linear.py,sha256=_k-O0BlaeeVDdS4HmpLGg4XirPV-2eJrkTj9AnEGWwE,6763
32
+ daal4py/sklearn/linear_model/tests/test_ridge.py,sha256=UNxSclFuq4V5pqzcYTaFQBGRWxKlgNwfnYSqUkio8mQ,2451
33
+ daal4py/sklearn/manifold/__init__.py,sha256=wwA6Xjd62lNdPIFu2gowmpZfcm_B2WUk8BYUM_Y3vAo,789
34
+ daal4py/sklearn/manifold/_t_sne.py,sha256=Vlh8--DoNA7JSAVRx0WfZLg45qfz8kbj2sZjOKNuKKc,15947
35
+ daal4py/sklearn/metrics/__init__.py,sha256=tvEWaSO3dAPaCuUClXFhVpO7XfNEnYDoq1ZFf66KD3M,873
36
+ daal4py/sklearn/metrics/_pairwise.py,sha256=4TACjG8vU0KSOc9JkeCmWq8c-HpPBEXVmGM90ESsu7E,8239
37
+ daal4py/sklearn/metrics/_ranking.py,sha256=YBJznAOjgQ-GPaIu-aNP6AMV39_SEwjr99Z_9Ub13XI,7238
38
+ daal4py/sklearn/model_selection/__init__.py,sha256=AkKzl_Q4hN9myaeXmTMRQSwXcKh9UTzKH85ySH29AHo,834
39
+ daal4py/sklearn/model_selection/_split.py,sha256=fvPJQEz3mceWeLeknrKuchqKxT1eyLoCehg7OBCCbvw,11389
40
+ daal4py/sklearn/model_selection/tests/test_split.py,sha256=MUBiCKh63UctC71aUzzlk4KNXCRblEjzAL0qbaB8xUQ,2065
41
+ daal4py/sklearn/monkeypatch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
+ daal4py/sklearn/monkeypatch/dispatcher.py,sha256=GGtLj7wUOjNO8l22sGXep4MP93Q2e_vYei4e3p5kuoE,9016
43
+ daal4py/sklearn/monkeypatch/tests/_models_info.py,sha256=mD80wbWCNDr5XiPVNBPbeQ96j9vsWkAdJit5437nmNY,4632
44
+ daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py,sha256=SBy6hDFMymxeaXCliLcmjtF_Q2BaJ__hjC4DCJQVgn8,2447
45
+ daal4py/sklearn/monkeypatch/tests/test_patching.py,sha256=8-PNkS1IzGkPTUKH-8BTeBAKzjWoxVr3gxXnIEcDMjI,2708
46
+ daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py,sha256=QsshyTu_xbEfRyDqIdwYXhn72YMDRsNsdxoxMVyzv7E,3698
47
+ daal4py/sklearn/neighbors/__init__.py,sha256=HKrqR7H6UIU4G02S4KASadaYcwGHHBXKLoQmPaDT_WY,962
48
+ daal4py/sklearn/neighbors/_base.py,sha256=jXRYB6UMmS10OREN_K2vROyjMb_c1W6nXdUUSK6DJw4,17297
49
+ daal4py/sklearn/neighbors/_classification.py,sha256=FV8MlAJ5HRgHk6CxnlZv4N102vgs41pMZ_dWdy8OHeI,4823
50
+ daal4py/sklearn/neighbors/_regression.py,sha256=fw8RotX9x_1taqhOmW_MFLGOQsbjGTzrFvvA4IJRddE,2434
51
+ daal4py/sklearn/neighbors/_unsupervised.py,sha256=IpIKiZYmdbKtNatbi6BE6QIF7i7VXXcnh9tACY8kLB8,1790
52
+ daal4py/sklearn/neighbors/tests/test_kneighbors.py,sha256=ifHe4Uz4wvEjf-u71eGN2O3FfPXUY20-BbqhLAAjyIs,4394
53
+ daal4py/sklearn/svm/__init__.py,sha256=zSfWPgCxTUGF92Ul5psjCyssvDYnaOfKvyuz3pAQk4A,784
54
+ daal4py/sklearn/svm/svm.py,sha256=VKmImNCRRK1MCCFpROAQCs7U79TrgPRBqtoyolfODTk,24126
55
+ daal4py/sklearn/utils/__init__.py,sha256=4Lehb4O7jih_S0n_y4aNun6vWT5SfISDPDzPP0WnPhA,828
56
+ daal4py/sklearn/utils/base.py,sha256=usdRsETKbIsEZfohFBWZqfD4cQfZ3B-3svoLTAhIXiI,3032
57
+ daal4py/sklearn/utils/validation.py,sha256=bxhcgaLoqBM_ZZDbX-y7ZziVtFE2g7VFeYFrlLOFb7Y,25857
58
+ daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dVkaFfzi7WU2xo,1963
59
+ onedal/__init__.py,sha256=t9aTOZfzqSLNLlDITKiZD2Y-Q6uGD5Ust0DuzkhoUNI,2595
60
+ onedal/_config.py,sha256=Y6u69lFxA5FV-2fgzis1f5QxMbWfbT6rUN_dPV_OmCU,1828
61
+ onedal/_device_offload.py,sha256=I435t8EqmKKqMDMhPVrBKOShSG-D06C1E_h5WeOulCM,7910
62
+ onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so,sha256=a8gd5ZCOLmyUUQb0r3ZyTaXvPphl68jlYOJRHkcT5B0,2838064
63
+ onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so,sha256=OQWfzFqHduZiObmvCxXCKogp91x8Huyny7zkPn5ZsmI,1600824
64
+ onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so,sha256=KBEMCjNp-6NvYLFoGAZLmoqFAkuDvv0ZoLL0B_DltIU,1068592
65
+ onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
66
+ onedal/basic_statistics/basic_statistics.py,sha256=RXehnZh5JHqaKNXEWvz7pVt_3C9DTefu1OUVX-kZ1kg,3710
67
+ onedal/basic_statistics/incremental_basic_statistics.py,sha256=xTflikq9CAecI3vqwj9bcMawzCKcLkjW56fXnu1Yj_U,5346
68
+ onedal/basic_statistics/tests/test_basic_statistics.py,sha256=5_GjDKbb2qN57UeIwXEnZSKENbWNUPUey2HjLZ7UtqU,9503
69
+ onedal/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=hiB7kTebX4fhgbTclAQ6R4gkXG7CIEPMUTPJGHXFgOY,7399
70
+ onedal/cluster/__init__.py,sha256=_xWLZWG4nmnvcntClA-KAG0SOQOVUeq3hQdlRXt4ZlE,1054
71
+ onedal/cluster/dbscan.py,sha256=LDAF2z2Uv7Th7Q-o7uwwpMprFAKUVHqSV2OqynmjJzY,3688
72
+ onedal/cluster/kmeans.py,sha256=JD3_TWm5SOwfBOC7GLSkZdqAPt2jQ6SQlI3CCkRyjhI,19350
73
+ onedal/cluster/kmeans_init.py,sha256=osex8tdVuKNXqRXuuVvdeBwzjUNECUZCGfiDM-1LNGE,4011
74
+ onedal/cluster/tests/test_dbscan.py,sha256=EFbPR7872nnwg9pjGK358EpdfIDvep2ML1ml1ewC1Jw,4232
75
+ onedal/cluster/tests/test_kmeans.py,sha256=8-CaqVDa1WBy8NFEJ7aEogxNeRF9FuryRUtP0M4oLnM,3683
76
+ onedal/cluster/tests/test_kmeans_init.py,sha256=DmMWYhTyX4ju9zdPTuAQnfH4mvd3vDUol0qgv9wVejI,4031
77
+ onedal/common/_base.py,sha256=_ywcmPy5qbF8igz50FKnFp8obpuqcOFdFEePnN-mKiA,1374
78
+ onedal/common/_estimator_checks.py,sha256=IJre7S_H4_cBSyOhHKzUN6BkmbXYPxWUJkLyjTtuyEM,1848
79
+ onedal/common/_mixin.py,sha256=ucnJvRl5m6RS4r_9jAZWVPlE2AZ-shd0bbHu_kFAH8U,1995
80
+ onedal/common/_policy.py,sha256=iDbhCPJrmv3Q36piExZqdG3OTHhPrIcma-88HXI3ZgQ,2079
81
+ onedal/common/_spmd_policy.py,sha256=428GN-Evrq_DDmSQbVyhPuiRpEhUDYw66pZiFZ_-HwU,1170
82
+ onedal/common/hyperparameters.py,sha256=tlrxFB3tWVEeZEjAKziTGVoq9sus6aRBWIpv0JgzxcA,4907
83
+ onedal/common/tests/test_policy.py,sha256=V7oEax87QvUBAxPUp7dp9QiAYJE8Rto4a53Xqy2aC6o,2669
84
+ onedal/covariance/__init__.py,sha256=M_LutElm3cDgR5EPd38HTJhHfkAibSv_n01RrZSpnVs,926
85
+ onedal/covariance/covariance.py,sha256=JgFnslZny2gmrYDrvlSnjQBaPd8PfD1q-bo6WogVOBI,4313
86
+ onedal/covariance/incremental_covariance.py,sha256=SQe5Aj9uZm2DfV232kEGzlAdqDazDpjARfH4RgCtmdA,4722
87
+ onedal/covariance/tests/test_covariance.py,sha256=ABf7RbNCts3Fxxpmpda7oicY22kS1alFb0MQDzU4ohc,1931
88
+ onedal/covariance/tests/test_incremental_covariance.py,sha256=OV9cDNgSA2g-zrAClpSz_oOvj6b4calPOOE5vKhTwdA,4275
89
+ onedal/datatypes/__init__.py,sha256=r8Jzt7mSbxbii6aBTif6JHkt9uTHOSsweOCd2p2gVxE,881
90
+ onedal/datatypes/_data_conversion.py,sha256=QMg5h44KbQdMvtL2gPUwQQyZ-p1BeUXQr1oDqWu4muA,5477
91
+ onedal/datatypes/tests/common.py,sha256=nHAvZ_B-5t93j0beXACkPN1nzVGaBNxvVI3HKOu22OE,6078
92
+ onedal/datatypes/tests/test_data.py,sha256=HG7tRI3fu5fcYrdPahqgAfygn3fQNG1iXnw-gOpk-yM,15146
93
+ onedal/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
94
+ onedal/decomposition/incremental_pca.py,sha256=Hn2nOy5veAhFIE8od_XULTrzIM2V_6jiBRyQFzEBtnA,7232
95
+ onedal/decomposition/pca.py,sha256=FYthk_AEaTUbM6WigXzHwVE9PXykwLnq0zFVfIv0HRY,7329
96
+ onedal/decomposition/tests/test_incremental_pca.py,sha256=QFsXHtu1guIruLPl-Slv196bga3r5oeGfp0gcGyVdXs,7929
97
+ onedal/ensemble/__init__.py,sha256=zPG_906z717pMYeSxVJR8aZhUqHin45K5gOuvh3ZEsQ,1003
98
+ onedal/ensemble/forest.py,sha256=m0Al3bFAQMSy4GO_lllBbCFDlbqy50ceSRj3M3woEns,26368
99
+ onedal/ensemble/tests/test_random_forest.py,sha256=S0mNfDUSZ8tazitB3bb-ZiNdcbslpHO8wKyJJT7Cgio,3910
100
+ onedal/linear_model/__init__.py,sha256=VgNBLO71sBhXqvQUwN9h9pEadCg5trDzuN7Z6UDp4ck,1096
101
+ onedal/linear_model/incremental_linear_model.py,sha256=naLVv4xqTD_eE8J0IyNg0C-2oVji6z6BWZYXEsWFxeQ,8920
102
+ onedal/linear_model/linear_model.py,sha256=kMg9KKzhGz-VjtRtdsYS0L-cmxNJbHLFGN73U_CV-n8,10461
103
+ onedal/linear_model/logistic_regression.py,sha256=8hY--YCGaPYVSzLrGW9XwueTwZV3RT_1JkkWtRe5_RA,7974
104
+ onedal/linear_model/tests/test_incremental_linear_regression.py,sha256=LDhkcAhM-AUz5siaIHT8ojDYAPriGV55CL3E19wSCJM,6146
105
+ onedal/linear_model/tests/test_incremental_ridge_regression.py,sha256=t9WPJteAAqj7ae6p_nd3xSbWoxUkfjvj0a_2jsf_J7w,4368
106
+ onedal/linear_model/tests/test_linear_regression.py,sha256=Mr_i-NMD8PIsoPtI53vvVrENAiUppgbUKBRAE775Ets,8658
107
+ onedal/linear_model/tests/test_logistic_regression.py,sha256=AkkFycXvXSWPg9jgRGzGXjpq0GExLHbO0n9wddxpqzk,3860
108
+ onedal/linear_model/tests/test_ridge.py,sha256=6OaiavZisFAXyvQrz9haEYLvtrok1Gv1_3zkCK6C39I,3712
109
+ onedal/neighbors/__init__.py,sha256=0uhV1DilaCFEGJOhoQhcr6hduHQDVyuKMeP6broamKk,927
110
+ onedal/neighbors/neighbors.py,sha256=pN9PVVifZeulsYjCYSAUIuurxqweG9_YnEQ2_RGtd-4,28148
111
+ onedal/neighbors/tests/test_knn_classification.py,sha256=wjzIQgwIIEspA8fct0iVv0UvBuDLVIdl1IPN_GAGDJk,1881
112
+ onedal/primitives/__init__.py,sha256=JZjEiUEtXMnZ40Sv59Uydl5qeaSwEhDS8ktRVyQQat0,1037
113
+ onedal/primitives/get_tree.py,sha256=SDB1RG5Zr6sAGpYjxxRFCGqJdAS0ATgMP3TVU9u5MhM,1038
114
+ onedal/primitives/kernel_functions.py,sha256=oTSAa6e_eAaGx0Bk3a0CkjSJadNaRJc6bhF2xlkoOn8,4559
115
+ onedal/primitives/tests/test_kernel_functions.py,sha256=fAdAIGwNvBWAkjdvocqS3X8JjZCYClvvJkANrdxXz0o,6101
116
+ onedal/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
117
+ onedal/spmd/_base.py,sha256=b_E2sdBgnlYArAmBDTzX1tVQolv8efkZ6WZFLm0AqQ8,1172
118
+ onedal/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
119
+ onedal/spmd/basic_statistics/basic_statistics.py,sha256=CSb1IGj-RSxXucoaI_AUt76vOn3u_eSiyYuFd1SFIGc,1290
120
+ onedal/spmd/basic_statistics/incremental_basic_statistics.py,sha256=rwBG-jv4giEJTcJo7OZMuuUakxGBkRmK5lZKZDIuHsU,2588
121
+ onedal/spmd/cluster/__init__.py,sha256=oDnWnrClkTH9dVx8tAw_hdVZBDROOSMD1__3AZwp42g,981
122
+ onedal/spmd/cluster/dbscan.py,sha256=Gi28SjQ-Kqhs2u4ZXJx7TyvS3mLrKwKiahrr3E_Daqk,891
123
+ onedal/spmd/cluster/kmeans.py,sha256=_eYOojTS_twoBdq4AhPjeYi7foUADzRavIDpBHl6VAo,1966
124
+ onedal/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
125
+ onedal/spmd/covariance/covariance.py,sha256=WOIiZGePCsaA0Wg9sViro2PFr-EE73ip0LQcFzPq7_0,1102
126
+ onedal/spmd/covariance/incremental_covariance.py,sha256=kqKbJ4I0ZWSDSN2TnDn9dKPCariEMGRUPMbvn-6fFaE,2736
127
+ onedal/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
128
+ onedal/spmd/decomposition/incremental_pca.py,sha256=oCEAdh3Qt_8Epw3yrQPOAxwW_WkyFMvUFB3E_obfdgs,4171
129
+ onedal/spmd/decomposition/pca.py,sha256=igamsO8J5b9rpsngaQ2fHXCLJ2vew6fU3sbKUqBEEVw,1043
130
+ onedal/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
131
+ onedal/spmd/ensemble/forest.py,sha256=r8plwKIyQaE8pF7pYwTRFZyCTU6Cdc1-5FqRI7IMKz0,1125
132
+ onedal/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
133
+ onedal/spmd/linear_model/incremental_linear_model.py,sha256=Z92yj7Yw1qhY9fbhOwxU6OuSGmyyrrJy_imiSOck6WU,3571
134
+ onedal/spmd/linear_model/linear_model.py,sha256=wCVXzju4orFSyw65Urdzc7BDuVNc4jBV_6BEpOXt66k,1204
135
+ onedal/spmd/linear_model/logistic_regression.py,sha256=EE2tlaQR7BmyMcghkR7vXgDtEjZ_Z-hI1wpqxpKgges,1472
136
+ onedal/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
137
+ onedal/spmd/neighbors/neighbors.py,sha256=-YQTGAyre4aVK_urKfr0LuCYIS_AH8YWm9lEWG1xgO0,2960
138
+ onedal/svm/__init__.py,sha256=xxEw0IY_UHIfcDW86SfBShD_x78OZxRqSUM0EUxzP-w,848
139
+ onedal/svm/svm.py,sha256=7leaeYHpcpF8ZYnLL9jfZzMHTknkK1spCTEIahJ6OI0,17520
140
+ onedal/svm/tests/test_csr_svm.py,sha256=VoKhuFUZ-2bHFOG3jUBnceuXzpk5ix_79frVxLJf5Qk,8924
141
+ onedal/svm/tests/test_nusvc.py,sha256=WxATmJ6GWHMzPJw6qF4HSEU1bVTaQ-qlWKeqphF5roY,7538
142
+ onedal/svm/tests/test_nusvr.py,sha256=oQ8yZiPVz4VXDFKnDuW03rnQco3dDrHAFa7eSXlAQPA,7703
143
+ onedal/svm/tests/test_svc.py,sha256=BmPzRVcHxrECpQjRCG5U2i_0APPmsyIMdZZOADn92Vk,6523
144
+ onedal/svm/tests/test_svr.py,sha256=EakCy0mvvpZ8DJtlmcx0FXa6rJ-zJ4Glt_btLdvx9EI,8934
145
+ onedal/tests/test_common.py,sha256=iX6fA1bIgChvMBIyekXEiPfA1_tYL40IwgF9Gq5cVHU,1990
146
+ onedal/tests/utils/_dataframes_support.py,sha256=hqbWymmv40wUnuJagEdmBkx9eU9boOgSZ3oXAtienZM,5449
147
+ onedal/tests/utils/_device_selection.py,sha256=28OSRokAizriXD8R3gmb5UIwHqv7VIeOI-JbpSsj1F0,2968
148
+ onedal/utils/__init__.py,sha256=10xcH75SnCfeRROvzzzbcK7S_My41GwKJIo3e1MV1TA,1411
149
+ onedal/utils/_array_api.py,sha256=mo3rnvKaW7-eOwddGvYJY949K6jxRDnYYGZZDt83Lts,2953
150
+ onedal/utils/_dpep_helpers.py,sha256=b-GslMlDRfv7qapJNTjF6hxRZa7j7MP5yMNTLCpgeNU,1889
151
+ onedal/utils/validation.py,sha256=w7sz-iOc2b9Dsp3LjLYdhvPMLZ2M8cWvU3yjEhwlW88,14612
152
+ sklearnex/__init__.py,sha256=JmyKzBQs3ug2RxHN8RQ1bspzfBrYkGAFRW4DYrY4cww,1798
153
+ sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
154
+ sklearnex/_config.py,sha256=gNLOR945IboVS-aBdfgQM4s7th0B0FYdbmxUf4WAgRo,4276
155
+ sklearnex/_device_offload.py,sha256=lPvcy8kBagniN0updIygzWad7cOxjfZgUtUdPQzAecQ,5487
156
+ sklearnex/_utils.py,sha256=T0UoTT3SPKvYbTdLmUSs6HR5mfPOFPXNDz-oBk1hYpg,4829
157
+ sklearnex/conftest.py,sha256=Y_-4MPhPv2eNYWD7cPA94CymFG6tsXfTTYfjPLjDq_0,2619
158
+ sklearnex/dispatcher.py,sha256=AWsrUNRZukLscR-sBzjMLdin-9rziPuSaBfWgj2Kx9Y,18993
159
+ sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
160
+ sklearnex/basic_statistics/basic_statistics.py,sha256=6Ll5ZDMAXnKigimEYVF9BWUMHYe1Kw1pl6SN8JoTtpA,8331
161
+ sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=QRgTv_h_7EHnD025sYzuznFFTMW8NjAMaLqXKkxyL2g,11951
162
+ sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=ZlmALlEZiPZPfbi6LjCvVxlW2XNK98oqgZAz9OLcUlk,10163
163
+ sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=-GCaBMSRK-jRhrf_Lj_zP6ALeJq3FTdx9IXwvKxCffM,15626
164
+ sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
165
+ sklearnex/cluster/dbscan.py,sha256=5-ILeDD6foeMR1i45GnTUfMCYjsTrsUJ92jXdbgDQKc,6981
166
+ sklearnex/cluster/k_means.py,sha256=_UR9lOxcqE5BIdjkds5khXL3MkcQSe4JrT0ttKXMDog,14032
167
+ sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
168
+ sklearnex/cluster/tests/test_kmeans.py,sha256=VRqGWOzPKKlA9gXx22lx423w1NR2oXoEW_bUKgnvOPI,6240
169
+ sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
170
+ sklearnex/covariance/incremental_covariance.py,sha256=kwzJN_D_dwMw_OpQfHg10AyY0bvBtHZ45DvxPJaLw8s,14059
171
+ sklearnex/covariance/tests/test_incremental_covariance.py,sha256=XJQtJc0d3-C9hRI3-NladjKAFEXKO7c1gaziMC-dxlw,8927
172
+ sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
173
+ sklearnex/decomposition/pca.py,sha256=7wbz9__4amaq7PsV3n39oL8NuUPqFTFwPvbVQR9vfdY,16932
174
+ sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
175
+ sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
176
+ sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
177
+ sklearnex/ensemble/_forest.py,sha256=HJ64v04Bv0O93fdGp6Jp634qR1XvNali1txVR1nN9EI,72815
178
+ sklearnex/ensemble/tests/test_forest.py,sha256=ViroyFNoJrnGDxkdoTzQdJkKUrIdqKQ_9Mnctt6ZN-o,5401
179
+ sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
180
+ sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
181
+ sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
182
+ sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
183
+ sklearnex/linear_model/incremental_linear.py,sha256=i0VvdE2nw1ibr-Jw0fFpPL0H5Ft8hRgpN9aN12ZdlC4,16422
184
+ sklearnex/linear_model/incremental_ridge.py,sha256=YSXZFabn5w4V-Kdcy4Jr_uijbfGOapJlLzeRyMC9DfE,14577
185
+ sklearnex/linear_model/linear.py,sha256=_oCRbDi4Id4rHKfsCKReXhtNFyIMxHTEfZBD7SLtY0s,12332
186
+ sklearnex/linear_model/logistic_regression.py,sha256=CSFLuvJz1lhyMBVGFoAE_P4I-qPYofnCfRtGakocbRI,15167
187
+ sklearnex/linear_model/ridge.py,sha256=jGehrlT0SPNnABvPXZIZhOC5zDLt0s6X_KK8IP6_Krc,1187
188
+ sklearnex/linear_model/tests/test_incremental_linear.py,sha256=R0mS7Fty3auq3VjiwhP2TCSxUyaF2KX0-f2pAUItVEI,7514
189
+ sklearnex/linear_model/tests/test_incremental_ridge.py,sha256=8Zbp-wZFtM8WLb3KHjmXZtxh9AHKKy6x6IFXZ16gkfI,6442
190
+ sklearnex/linear_model/tests/test_linear.py,sha256=hFkzDZ0xqbOuOE6FfwZW9AE8fW8_LmGHvqlLXxfof9g,6581
191
+ sklearnex/linear_model/tests/test_logreg.py,sha256=8kTIMl1Hcuu0NSPcEle0oAdRerqMtUAWrRlLjS-n4EI,4924
192
+ sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
193
+ sklearnex/manifold/t_sne.py,sha256=JXVeq9aMtqzeK_Q_0OW47YhpHu1IzqKeufQbrJkohZc,1008
194
+ sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
195
+ sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
196
+ sklearnex/metrics/pairwise.py,sha256=HeBOE8sRBZMiF9pup8HBypDGfizQ-UCrQdX2C6YGvbg,982
197
+ sklearnex/metrics/ranking.py,sha256=6rrOcmQBVwDWiuh6uMg3eLUWEdOGCBr3HieKaP3Hvxk,959
198
+ sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
199
+ sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
200
+ sklearnex/model_selection/split.py,sha256=yvYnmNaKJs-Tr8tGBB-2R9CuhjESYih-CN6Wb3I3z3I,984
201
+ sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
202
+ sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
203
+ sklearnex/neighbors/_lof.py,sha256=aiarmfDU5ndpp_JN06NUW2Ny0APjJr3zY9Kuq5nYFWM,9312
204
+ sklearnex/neighbors/common.py,sha256=43djavVzXy_W-nYSd_buHpQK_tk20ZUTF7J9e61mBg8,12542
205
+ sklearnex/neighbors/knn_classification.py,sha256=wxsyPFMlAim60LtK39salu7Cpgwiq0hkduv7IuItwEg,8015
206
+ sklearnex/neighbors/knn_regression.py,sha256=TIh6kf1bX07uFw02IuDsG9DKCiiKG1Fsp7jiMXk81jo,6870
207
+ sklearnex/neighbors/knn_unsupervised.py,sha256=L8oBoVnp-H52ns2k2MNr-KMgAK5zu6crYgwMZt4roQM,6316
208
+ sklearnex/neighbors/tests/test_neighbors.py,sha256=gUmnRiY-xH3oGclv6VPxSIHWchgbygGt6p-vcflvYZ0,3540
209
+ sklearnex/preview/__init__.py,sha256=Q-msZszWwTpj9XfPQssKjGpEV183cUbPsmAm3IFBWX0,802
210
+ sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
211
+ sklearnex/preview/covariance/covariance.py,sha256=ElUHMWNuMpBdBW9nqp4S5zgPgBdIzJvk2tsKHrzX-08,5301
212
+ sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
213
+ sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
214
+ sklearnex/preview/decomposition/incremental_pca.py,sha256=Ko9jrkUGQJz21bD7xgUcr55S7lPL_7uOPsIq19npnuc,8017
215
+ sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=ivI5JXygdh9Uml-ncouDcdl6XFSmOlSuACBEE62gods,10742
216
+ sklearnex/preview/linear_model/__init__.py,sha256=azZix9bU9zjwl12g0gB_K5RiVPJvkrinHHCwqVTLQLY,792
217
+ sklearnex/preview/linear_model/ridge.py,sha256=YJmxvj2nvIjON-9aWPzXyWaFRFx_hx_I6byvr1qNuJw,15518
218
+ sklearnex/preview/linear_model/tests/test_ridge.py,sha256=Ru6D9fY2o6bXyxSeUo6O7sHF8jKHX30J545yBk0LRSo,4056
219
+ sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
220
+ sklearnex/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
221
+ sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
222
+ sklearnex/spmd/basic_statistics/incremental_basic_statistics.py,sha256=KrTeV84fnwKzh0dlvTOfJYW9gmid_99dqqE5VQ-BKIo,1145
223
+ sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py,sha256=1r8x3pjljr4NZ5CrrVxbHMW_y1b-FNS4KTCsqujBiHQ,3786
224
+ sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py,sha256=fQjfs1_HPyYaenzF04ZkkapfGBqWZrTvdwv81QKyIjQ,11194
225
+ sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
226
+ sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
227
+ sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
228
+ sklearnex/spmd/cluster/tests/test_dbscan_spmd.py,sha256=q9Kbs9kaTMhG-6OvOAg6mNj3DZw-He0qFpR1nTZ_UXQ,3493
229
+ sklearnex/spmd/cluster/tests/test_kmeans_spmd.py,sha256=0HcTUTqtUCczcyGZeQhqq49yubuT5AIm6YyE7UJq_Fg,5856
230
+ sklearnex/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
231
+ sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
232
+ sklearnex/spmd/covariance/incremental_covariance.py,sha256=Sr8T5Fgvs4KDnRckwlyHskWe0ILeVNd4cgeOHy7omxE,1441
233
+ sklearnex/spmd/covariance/tests/test_covariance_spmd.py,sha256=-EZBzziL0pU3sVahqkc9q_1xH0LTIjVyYOV6Iy61d90,3917
234
+ sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py,sha256=gRhsq1oKO79JnXoMk4UaFTJ_QKwYjSjGZLyHVjBmPqE,6379
235
+ sklearnex/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
236
+ sklearnex/spmd/decomposition/incremental_pca.py,sha256=HT2MLxUy3zSEnTI5aECYtfqWO88YztPRROPjMJnGtS4,1258
237
+ sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
238
+ sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py,sha256=N8ZeanfNyosDkjyW2HwY3pH4OzHBVoknPcGJMDV41fY,9178
239
+ sklearnex/spmd/decomposition/tests/test_pca_spmd.py,sha256=4AX9fWFJ-9BDPd6fgKU8qzztPtUFgUB4iGz2ymC8xJI,4708
240
+ sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
241
+ sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
242
+ sklearnex/spmd/ensemble/tests/test_forest_spmd.py,sha256=H0Ykl_lCl758Z3E70dQgEWU7d5F-mSOGBcYRxc9meco,9244
243
+ sklearnex/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
244
+ sklearnex/spmd/linear_model/incremental_linear_model.py,sha256=K1GuXhn9ccrxQBLExBBh2d4v08W3lK_CPbke9cass38,1368
245
+ sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
246
+ sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
247
+ sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py,sha256=5X8_4QgTctga_AytQX8cFe7zlv_IJaSC75BSN0Q2PKI,11914
248
+ sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py,sha256=SFGM_f1e7yr7iQxJPLcE1lMUC2wcYFNJwG1X08AhxhA,5201
249
+ sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py,sha256=Y9Zhs6s10C0EKJaVf7pEv-m5XESa4A0aVw7HB2dWRE0,6097
250
+ sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
251
+ sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
252
+ sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=RLddVdNbKHIND4khAzSSpM_yi9j2VMuHmI9TZUtdS3Y,10487
253
+ sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
254
+ sklearnex/svm/_common.py,sha256=bF-5V_Vcqql_EkUIOfQR3JSM4prO8LE2_ewrsxozu2I,13006
255
+ sklearnex/svm/nusvc.py,sha256=yBOYo8BSJcMjvmCsuR9xMaJmZcs9Olvabw8VmUjZLBc,12143
256
+ sklearnex/svm/nusvr.py,sha256=IUOt0576uvNy1rAt-uslpo4CrYDClNIS8FZb8PJ-HnY,5245
257
+ sklearnex/svm/svc.py,sha256=bYO9a9DFx8AhyUgW_Zg_kTbT2Vsj8eQKI6yfrwPheh8,13452
258
+ sklearnex/svm/svr.py,sha256=vYIDnTswrhqYYTQ2tpIgRvafylAWJaAGp-5Zrvnacck,5184
259
+ sklearnex/svm/tests/test_svm.py,sha256=KnjWVfmHzU0sJqlhDdfLdhFJA_BV_tULPqNlOLXShXg,4194
260
+ sklearnex/tests/test_common.py,sha256=C-vsqVi_2A2E1zBKq6kDGYCkA0RqcXAx5o_3CEH6Od8,17104
261
+ sklearnex/tests/test_config.py,sha256=SCdTMzM9ui-M3UyS7C0nw-wr3sM06k5I9L5XSAp6NW4,4885
262
+ sklearnex/tests/test_memory_usage.py,sha256=v1HyfAi7hHkdXEMAbuTywvZpSBHsweX3jiE9KxIIUAo,14092
263
+ sklearnex/tests/test_monkeypatch.py,sha256=Qeq0Z84UMKLEAVoQP7WEScouf6gNPbp21fjQ2erxMQo,9962
264
+ sklearnex/tests/test_n_jobs_support.py,sha256=HUVu013fQSqADa5oC_S2gmyNUs-SEXDlT_gcICR6ajY,4264
265
+ sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
266
+ sklearnex/tests/test_patching.py,sha256=9kURrwRd6TW8MzJ4bzsBoI8i1P0byWFK8fNBLZ3CM0o,14931
267
+ sklearnex/tests/test_run_to_run_stability.py,sha256=6wnCcupUTC8B3MTOyfmzfx9HyA9klhC0TWQh16vMlRM,11969
268
+ sklearnex/tests/utils/__init__.py,sha256=BpvlW-o0s7YVMXh94KW3wh__DYOvBA-oXK0VD1W_-Zo,1287
269
+ sklearnex/tests/utils/base.py,sha256=gWar_2cqoW0wFD6Prfm_b9CA7Ffjo7awnaCIzs9oInM,11816
270
+ sklearnex/tests/utils/spmd.py,sha256=MS-Jz_tiTC_3OI64TciaAofeTqUN2JOVWxIUAHESVdM,7150
271
+ sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
272
+ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI,2694
273
+ sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
274
+ sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
275
+ sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
276
+ scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
277
+ scikit_learn_intelex-2025.1.0.dist-info/METADATA,sha256=hs5fN8Em8Llx4rK7pdzuKNLqsfOw8cGMtvinNEQLGNw,12476
278
+ scikit_learn_intelex-2025.1.0.dist-info/WHEEL,sha256=zNnzeoXyvA9K0L6NziBWjMIE_aXtFjVJmMurAofU0zo,112
279
+ scikit_learn_intelex-2025.1.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
280
+ scikit_learn_intelex-2025.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py312-none-manylinux_2_28_x86_64
5
+
@@ -0,0 +1,3 @@
1
+ daal4py
2
+ onedal
3
+ sklearnex
sklearnex/__init__.py ADDED
@@ -0,0 +1,66 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ # Copyright 2024 Fujitsu Limited
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ import os
19
+
20
+ from . import utils
21
+ from ._config import config_context, get_config, set_config
22
+ from .dispatcher import (
23
+ get_patch_map,
24
+ get_patch_names,
25
+ is_patched_instance,
26
+ patch_sklearn,
27
+ sklearn_is_patched,
28
+ unpatch_sklearn,
29
+ )
30
+
31
+ __all__ = [
32
+ "basic_statistics",
33
+ "cluster",
34
+ "config_context",
35
+ "covariance",
36
+ "decomposition",
37
+ "ensemble",
38
+ "get_config",
39
+ "get_hyperparameters",
40
+ "get_patch_map",
41
+ "get_patch_names",
42
+ "is_patched_instance",
43
+ "linear_model",
44
+ "manifold",
45
+ "metrics",
46
+ "model_selection",
47
+ "neighbors",
48
+ "patch_sklearn",
49
+ "set_config",
50
+ "sklearn_is_patched",
51
+ "svm",
52
+ "unpatch_sklearn",
53
+ "utils",
54
+ ]
55
+ onedal_iface_flag = os.environ.get("OFF_ONEDAL_IFACE", "0")
56
+ if onedal_iface_flag == "0":
57
+ from onedal import _is_spmd_backend
58
+ from onedal.common.hyperparameters import get_hyperparameters
59
+
60
+ if _is_spmd_backend:
61
+ __all__.append("spmd")
62
+
63
+
64
+ from ._utils import set_sklearn_ex_verbose
65
+
66
+ set_sklearn_ex_verbose()