scikit-learn-intelex 2025.1.0__py312-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +222 -0
- onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +564 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +154 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +414 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +727 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +250 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +767 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/validation.py +440 -0
- scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
- scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +132 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +230 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +395 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +159 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +398 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +425 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +135 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +482 -0
- sklearnex/linear_model/incremental_ridge.py +425 -0
- sklearnex/linear_model/linear.py +341 -0
- sklearnex/linear_model/logistic_regression.py +413 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +167 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +138 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +233 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +424 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +390 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_memory_usage.py +379 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +321 -0
- sklearnex/tests/utils/__init__.py +44 -0
- sklearnex/tests/utils/base.py +371 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,413 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import logging
|
|
18
|
+
from abc import ABC
|
|
19
|
+
|
|
20
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
21
|
+
from daal4py.sklearn.linear_model.logistic_path import (
|
|
22
|
+
LogisticRegression as _daal4py_LogisticRegression,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
if daal_check_version((2024, "P", 1)):
|
|
26
|
+
import numpy as np
|
|
27
|
+
from scipy.sparse import issparse
|
|
28
|
+
from sklearn.linear_model import LogisticRegression as _sklearn_LogisticRegression
|
|
29
|
+
from sklearn.metrics import accuracy_score
|
|
30
|
+
from sklearn.utils.multiclass import type_of_target
|
|
31
|
+
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
|
|
32
|
+
|
|
33
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
34
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
35
|
+
from daal4py.sklearn.linear_model.logistic_path import daal4py_fit, daal4py_predict
|
|
36
|
+
from onedal.linear_model import LogisticRegression as onedal_LogisticRegression
|
|
37
|
+
from onedal.utils import _num_samples
|
|
38
|
+
|
|
39
|
+
from .._config import get_config
|
|
40
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
41
|
+
from .._utils import PatchingConditionsChain, get_patch_message
|
|
42
|
+
|
|
43
|
+
if sklearn_check_version("1.6"):
|
|
44
|
+
from sklearn.utils.validation import validate_data
|
|
45
|
+
else:
|
|
46
|
+
validate_data = _sklearn_LogisticRegression._validate_data
|
|
47
|
+
|
|
48
|
+
_sparsity_enabled = daal_check_version((2024, "P", 700))
|
|
49
|
+
|
|
50
|
+
class BaseLogisticRegression(ABC):
|
|
51
|
+
def _save_attributes(self):
|
|
52
|
+
assert hasattr(self, "_onedal_estimator")
|
|
53
|
+
self.classes_ = self._onedal_estimator.classes_
|
|
54
|
+
self.coef_ = self._onedal_estimator.coef_
|
|
55
|
+
self.intercept_ = self._onedal_estimator.intercept_
|
|
56
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
57
|
+
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
58
|
+
|
|
59
|
+
@control_n_jobs(
|
|
60
|
+
decorated_methods=[
|
|
61
|
+
"fit",
|
|
62
|
+
"predict",
|
|
63
|
+
"predict_proba",
|
|
64
|
+
"predict_log_proba",
|
|
65
|
+
"score",
|
|
66
|
+
]
|
|
67
|
+
)
|
|
68
|
+
class LogisticRegression(_sklearn_LogisticRegression, BaseLogisticRegression):
|
|
69
|
+
__doc__ = _sklearn_LogisticRegression.__doc__
|
|
70
|
+
|
|
71
|
+
if sklearn_check_version("1.2"):
|
|
72
|
+
_parameter_constraints: dict = {
|
|
73
|
+
**_sklearn_LogisticRegression._parameter_constraints
|
|
74
|
+
}
|
|
75
|
+
|
|
76
|
+
def __init__(
|
|
77
|
+
self,
|
|
78
|
+
penalty="l2",
|
|
79
|
+
*,
|
|
80
|
+
dual=False,
|
|
81
|
+
tol=1e-4,
|
|
82
|
+
C=1.0,
|
|
83
|
+
fit_intercept=True,
|
|
84
|
+
intercept_scaling=1,
|
|
85
|
+
class_weight=None,
|
|
86
|
+
random_state=None,
|
|
87
|
+
solver="lbfgs",
|
|
88
|
+
max_iter=100,
|
|
89
|
+
multi_class="deprecated" if sklearn_check_version("1.5") else "auto",
|
|
90
|
+
verbose=0,
|
|
91
|
+
warm_start=False,
|
|
92
|
+
n_jobs=None,
|
|
93
|
+
l1_ratio=None,
|
|
94
|
+
):
|
|
95
|
+
super().__init__(
|
|
96
|
+
penalty=penalty,
|
|
97
|
+
dual=dual,
|
|
98
|
+
tol=tol,
|
|
99
|
+
C=C,
|
|
100
|
+
fit_intercept=fit_intercept,
|
|
101
|
+
intercept_scaling=intercept_scaling,
|
|
102
|
+
class_weight=class_weight,
|
|
103
|
+
random_state=random_state,
|
|
104
|
+
solver=solver,
|
|
105
|
+
max_iter=max_iter,
|
|
106
|
+
multi_class=multi_class,
|
|
107
|
+
verbose=verbose,
|
|
108
|
+
warm_start=warm_start,
|
|
109
|
+
n_jobs=n_jobs,
|
|
110
|
+
l1_ratio=l1_ratio,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
_onedal_cpu_fit = daal4py_fit
|
|
114
|
+
|
|
115
|
+
def fit(self, X, y, sample_weight=None):
|
|
116
|
+
if sklearn_check_version("1.2"):
|
|
117
|
+
self._validate_params()
|
|
118
|
+
dispatch(
|
|
119
|
+
self,
|
|
120
|
+
"fit",
|
|
121
|
+
{
|
|
122
|
+
"onedal": self.__class__._onedal_fit,
|
|
123
|
+
"sklearn": _sklearn_LogisticRegression.fit,
|
|
124
|
+
},
|
|
125
|
+
X,
|
|
126
|
+
y,
|
|
127
|
+
sample_weight,
|
|
128
|
+
)
|
|
129
|
+
return self
|
|
130
|
+
|
|
131
|
+
@wrap_output_data
|
|
132
|
+
def predict(self, X):
|
|
133
|
+
check_is_fitted(self)
|
|
134
|
+
return dispatch(
|
|
135
|
+
self,
|
|
136
|
+
"predict",
|
|
137
|
+
{
|
|
138
|
+
"onedal": self.__class__._onedal_predict,
|
|
139
|
+
"sklearn": _sklearn_LogisticRegression.predict,
|
|
140
|
+
},
|
|
141
|
+
X,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
@wrap_output_data
|
|
145
|
+
def predict_proba(self, X):
|
|
146
|
+
check_is_fitted(self)
|
|
147
|
+
return dispatch(
|
|
148
|
+
self,
|
|
149
|
+
"predict_proba",
|
|
150
|
+
{
|
|
151
|
+
"onedal": self.__class__._onedal_predict_proba,
|
|
152
|
+
"sklearn": _sklearn_LogisticRegression.predict_proba,
|
|
153
|
+
},
|
|
154
|
+
X,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
@wrap_output_data
|
|
158
|
+
def predict_log_proba(self, X):
|
|
159
|
+
check_is_fitted(self)
|
|
160
|
+
return dispatch(
|
|
161
|
+
self,
|
|
162
|
+
"predict_log_proba",
|
|
163
|
+
{
|
|
164
|
+
"onedal": self.__class__._onedal_predict_log_proba,
|
|
165
|
+
"sklearn": _sklearn_LogisticRegression.predict_log_proba,
|
|
166
|
+
},
|
|
167
|
+
X,
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
@wrap_output_data
|
|
171
|
+
def score(self, X, y, sample_weight=None):
|
|
172
|
+
check_is_fitted(self)
|
|
173
|
+
return dispatch(
|
|
174
|
+
self,
|
|
175
|
+
"score",
|
|
176
|
+
{
|
|
177
|
+
"onedal": self.__class__._onedal_score,
|
|
178
|
+
"sklearn": _sklearn_LogisticRegression.score,
|
|
179
|
+
},
|
|
180
|
+
X,
|
|
181
|
+
y,
|
|
182
|
+
sample_weight=sample_weight,
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
186
|
+
return accuracy_score(
|
|
187
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
def _onedal_gpu_fit_supported(self, method_name, *data):
|
|
191
|
+
assert method_name == "fit"
|
|
192
|
+
assert len(data) == 3
|
|
193
|
+
X, y, sample_weight = data
|
|
194
|
+
|
|
195
|
+
class_name = self.__class__.__name__
|
|
196
|
+
patching_status = PatchingConditionsChain(
|
|
197
|
+
f"sklearn.linear_model.{class_name}.fit"
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
target_type = (
|
|
201
|
+
type_of_target(y, input_name="y")
|
|
202
|
+
if sklearn_check_version("1.1")
|
|
203
|
+
else type_of_target(y)
|
|
204
|
+
)
|
|
205
|
+
patching_status.and_conditions(
|
|
206
|
+
[
|
|
207
|
+
(self.penalty == "l2", "Only l2 penalty is supported."),
|
|
208
|
+
(self.dual == False, "dual=True is not supported."),
|
|
209
|
+
(
|
|
210
|
+
self.intercept_scaling == 1,
|
|
211
|
+
"Intercept scaling is not supported.",
|
|
212
|
+
),
|
|
213
|
+
(self.class_weight is None, "Class weight is not supported"),
|
|
214
|
+
(self.solver == "newton-cg", "Only newton-cg solver is supported."),
|
|
215
|
+
(
|
|
216
|
+
self.multi_class != "multinomial",
|
|
217
|
+
"multi_class parameter is not supported.",
|
|
218
|
+
),
|
|
219
|
+
(self.warm_start == False, "Warm start is not supported."),
|
|
220
|
+
(self.l1_ratio is None, "l1 ratio is not supported."),
|
|
221
|
+
(sample_weight is None, "Sample weight is not supported."),
|
|
222
|
+
(
|
|
223
|
+
target_type == "binary",
|
|
224
|
+
"Only binary classification is supported",
|
|
225
|
+
),
|
|
226
|
+
]
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
return patching_status
|
|
230
|
+
|
|
231
|
+
def _onedal_gpu_predict_supported(self, method_name, *data):
|
|
232
|
+
assert method_name in [
|
|
233
|
+
"predict",
|
|
234
|
+
"predict_proba",
|
|
235
|
+
"predict_log_proba",
|
|
236
|
+
"score",
|
|
237
|
+
]
|
|
238
|
+
|
|
239
|
+
class_name = self.__class__.__name__
|
|
240
|
+
patching_status = PatchingConditionsChain(
|
|
241
|
+
f"sklearn.linear_model.{class_name}.{method_name}"
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
n_samples = _num_samples(data[0])
|
|
245
|
+
dal_ready = patching_status.and_conditions(
|
|
246
|
+
[
|
|
247
|
+
(n_samples > 0, "Number of samples is less than 1."),
|
|
248
|
+
(
|
|
249
|
+
(not any([issparse(i) for i in data])) or _sparsity_enabled,
|
|
250
|
+
"Sparse input is not supported.",
|
|
251
|
+
),
|
|
252
|
+
(
|
|
253
|
+
hasattr(self, "_onedal_estimator"),
|
|
254
|
+
"oneDAL model was not trained.",
|
|
255
|
+
),
|
|
256
|
+
]
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
return patching_status
|
|
260
|
+
|
|
261
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
262
|
+
if method_name == "fit":
|
|
263
|
+
return self._onedal_gpu_fit_supported(method_name, *data)
|
|
264
|
+
if method_name in ["predict", "predict_proba", "predict_log_proba", "score"]:
|
|
265
|
+
return self._onedal_gpu_predict_supported(method_name, *data)
|
|
266
|
+
raise RuntimeError(
|
|
267
|
+
f"Unknown method {method_name} in {self.__class__.__name__}"
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
271
|
+
class_name = self.__class__.__name__
|
|
272
|
+
patching_status = PatchingConditionsChain(
|
|
273
|
+
f"sklearn.linear_model.{class_name}.{method_name}"
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
return patching_status
|
|
277
|
+
|
|
278
|
+
def _initialize_onedal_estimator(self):
|
|
279
|
+
onedal_params = {
|
|
280
|
+
"tol": self.tol,
|
|
281
|
+
"C": self.C,
|
|
282
|
+
"fit_intercept": self.fit_intercept,
|
|
283
|
+
"solver": self.solver,
|
|
284
|
+
"max_iter": self.max_iter,
|
|
285
|
+
}
|
|
286
|
+
self._onedal_estimator = onedal_LogisticRegression(**onedal_params)
|
|
287
|
+
|
|
288
|
+
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
289
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
290
|
+
return self._onedal_cpu_fit(X, y, sample_weight)
|
|
291
|
+
|
|
292
|
+
assert sample_weight is None
|
|
293
|
+
|
|
294
|
+
if sklearn_check_version("1.0"):
|
|
295
|
+
X, y = validate_data(
|
|
296
|
+
self,
|
|
297
|
+
X,
|
|
298
|
+
y,
|
|
299
|
+
accept_sparse=_sparsity_enabled,
|
|
300
|
+
accept_large_sparse=_sparsity_enabled,
|
|
301
|
+
dtype=[np.float64, np.float32],
|
|
302
|
+
)
|
|
303
|
+
else:
|
|
304
|
+
X, y = check_X_y(
|
|
305
|
+
X,
|
|
306
|
+
y,
|
|
307
|
+
accept_sparse=_sparsity_enabled,
|
|
308
|
+
accept_large_sparse=_sparsity_enabled,
|
|
309
|
+
dtype=[np.float64, np.float32],
|
|
310
|
+
)
|
|
311
|
+
|
|
312
|
+
self._initialize_onedal_estimator()
|
|
313
|
+
if get_config()["allow_sklearn_after_onedal"]:
|
|
314
|
+
try:
|
|
315
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
316
|
+
self._save_attributes()
|
|
317
|
+
except RuntimeError:
|
|
318
|
+
logging.getLogger("sklearnex").info(
|
|
319
|
+
f"{self.__class__.__name__}.fit "
|
|
320
|
+
+ get_patch_message("sklearn_after_onedal")
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
del self._onedal_estimator
|
|
324
|
+
super().fit(X, y)
|
|
325
|
+
else:
|
|
326
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
327
|
+
self._save_attributes()
|
|
328
|
+
|
|
329
|
+
def _onedal_predict(self, X, queue=None):
|
|
330
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
331
|
+
return daal4py_predict(self, X, "computeClassLabels")
|
|
332
|
+
|
|
333
|
+
if sklearn_check_version("1.0"):
|
|
334
|
+
X = validate_data(
|
|
335
|
+
self,
|
|
336
|
+
X,
|
|
337
|
+
reset=False,
|
|
338
|
+
accept_sparse=_sparsity_enabled,
|
|
339
|
+
accept_large_sparse=_sparsity_enabled,
|
|
340
|
+
dtype=[np.float64, np.float32],
|
|
341
|
+
)
|
|
342
|
+
else:
|
|
343
|
+
X = check_array(
|
|
344
|
+
X,
|
|
345
|
+
accept_sparse=_sparsity_enabled,
|
|
346
|
+
accept_large_sparse=_sparsity_enabled,
|
|
347
|
+
dtype=[np.float64, np.float32],
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
assert hasattr(self, "_onedal_estimator")
|
|
351
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
352
|
+
|
|
353
|
+
def _onedal_predict_proba(self, X, queue=None):
|
|
354
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
355
|
+
return daal4py_predict(self, X, "computeClassProbabilities")
|
|
356
|
+
|
|
357
|
+
if sklearn_check_version("1.0"):
|
|
358
|
+
X = validate_data(
|
|
359
|
+
self,
|
|
360
|
+
X,
|
|
361
|
+
reset=False,
|
|
362
|
+
accept_sparse=_sparsity_enabled,
|
|
363
|
+
accept_large_sparse=_sparsity_enabled,
|
|
364
|
+
dtype=[np.float64, np.float32],
|
|
365
|
+
)
|
|
366
|
+
else:
|
|
367
|
+
X = check_array(
|
|
368
|
+
X,
|
|
369
|
+
accept_sparse=_sparsity_enabled,
|
|
370
|
+
accept_large_sparse=_sparsity_enabled,
|
|
371
|
+
dtype=[np.float64, np.float32],
|
|
372
|
+
)
|
|
373
|
+
|
|
374
|
+
assert hasattr(self, "_onedal_estimator")
|
|
375
|
+
return self._onedal_estimator.predict_proba(X, queue=queue)
|
|
376
|
+
|
|
377
|
+
def _onedal_predict_log_proba(self, X, queue=None):
|
|
378
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
379
|
+
return daal4py_predict(self, X, "computeClassLogProbabilities")
|
|
380
|
+
|
|
381
|
+
if sklearn_check_version("1.0"):
|
|
382
|
+
X = validate_data(
|
|
383
|
+
self,
|
|
384
|
+
X,
|
|
385
|
+
reset=False,
|
|
386
|
+
accept_sparse=_sparsity_enabled,
|
|
387
|
+
accept_large_sparse=_sparsity_enabled,
|
|
388
|
+
dtype=[np.float64, np.float32],
|
|
389
|
+
)
|
|
390
|
+
else:
|
|
391
|
+
X = check_array(
|
|
392
|
+
X,
|
|
393
|
+
accept_sparse=_sparsity_enabled,
|
|
394
|
+
accept_large_sparse=_sparsity_enabled,
|
|
395
|
+
dtype=[np.float64, np.float32],
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
assert hasattr(self, "_onedal_estimator")
|
|
399
|
+
return self._onedal_estimator.predict_log_proba(X, queue=queue)
|
|
400
|
+
|
|
401
|
+
fit.__doc__ = _sklearn_LogisticRegression.fit.__doc__
|
|
402
|
+
predict.__doc__ = _sklearn_LogisticRegression.predict.__doc__
|
|
403
|
+
predict_proba.__doc__ = _sklearn_LogisticRegression.predict_proba.__doc__
|
|
404
|
+
predict_log_proba.__doc__ = _sklearn_LogisticRegression.predict_log_proba.__doc__
|
|
405
|
+
score.__doc__ = _sklearn_LogisticRegression.score.__doc__
|
|
406
|
+
|
|
407
|
+
else:
|
|
408
|
+
LogisticRegression = _daal4py_LogisticRegression
|
|
409
|
+
|
|
410
|
+
logging.warning(
|
|
411
|
+
"Sklearnex LogisticRegression requires oneDAL version >= 2024.0.1 "
|
|
412
|
+
"but it was not found"
|
|
413
|
+
)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn.linear_model import Ridge
|
|
18
|
+
from onedal._device_offload import support_input_format
|
|
19
|
+
|
|
20
|
+
# Note: `sklearnex.linear_model.Ridge` only has functional
|
|
21
|
+
# sycl GPU support. No GPU device will be offloaded.
|
|
22
|
+
Ridge.fit = support_input_format(queue_param=False)(Ridge.fit)
|
|
23
|
+
Ridge.predict = support_input_format(queue_param=False)(Ridge.predict)
|
|
24
|
+
Ridge.score = support_input_format(queue_param=False)(Ridge.score)
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.linear_model import IncrementalLinearRegression
|
|
27
|
+
from sklearnex.tests.utils import _IS_INTEL
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
32
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
33
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
34
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
|
|
35
|
+
X = np.array([[1], [2]])
|
|
36
|
+
X = X.astype(dtype=dtype)
|
|
37
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
38
|
+
y = np.array([[1], [2]])
|
|
39
|
+
y = y.astype(dtype=dtype)
|
|
40
|
+
y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
41
|
+
|
|
42
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
43
|
+
if macro_block is not None:
|
|
44
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
45
|
+
hparams.cpu_macro_block = macro_block
|
|
46
|
+
hparams.gpu_macro_block = macro_block
|
|
47
|
+
inclin.fit(X_df, y_df)
|
|
48
|
+
|
|
49
|
+
y_pred = inclin.predict(X_df)
|
|
50
|
+
np_y_pred = _as_numpy(y_pred)
|
|
51
|
+
|
|
52
|
+
tol = 2e-6 if dtype == np.float32 else 1e-7
|
|
53
|
+
assert_allclose(inclin.coef_, [1], atol=tol)
|
|
54
|
+
if fit_intercept:
|
|
55
|
+
assert_allclose(inclin.intercept_, [0], atol=tol)
|
|
56
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
60
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
61
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
62
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
63
|
+
def test_sklearnex_partial_fit_on_gold_data(
|
|
64
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
65
|
+
):
|
|
66
|
+
X = np.array([[1], [2], [3], [4]])
|
|
67
|
+
X = X.astype(dtype=dtype)
|
|
68
|
+
y = X + 3
|
|
69
|
+
y = y.astype(dtype=dtype)
|
|
70
|
+
X_split = np.array_split(X, 2)
|
|
71
|
+
y_split = np.array_split(y, 2)
|
|
72
|
+
|
|
73
|
+
inclin = IncrementalLinearRegression()
|
|
74
|
+
if macro_block is not None:
|
|
75
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
76
|
+
hparams.cpu_macro_block = macro_block
|
|
77
|
+
hparams.gpu_macro_block = macro_block
|
|
78
|
+
for i in range(2):
|
|
79
|
+
X_split_df = _convert_to_dataframe(
|
|
80
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
81
|
+
)
|
|
82
|
+
y_split_df = _convert_to_dataframe(
|
|
83
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
84
|
+
)
|
|
85
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
86
|
+
|
|
87
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
88
|
+
y_pred = inclin.predict(X_df)
|
|
89
|
+
np_y_pred = _as_numpy(y_pred)
|
|
90
|
+
|
|
91
|
+
assert inclin.n_features_in_ == 1
|
|
92
|
+
tol = 1e-5 if dtype == np.float32 else 1e-7
|
|
93
|
+
assert_allclose(inclin.coef_, [[1]], atol=tol)
|
|
94
|
+
if fit_intercept:
|
|
95
|
+
assert_allclose(inclin.intercept_, 3, atol=tol)
|
|
96
|
+
|
|
97
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
101
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
102
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
103
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
104
|
+
def test_sklearnex_partial_fit_multitarget_on_gold_data(
|
|
105
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
106
|
+
):
|
|
107
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
108
|
+
X = X.astype(dtype=dtype)
|
|
109
|
+
y = np.dot(X, [1, 2]) + 3
|
|
110
|
+
y = y.astype(dtype=dtype)
|
|
111
|
+
X_split = np.array_split(X, 2)
|
|
112
|
+
y_split = np.array_split(y, 2)
|
|
113
|
+
|
|
114
|
+
inclin = IncrementalLinearRegression()
|
|
115
|
+
if macro_block is not None:
|
|
116
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
117
|
+
hparams.cpu_macro_block = macro_block
|
|
118
|
+
hparams.gpu_macro_block = macro_block
|
|
119
|
+
for i in range(2):
|
|
120
|
+
X_split_df = _convert_to_dataframe(
|
|
121
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
y_split_df = _convert_to_dataframe(
|
|
124
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
125
|
+
)
|
|
126
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
127
|
+
|
|
128
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
129
|
+
y_pred = inclin.predict(X_df)
|
|
130
|
+
np_y_pred = _as_numpy(y_pred)
|
|
131
|
+
|
|
132
|
+
assert inclin.n_features_in_ == 2
|
|
133
|
+
tol = 1e-7
|
|
134
|
+
if dtype == np.float32:
|
|
135
|
+
tol = 7e-6 if _IS_INTEL else 2e-5
|
|
136
|
+
|
|
137
|
+
assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
|
|
138
|
+
if fit_intercept:
|
|
139
|
+
assert_allclose(inclin.intercept_, 3.0, atol=tol)
|
|
140
|
+
|
|
141
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
145
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
146
|
+
@pytest.mark.parametrize("num_samples", [100, 1000])
|
|
147
|
+
@pytest.mark.parametrize("num_features", [5, 10])
|
|
148
|
+
@pytest.mark.parametrize("num_targets", [1, 2])
|
|
149
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
150
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
151
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
152
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
153
|
+
dataframe,
|
|
154
|
+
queue,
|
|
155
|
+
fit_intercept,
|
|
156
|
+
num_samples,
|
|
157
|
+
num_features,
|
|
158
|
+
num_targets,
|
|
159
|
+
num_blocks,
|
|
160
|
+
macro_block,
|
|
161
|
+
dtype,
|
|
162
|
+
):
|
|
163
|
+
seed = 42
|
|
164
|
+
gen = np.random.default_rng(seed)
|
|
165
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
166
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
167
|
+
|
|
168
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
169
|
+
if fit_intercept:
|
|
170
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
171
|
+
else:
|
|
172
|
+
y = X @ coef
|
|
173
|
+
|
|
174
|
+
X_split = np.array_split(X, num_blocks)
|
|
175
|
+
y_split = np.array_split(y, num_blocks)
|
|
176
|
+
|
|
177
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
178
|
+
if macro_block is not None:
|
|
179
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
180
|
+
hparams.cpu_macro_block = macro_block
|
|
181
|
+
hparams.gpu_macro_block = macro_block
|
|
182
|
+
for i in range(num_blocks):
|
|
183
|
+
X_split_df = _convert_to_dataframe(
|
|
184
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
185
|
+
)
|
|
186
|
+
y_split_df = _convert_to_dataframe(
|
|
187
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
188
|
+
)
|
|
189
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
190
|
+
|
|
191
|
+
tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
|
|
192
|
+
assert_allclose(coef.T.squeeze(), inclin.coef_, atol=tol)
|
|
193
|
+
|
|
194
|
+
if fit_intercept:
|
|
195
|
+
assert_allclose(intercept, inclin.intercept_, atol=tol)
|
|
196
|
+
|
|
197
|
+
X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
198
|
+
if fit_intercept:
|
|
199
|
+
expected_y_pred = (X_test @ coef + intercept[np.newaxis, :]).squeeze()
|
|
200
|
+
else:
|
|
201
|
+
expected_y_pred = (X_test @ coef).squeeze()
|
|
202
|
+
|
|
203
|
+
X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
204
|
+
|
|
205
|
+
y_pred = inclin.predict(X_test_df)
|
|
206
|
+
|
|
207
|
+
assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
|