scikit-learn-intelex 2025.1.0__py312-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,413 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+ from abc import ABC
19
+
20
+ from daal4py.sklearn._utils import daal_check_version
21
+ from daal4py.sklearn.linear_model.logistic_path import (
22
+ LogisticRegression as _daal4py_LogisticRegression,
23
+ )
24
+
25
+ if daal_check_version((2024, "P", 1)):
26
+ import numpy as np
27
+ from scipy.sparse import issparse
28
+ from sklearn.linear_model import LogisticRegression as _sklearn_LogisticRegression
29
+ from sklearn.metrics import accuracy_score
30
+ from sklearn.utils.multiclass import type_of_target
31
+ from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
32
+
33
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
34
+ from daal4py.sklearn._utils import sklearn_check_version
35
+ from daal4py.sklearn.linear_model.logistic_path import daal4py_fit, daal4py_predict
36
+ from onedal.linear_model import LogisticRegression as onedal_LogisticRegression
37
+ from onedal.utils import _num_samples
38
+
39
+ from .._config import get_config
40
+ from .._device_offload import dispatch, wrap_output_data
41
+ from .._utils import PatchingConditionsChain, get_patch_message
42
+
43
+ if sklearn_check_version("1.6"):
44
+ from sklearn.utils.validation import validate_data
45
+ else:
46
+ validate_data = _sklearn_LogisticRegression._validate_data
47
+
48
+ _sparsity_enabled = daal_check_version((2024, "P", 700))
49
+
50
+ class BaseLogisticRegression(ABC):
51
+ def _save_attributes(self):
52
+ assert hasattr(self, "_onedal_estimator")
53
+ self.classes_ = self._onedal_estimator.classes_
54
+ self.coef_ = self._onedal_estimator.coef_
55
+ self.intercept_ = self._onedal_estimator.intercept_
56
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
57
+ self.n_iter_ = self._onedal_estimator.n_iter_
58
+
59
+ @control_n_jobs(
60
+ decorated_methods=[
61
+ "fit",
62
+ "predict",
63
+ "predict_proba",
64
+ "predict_log_proba",
65
+ "score",
66
+ ]
67
+ )
68
+ class LogisticRegression(_sklearn_LogisticRegression, BaseLogisticRegression):
69
+ __doc__ = _sklearn_LogisticRegression.__doc__
70
+
71
+ if sklearn_check_version("1.2"):
72
+ _parameter_constraints: dict = {
73
+ **_sklearn_LogisticRegression._parameter_constraints
74
+ }
75
+
76
+ def __init__(
77
+ self,
78
+ penalty="l2",
79
+ *,
80
+ dual=False,
81
+ tol=1e-4,
82
+ C=1.0,
83
+ fit_intercept=True,
84
+ intercept_scaling=1,
85
+ class_weight=None,
86
+ random_state=None,
87
+ solver="lbfgs",
88
+ max_iter=100,
89
+ multi_class="deprecated" if sklearn_check_version("1.5") else "auto",
90
+ verbose=0,
91
+ warm_start=False,
92
+ n_jobs=None,
93
+ l1_ratio=None,
94
+ ):
95
+ super().__init__(
96
+ penalty=penalty,
97
+ dual=dual,
98
+ tol=tol,
99
+ C=C,
100
+ fit_intercept=fit_intercept,
101
+ intercept_scaling=intercept_scaling,
102
+ class_weight=class_weight,
103
+ random_state=random_state,
104
+ solver=solver,
105
+ max_iter=max_iter,
106
+ multi_class=multi_class,
107
+ verbose=verbose,
108
+ warm_start=warm_start,
109
+ n_jobs=n_jobs,
110
+ l1_ratio=l1_ratio,
111
+ )
112
+
113
+ _onedal_cpu_fit = daal4py_fit
114
+
115
+ def fit(self, X, y, sample_weight=None):
116
+ if sklearn_check_version("1.2"):
117
+ self._validate_params()
118
+ dispatch(
119
+ self,
120
+ "fit",
121
+ {
122
+ "onedal": self.__class__._onedal_fit,
123
+ "sklearn": _sklearn_LogisticRegression.fit,
124
+ },
125
+ X,
126
+ y,
127
+ sample_weight,
128
+ )
129
+ return self
130
+
131
+ @wrap_output_data
132
+ def predict(self, X):
133
+ check_is_fitted(self)
134
+ return dispatch(
135
+ self,
136
+ "predict",
137
+ {
138
+ "onedal": self.__class__._onedal_predict,
139
+ "sklearn": _sklearn_LogisticRegression.predict,
140
+ },
141
+ X,
142
+ )
143
+
144
+ @wrap_output_data
145
+ def predict_proba(self, X):
146
+ check_is_fitted(self)
147
+ return dispatch(
148
+ self,
149
+ "predict_proba",
150
+ {
151
+ "onedal": self.__class__._onedal_predict_proba,
152
+ "sklearn": _sklearn_LogisticRegression.predict_proba,
153
+ },
154
+ X,
155
+ )
156
+
157
+ @wrap_output_data
158
+ def predict_log_proba(self, X):
159
+ check_is_fitted(self)
160
+ return dispatch(
161
+ self,
162
+ "predict_log_proba",
163
+ {
164
+ "onedal": self.__class__._onedal_predict_log_proba,
165
+ "sklearn": _sklearn_LogisticRegression.predict_log_proba,
166
+ },
167
+ X,
168
+ )
169
+
170
+ @wrap_output_data
171
+ def score(self, X, y, sample_weight=None):
172
+ check_is_fitted(self)
173
+ return dispatch(
174
+ self,
175
+ "score",
176
+ {
177
+ "onedal": self.__class__._onedal_score,
178
+ "sklearn": _sklearn_LogisticRegression.score,
179
+ },
180
+ X,
181
+ y,
182
+ sample_weight=sample_weight,
183
+ )
184
+
185
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
186
+ return accuracy_score(
187
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
188
+ )
189
+
190
+ def _onedal_gpu_fit_supported(self, method_name, *data):
191
+ assert method_name == "fit"
192
+ assert len(data) == 3
193
+ X, y, sample_weight = data
194
+
195
+ class_name = self.__class__.__name__
196
+ patching_status = PatchingConditionsChain(
197
+ f"sklearn.linear_model.{class_name}.fit"
198
+ )
199
+
200
+ target_type = (
201
+ type_of_target(y, input_name="y")
202
+ if sklearn_check_version("1.1")
203
+ else type_of_target(y)
204
+ )
205
+ patching_status.and_conditions(
206
+ [
207
+ (self.penalty == "l2", "Only l2 penalty is supported."),
208
+ (self.dual == False, "dual=True is not supported."),
209
+ (
210
+ self.intercept_scaling == 1,
211
+ "Intercept scaling is not supported.",
212
+ ),
213
+ (self.class_weight is None, "Class weight is not supported"),
214
+ (self.solver == "newton-cg", "Only newton-cg solver is supported."),
215
+ (
216
+ self.multi_class != "multinomial",
217
+ "multi_class parameter is not supported.",
218
+ ),
219
+ (self.warm_start == False, "Warm start is not supported."),
220
+ (self.l1_ratio is None, "l1 ratio is not supported."),
221
+ (sample_weight is None, "Sample weight is not supported."),
222
+ (
223
+ target_type == "binary",
224
+ "Only binary classification is supported",
225
+ ),
226
+ ]
227
+ )
228
+
229
+ return patching_status
230
+
231
+ def _onedal_gpu_predict_supported(self, method_name, *data):
232
+ assert method_name in [
233
+ "predict",
234
+ "predict_proba",
235
+ "predict_log_proba",
236
+ "score",
237
+ ]
238
+
239
+ class_name = self.__class__.__name__
240
+ patching_status = PatchingConditionsChain(
241
+ f"sklearn.linear_model.{class_name}.{method_name}"
242
+ )
243
+
244
+ n_samples = _num_samples(data[0])
245
+ dal_ready = patching_status.and_conditions(
246
+ [
247
+ (n_samples > 0, "Number of samples is less than 1."),
248
+ (
249
+ (not any([issparse(i) for i in data])) or _sparsity_enabled,
250
+ "Sparse input is not supported.",
251
+ ),
252
+ (
253
+ hasattr(self, "_onedal_estimator"),
254
+ "oneDAL model was not trained.",
255
+ ),
256
+ ]
257
+ )
258
+
259
+ return patching_status
260
+
261
+ def _onedal_gpu_supported(self, method_name, *data):
262
+ if method_name == "fit":
263
+ return self._onedal_gpu_fit_supported(method_name, *data)
264
+ if method_name in ["predict", "predict_proba", "predict_log_proba", "score"]:
265
+ return self._onedal_gpu_predict_supported(method_name, *data)
266
+ raise RuntimeError(
267
+ f"Unknown method {method_name} in {self.__class__.__name__}"
268
+ )
269
+
270
+ def _onedal_cpu_supported(self, method_name, *data):
271
+ class_name = self.__class__.__name__
272
+ patching_status = PatchingConditionsChain(
273
+ f"sklearn.linear_model.{class_name}.{method_name}"
274
+ )
275
+
276
+ return patching_status
277
+
278
+ def _initialize_onedal_estimator(self):
279
+ onedal_params = {
280
+ "tol": self.tol,
281
+ "C": self.C,
282
+ "fit_intercept": self.fit_intercept,
283
+ "solver": self.solver,
284
+ "max_iter": self.max_iter,
285
+ }
286
+ self._onedal_estimator = onedal_LogisticRegression(**onedal_params)
287
+
288
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
289
+ if queue is None or queue.sycl_device.is_cpu:
290
+ return self._onedal_cpu_fit(X, y, sample_weight)
291
+
292
+ assert sample_weight is None
293
+
294
+ if sklearn_check_version("1.0"):
295
+ X, y = validate_data(
296
+ self,
297
+ X,
298
+ y,
299
+ accept_sparse=_sparsity_enabled,
300
+ accept_large_sparse=_sparsity_enabled,
301
+ dtype=[np.float64, np.float32],
302
+ )
303
+ else:
304
+ X, y = check_X_y(
305
+ X,
306
+ y,
307
+ accept_sparse=_sparsity_enabled,
308
+ accept_large_sparse=_sparsity_enabled,
309
+ dtype=[np.float64, np.float32],
310
+ )
311
+
312
+ self._initialize_onedal_estimator()
313
+ if get_config()["allow_sklearn_after_onedal"]:
314
+ try:
315
+ self._onedal_estimator.fit(X, y, queue=queue)
316
+ self._save_attributes()
317
+ except RuntimeError:
318
+ logging.getLogger("sklearnex").info(
319
+ f"{self.__class__.__name__}.fit "
320
+ + get_patch_message("sklearn_after_onedal")
321
+ )
322
+
323
+ del self._onedal_estimator
324
+ super().fit(X, y)
325
+ else:
326
+ self._onedal_estimator.fit(X, y, queue=queue)
327
+ self._save_attributes()
328
+
329
+ def _onedal_predict(self, X, queue=None):
330
+ if queue is None or queue.sycl_device.is_cpu:
331
+ return daal4py_predict(self, X, "computeClassLabels")
332
+
333
+ if sklearn_check_version("1.0"):
334
+ X = validate_data(
335
+ self,
336
+ X,
337
+ reset=False,
338
+ accept_sparse=_sparsity_enabled,
339
+ accept_large_sparse=_sparsity_enabled,
340
+ dtype=[np.float64, np.float32],
341
+ )
342
+ else:
343
+ X = check_array(
344
+ X,
345
+ accept_sparse=_sparsity_enabled,
346
+ accept_large_sparse=_sparsity_enabled,
347
+ dtype=[np.float64, np.float32],
348
+ )
349
+
350
+ assert hasattr(self, "_onedal_estimator")
351
+ return self._onedal_estimator.predict(X, queue=queue)
352
+
353
+ def _onedal_predict_proba(self, X, queue=None):
354
+ if queue is None or queue.sycl_device.is_cpu:
355
+ return daal4py_predict(self, X, "computeClassProbabilities")
356
+
357
+ if sklearn_check_version("1.0"):
358
+ X = validate_data(
359
+ self,
360
+ X,
361
+ reset=False,
362
+ accept_sparse=_sparsity_enabled,
363
+ accept_large_sparse=_sparsity_enabled,
364
+ dtype=[np.float64, np.float32],
365
+ )
366
+ else:
367
+ X = check_array(
368
+ X,
369
+ accept_sparse=_sparsity_enabled,
370
+ accept_large_sparse=_sparsity_enabled,
371
+ dtype=[np.float64, np.float32],
372
+ )
373
+
374
+ assert hasattr(self, "_onedal_estimator")
375
+ return self._onedal_estimator.predict_proba(X, queue=queue)
376
+
377
+ def _onedal_predict_log_proba(self, X, queue=None):
378
+ if queue is None or queue.sycl_device.is_cpu:
379
+ return daal4py_predict(self, X, "computeClassLogProbabilities")
380
+
381
+ if sklearn_check_version("1.0"):
382
+ X = validate_data(
383
+ self,
384
+ X,
385
+ reset=False,
386
+ accept_sparse=_sparsity_enabled,
387
+ accept_large_sparse=_sparsity_enabled,
388
+ dtype=[np.float64, np.float32],
389
+ )
390
+ else:
391
+ X = check_array(
392
+ X,
393
+ accept_sparse=_sparsity_enabled,
394
+ accept_large_sparse=_sparsity_enabled,
395
+ dtype=[np.float64, np.float32],
396
+ )
397
+
398
+ assert hasattr(self, "_onedal_estimator")
399
+ return self._onedal_estimator.predict_log_proba(X, queue=queue)
400
+
401
+ fit.__doc__ = _sklearn_LogisticRegression.fit.__doc__
402
+ predict.__doc__ = _sklearn_LogisticRegression.predict.__doc__
403
+ predict_proba.__doc__ = _sklearn_LogisticRegression.predict_proba.__doc__
404
+ predict_log_proba.__doc__ = _sklearn_LogisticRegression.predict_log_proba.__doc__
405
+ score.__doc__ = _sklearn_LogisticRegression.score.__doc__
406
+
407
+ else:
408
+ LogisticRegression = _daal4py_LogisticRegression
409
+
410
+ logging.warning(
411
+ "Sklearnex LogisticRegression requires oneDAL version >= 2024.0.1 "
412
+ "but it was not found"
413
+ )
@@ -0,0 +1,24 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn.linear_model import Ridge
18
+ from onedal._device_offload import support_input_format
19
+
20
+ # Note: `sklearnex.linear_model.Ridge` only has functional
21
+ # sycl GPU support. No GPU device will be offloaded.
22
+ Ridge.fit = support_input_format(queue_param=False)(Ridge.fit)
23
+ Ridge.predict = support_input_format(queue_param=False)(Ridge.predict)
24
+ Ridge.score = support_input_format(queue_param=False)(Ridge.score)
@@ -0,0 +1,207 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.linear_model import IncrementalLinearRegression
27
+ from sklearnex.tests.utils import _IS_INTEL
28
+
29
+
30
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
31
+ @pytest.mark.parametrize("fit_intercept", [True, False])
32
+ @pytest.mark.parametrize("macro_block", [None, 1024])
33
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
34
+ def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
35
+ X = np.array([[1], [2]])
36
+ X = X.astype(dtype=dtype)
37
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
38
+ y = np.array([[1], [2]])
39
+ y = y.astype(dtype=dtype)
40
+ y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
41
+
42
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
43
+ if macro_block is not None:
44
+ hparams = inclin.get_hyperparameters("fit")
45
+ hparams.cpu_macro_block = macro_block
46
+ hparams.gpu_macro_block = macro_block
47
+ inclin.fit(X_df, y_df)
48
+
49
+ y_pred = inclin.predict(X_df)
50
+ np_y_pred = _as_numpy(y_pred)
51
+
52
+ tol = 2e-6 if dtype == np.float32 else 1e-7
53
+ assert_allclose(inclin.coef_, [1], atol=tol)
54
+ if fit_intercept:
55
+ assert_allclose(inclin.intercept_, [0], atol=tol)
56
+ assert_allclose(np_y_pred, y, atol=tol)
57
+
58
+
59
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
60
+ @pytest.mark.parametrize("fit_intercept", [True, False])
61
+ @pytest.mark.parametrize("macro_block", [None, 1024])
62
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
63
+ def test_sklearnex_partial_fit_on_gold_data(
64
+ dataframe, queue, fit_intercept, macro_block, dtype
65
+ ):
66
+ X = np.array([[1], [2], [3], [4]])
67
+ X = X.astype(dtype=dtype)
68
+ y = X + 3
69
+ y = y.astype(dtype=dtype)
70
+ X_split = np.array_split(X, 2)
71
+ y_split = np.array_split(y, 2)
72
+
73
+ inclin = IncrementalLinearRegression()
74
+ if macro_block is not None:
75
+ hparams = inclin.get_hyperparameters("fit")
76
+ hparams.cpu_macro_block = macro_block
77
+ hparams.gpu_macro_block = macro_block
78
+ for i in range(2):
79
+ X_split_df = _convert_to_dataframe(
80
+ X_split[i], sycl_queue=queue, target_df=dataframe
81
+ )
82
+ y_split_df = _convert_to_dataframe(
83
+ y_split[i], sycl_queue=queue, target_df=dataframe
84
+ )
85
+ inclin.partial_fit(X_split_df, y_split_df)
86
+
87
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
88
+ y_pred = inclin.predict(X_df)
89
+ np_y_pred = _as_numpy(y_pred)
90
+
91
+ assert inclin.n_features_in_ == 1
92
+ tol = 1e-5 if dtype == np.float32 else 1e-7
93
+ assert_allclose(inclin.coef_, [[1]], atol=tol)
94
+ if fit_intercept:
95
+ assert_allclose(inclin.intercept_, 3, atol=tol)
96
+
97
+ assert_allclose(np_y_pred, y, atol=tol)
98
+
99
+
100
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
101
+ @pytest.mark.parametrize("fit_intercept", [True, False])
102
+ @pytest.mark.parametrize("macro_block", [None, 1024])
103
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
104
+ def test_sklearnex_partial_fit_multitarget_on_gold_data(
105
+ dataframe, queue, fit_intercept, macro_block, dtype
106
+ ):
107
+ X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
108
+ X = X.astype(dtype=dtype)
109
+ y = np.dot(X, [1, 2]) + 3
110
+ y = y.astype(dtype=dtype)
111
+ X_split = np.array_split(X, 2)
112
+ y_split = np.array_split(y, 2)
113
+
114
+ inclin = IncrementalLinearRegression()
115
+ if macro_block is not None:
116
+ hparams = inclin.get_hyperparameters("fit")
117
+ hparams.cpu_macro_block = macro_block
118
+ hparams.gpu_macro_block = macro_block
119
+ for i in range(2):
120
+ X_split_df = _convert_to_dataframe(
121
+ X_split[i], sycl_queue=queue, target_df=dataframe
122
+ )
123
+ y_split_df = _convert_to_dataframe(
124
+ y_split[i], sycl_queue=queue, target_df=dataframe
125
+ )
126
+ inclin.partial_fit(X_split_df, y_split_df)
127
+
128
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
129
+ y_pred = inclin.predict(X_df)
130
+ np_y_pred = _as_numpy(y_pred)
131
+
132
+ assert inclin.n_features_in_ == 2
133
+ tol = 1e-7
134
+ if dtype == np.float32:
135
+ tol = 7e-6 if _IS_INTEL else 2e-5
136
+
137
+ assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
138
+ if fit_intercept:
139
+ assert_allclose(inclin.intercept_, 3.0, atol=tol)
140
+
141
+ assert_allclose(np_y_pred, y, atol=tol)
142
+
143
+
144
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
145
+ @pytest.mark.parametrize("fit_intercept", [True, False])
146
+ @pytest.mark.parametrize("num_samples", [100, 1000])
147
+ @pytest.mark.parametrize("num_features", [5, 10])
148
+ @pytest.mark.parametrize("num_targets", [1, 2])
149
+ @pytest.mark.parametrize("num_blocks", [1, 10])
150
+ @pytest.mark.parametrize("macro_block", [None, 1024])
151
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
152
+ def test_sklearnex_partial_fit_on_random_data(
153
+ dataframe,
154
+ queue,
155
+ fit_intercept,
156
+ num_samples,
157
+ num_features,
158
+ num_targets,
159
+ num_blocks,
160
+ macro_block,
161
+ dtype,
162
+ ):
163
+ seed = 42
164
+ gen = np.random.default_rng(seed)
165
+ intercept = gen.random(size=num_targets, dtype=dtype)
166
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
167
+
168
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
169
+ if fit_intercept:
170
+ y = X @ coef + intercept[np.newaxis, :]
171
+ else:
172
+ y = X @ coef
173
+
174
+ X_split = np.array_split(X, num_blocks)
175
+ y_split = np.array_split(y, num_blocks)
176
+
177
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
178
+ if macro_block is not None:
179
+ hparams = inclin.get_hyperparameters("fit")
180
+ hparams.cpu_macro_block = macro_block
181
+ hparams.gpu_macro_block = macro_block
182
+ for i in range(num_blocks):
183
+ X_split_df = _convert_to_dataframe(
184
+ X_split[i], sycl_queue=queue, target_df=dataframe
185
+ )
186
+ y_split_df = _convert_to_dataframe(
187
+ y_split[i], sycl_queue=queue, target_df=dataframe
188
+ )
189
+ inclin.partial_fit(X_split_df, y_split_df)
190
+
191
+ tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
192
+ assert_allclose(coef.T.squeeze(), inclin.coef_, atol=tol)
193
+
194
+ if fit_intercept:
195
+ assert_allclose(intercept, inclin.intercept_, atol=tol)
196
+
197
+ X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
198
+ if fit_intercept:
199
+ expected_y_pred = (X_test @ coef + intercept[np.newaxis, :]).squeeze()
200
+ else:
201
+ expected_y_pred = (X_test @ coef).squeeze()
202
+
203
+ X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
204
+
205
+ y_pred = inclin.predict(X_test_df)
206
+
207
+ assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)