scikit-learn-intelex 2025.1.0__py311-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,339 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import warnings
18
+ from abc import ABC
19
+ from numbers import Number, Real
20
+
21
+ import numpy as np
22
+ from scipy import sparse as sp
23
+ from sklearn.base import BaseEstimator, ClassifierMixin
24
+ from sklearn.calibration import CalibratedClassifierCV
25
+ from sklearn.metrics import r2_score
26
+ from sklearn.preprocessing import LabelEncoder
27
+
28
+ from daal4py.sklearn._utils import sklearn_check_version
29
+ from onedal.utils import _check_array, _check_X_y, _column_or_1d
30
+
31
+ from .._config import config_context, get_config
32
+ from .._utils import PatchingConditionsChain
33
+
34
+ if sklearn_check_version("1.6"):
35
+ from sklearn.utils.validation import validate_data
36
+ else:
37
+ validate_data = BaseEstimator._validate_data
38
+
39
+
40
+ class BaseSVM(BaseEstimator, ABC):
41
+
42
+ @property
43
+ def _dual_coef_(self):
44
+ return self._dualcoef_
45
+
46
+ @_dual_coef_.setter
47
+ def _dual_coef_(self, value):
48
+ self._dualcoef_ = value
49
+ if hasattr(self, "_onedal_estimator"):
50
+ self._onedal_estimator.dual_coef_ = value
51
+ if hasattr(self._onedal_estimator, "_onedal_model"):
52
+ del self._onedal_estimator._onedal_model
53
+
54
+ @_dual_coef_.deleter
55
+ def _dual_coef_(self):
56
+ del self._dualcoef_
57
+
58
+ @property
59
+ def intercept_(self):
60
+ return self._icept_
61
+
62
+ @intercept_.setter
63
+ def intercept_(self, value):
64
+ self._icept_ = value
65
+ if hasattr(self, "_onedal_estimator"):
66
+ self._onedal_estimator.intercept_ = value
67
+ if hasattr(self._onedal_estimator, "_onedal_model"):
68
+ del self._onedal_estimator._onedal_model
69
+
70
+ @intercept_.deleter
71
+ def intercept_(self):
72
+ del self._icept_
73
+
74
+ def _onedal_gpu_supported(self, method_name, *data):
75
+ patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
76
+ patching_status.and_conditions([(False, "GPU offloading is not supported.")])
77
+ return patching_status
78
+
79
+ def _onedal_cpu_supported(self, method_name, *data):
80
+ class_name = self.__class__.__name__
81
+ patching_status = PatchingConditionsChain(
82
+ f"sklearn.svm.{class_name}.{method_name}"
83
+ )
84
+ if method_name == "fit":
85
+ patching_status.and_conditions(
86
+ [
87
+ (
88
+ self.kernel in ["linear", "rbf", "poly", "sigmoid"],
89
+ f'Kernel is "{self.kernel}" while '
90
+ '"linear", "rbf", "poly" and "sigmoid" are only supported.',
91
+ )
92
+ ]
93
+ )
94
+ return patching_status
95
+ inference_methods = (
96
+ ["predict", "score"]
97
+ if class_name.endswith("R")
98
+ else ["predict", "predict_proba", "decision_function", "score"]
99
+ )
100
+ if method_name in inference_methods:
101
+ patching_status.and_conditions(
102
+ [(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
103
+ )
104
+ return patching_status
105
+ raise RuntimeError(f"Unknown method {method_name} in {class_name}")
106
+
107
+ def _compute_gamma_sigma(self, X):
108
+ # only run extended conversion if kernel is not linear
109
+ # set to a value = 1.0, so gamma will always be passed to
110
+ # the onedal estimator as a float type
111
+ if self.kernel == "linear":
112
+ return 1.0
113
+
114
+ if isinstance(self.gamma, str):
115
+ if self.gamma == "scale":
116
+ if sp.issparse(X):
117
+ # var = E[X^2] - E[X]^2
118
+ X_sc = (X.multiply(X)).mean() - (X.mean()) ** 2
119
+ else:
120
+ X_sc = X.var()
121
+ _gamma = 1.0 / (X.shape[1] * X_sc) if X_sc != 0 else 1.0
122
+ elif self.gamma == "auto":
123
+ _gamma = 1.0 / X.shape[1]
124
+ else:
125
+ raise ValueError(
126
+ "When 'gamma' is a string, it should be either 'scale' or "
127
+ "'auto'. Got '{}' instead.".format(self.gamma)
128
+ )
129
+ else:
130
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
131
+ if isinstance(self.gamma, Real):
132
+ if self.gamma <= 0:
133
+ msg = (
134
+ f"gamma value must be > 0; {self.gamma!r} is invalid. Use"
135
+ " a positive number or use 'auto' to set gamma to a"
136
+ " value of 1 / n_features."
137
+ )
138
+ raise ValueError(msg)
139
+ _gamma = self.gamma
140
+ else:
141
+ msg = (
142
+ "The gamma value should be set to 'scale', 'auto' or a"
143
+ f" positive float value. {self.gamma!r} is not a valid option"
144
+ )
145
+ raise ValueError(msg)
146
+ else:
147
+ _gamma = self.gamma
148
+ return _gamma
149
+
150
+ def _onedal_fit_checks(self, X, y, sample_weight=None):
151
+ if hasattr(self, "decision_function_shape"):
152
+ if self.decision_function_shape not in ("ovr", "ovo", None):
153
+ raise ValueError(
154
+ f"decision_function_shape must be either 'ovr' or 'ovo', "
155
+ f"got {self.decision_function_shape}."
156
+ )
157
+
158
+ if y is None:
159
+ if self._get_tags()["requires_y"]:
160
+ raise ValueError(
161
+ f"This {self.__class__.__name__} estimator "
162
+ f"requires y to be passed, but the target y is None."
163
+ )
164
+ # using onedal _check_X_y to insure X and y are contiguous
165
+ # finite check occurs in onedal estimator
166
+ if sklearn_check_version("1.0"):
167
+ X, y = validate_data(
168
+ self,
169
+ X,
170
+ y,
171
+ dtype=[np.float64, np.float32],
172
+ force_all_finite=False,
173
+ accept_sparse="csr",
174
+ )
175
+ else:
176
+ X, y = _check_X_y(
177
+ X,
178
+ y,
179
+ dtype=[np.float64, np.float32],
180
+ force_all_finite=False,
181
+ accept_sparse="csr",
182
+ )
183
+ y = self._validate_targets(y)
184
+ sample_weight = self._get_sample_weight(X, y, sample_weight)
185
+ return X, y, sample_weight
186
+
187
+ def _get_sample_weight(self, X, y, sample_weight):
188
+ n_samples = X.shape[0]
189
+ dtype = X.dtype
190
+ if n_samples == 1:
191
+ raise ValueError("n_samples=1")
192
+
193
+ sample_weight = np.ascontiguousarray(
194
+ [] if sample_weight is None else sample_weight, dtype=np.float64
195
+ )
196
+
197
+ sample_weight_count = sample_weight.shape[0]
198
+ if sample_weight_count != 0 and sample_weight_count != n_samples:
199
+ raise ValueError(
200
+ "sample_weight and X have incompatible shapes: "
201
+ "%r vs %r\n"
202
+ "Note: Sparse matrices cannot be indexed w/"
203
+ "boolean masks (use `indices=True` in CV)."
204
+ % (len(sample_weight), X.shape)
205
+ )
206
+
207
+ if sample_weight_count == 0:
208
+ if not isinstance(self, ClassifierMixin) or self.class_weight_ is None:
209
+ return None
210
+ sample_weight = np.ones(n_samples, dtype=dtype)
211
+ elif isinstance(sample_weight, Number):
212
+ sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
213
+ else:
214
+ sample_weight = _check_array(
215
+ sample_weight,
216
+ accept_sparse=False,
217
+ ensure_2d=False,
218
+ dtype=dtype,
219
+ order="C",
220
+ )
221
+ if sample_weight.ndim != 1:
222
+ raise ValueError("Sample weights must be 1D array or scalar")
223
+
224
+ if sample_weight.shape != (n_samples,):
225
+ raise ValueError(
226
+ "sample_weight.shape == {}, expected {}!".format(
227
+ sample_weight.shape, (n_samples,)
228
+ )
229
+ )
230
+
231
+ if np.all(sample_weight <= 0):
232
+ if "nusvc" in self.__module__:
233
+ raise ValueError("negative dimensions are not allowed")
234
+ else:
235
+ raise ValueError(
236
+ "Invalid input - all samples have zero or negative weights."
237
+ )
238
+
239
+ return sample_weight
240
+
241
+
242
+ class BaseSVC(BaseSVM):
243
+ def _compute_balanced_class_weight(self, y):
244
+ y_ = _column_or_1d(y)
245
+ classes, _ = np.unique(y_, return_inverse=True)
246
+
247
+ le = LabelEncoder()
248
+ y_ind = le.fit_transform(y_)
249
+ if not all(np.in1d(classes, le.classes_)):
250
+ raise ValueError("classes should have valid labels that are in y")
251
+
252
+ recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
253
+ return recip_freq[le.transform(classes)]
254
+
255
+ def _fit_proba(self, X, y, sample_weight=None, queue=None):
256
+ # TODO: rewrite this method when probabilities output is implemented in oneDAL
257
+
258
+ # LibSVM uses the random seed to control cross-validation for probability generation
259
+ # CalibratedClassifierCV with "prefit" does not use an RNG nor a seed. This may
260
+ # impact users without their knowledge, so display a warning.
261
+ if self.random_state is not None:
262
+ warnings.warn(
263
+ "random_state does not influence oneDAL SVM results",
264
+ RuntimeWarning,
265
+ )
266
+
267
+ params = self.get_params()
268
+ params["probability"] = False
269
+ params["decision_function_shape"] = "ovr"
270
+ clf_base = self.__class__(**params)
271
+
272
+ # We use stock metaestimators below, so the only way
273
+ # to pass a queue is using config_context.
274
+ cfg = get_config()
275
+ cfg["target_offload"] = queue
276
+ with config_context(**cfg):
277
+ clf_base.fit(X, y)
278
+ self.clf_prob = CalibratedClassifierCV(
279
+ clf_base,
280
+ ensemble=False,
281
+ cv="prefit",
282
+ method="sigmoid",
283
+ ).fit(X, y)
284
+
285
+ def _save_attributes(self):
286
+ self.support_vectors_ = self._onedal_estimator.support_vectors_
287
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
288
+ self.fit_status_ = 0
289
+ self.dual_coef_ = self._onedal_estimator.dual_coef_
290
+ self.shape_fit_ = self._onedal_estimator.class_weight_
291
+ self.classes_ = self._onedal_estimator.classes_
292
+ if isinstance(self, ClassifierMixin) or not sklearn_check_version("1.2"):
293
+ self.class_weight_ = self._onedal_estimator.class_weight_
294
+ self.support_ = self._onedal_estimator.support_
295
+
296
+ self._icept_ = self._onedal_estimator.intercept_
297
+ self._n_support = self._onedal_estimator._n_support
298
+ self._sparse = False
299
+ self._gamma = self._onedal_estimator._gamma
300
+ if self.probability:
301
+ length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
302
+ self._probA = np.zeros(length)
303
+ self._probB = np.zeros(length)
304
+ else:
305
+ self._probA = np.empty(0)
306
+ self._probB = np.empty(0)
307
+
308
+ self._dualcoef_ = self.dual_coef_
309
+
310
+ if sklearn_check_version("1.1"):
311
+ length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
312
+ self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
313
+
314
+
315
+ class BaseSVR(BaseSVM):
316
+ def _save_attributes(self):
317
+ self.support_vectors_ = self._onedal_estimator.support_vectors_
318
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
319
+ self.fit_status_ = 0
320
+ self.dual_coef_ = self._onedal_estimator.dual_coef_
321
+ self.shape_fit_ = self._onedal_estimator.shape_fit_
322
+ self.support_ = self._onedal_estimator.support_
323
+
324
+ self._icept_ = self._onedal_estimator.intercept_
325
+ self._n_support = [self.support_vectors_.shape[0]]
326
+ self._sparse = False
327
+ self._gamma = self._onedal_estimator._gamma
328
+ self._probA = None
329
+ self._probB = None
330
+
331
+ if sklearn_check_version("1.1"):
332
+ self.n_iter_ = self._onedal_estimator.n_iter_
333
+
334
+ self._dualcoef_ = self.dual_coef_
335
+
336
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
337
+ return r2_score(
338
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
339
+ )
sklearnex/svm/nusvc.py ADDED
@@ -0,0 +1,371 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.exceptions import NotFittedError
19
+ from sklearn.metrics import accuracy_score
20
+ from sklearn.svm import NuSVC as _sklearn_NuSVC
21
+ from sklearn.utils.validation import (
22
+ _deprecate_positional_args,
23
+ check_array,
24
+ check_is_fitted,
25
+ )
26
+
27
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
28
+ from daal4py.sklearn._utils import sklearn_check_version
29
+
30
+ from .._device_offload import dispatch, wrap_output_data
31
+ from ..utils._array_api import get_namespace
32
+ from ._common import BaseSVC
33
+
34
+ if sklearn_check_version("1.0"):
35
+ from sklearn.utils.metaestimators import available_if
36
+
37
+ from onedal.svm import NuSVC as onedal_NuSVC
38
+
39
+ if sklearn_check_version("1.6"):
40
+ from sklearn.utils.validation import validate_data
41
+ else:
42
+ validate_data = BaseSVC._validate_data
43
+
44
+
45
+ @control_n_jobs(
46
+ decorated_methods=["fit", "predict", "_predict_proba", "decision_function", "score"]
47
+ )
48
+ class NuSVC(_sklearn_NuSVC, BaseSVC):
49
+ __doc__ = _sklearn_NuSVC.__doc__
50
+
51
+ if sklearn_check_version("1.2"):
52
+ _parameter_constraints: dict = {**_sklearn_NuSVC._parameter_constraints}
53
+
54
+ @_deprecate_positional_args
55
+ def __init__(
56
+ self,
57
+ *,
58
+ nu=0.5,
59
+ kernel="rbf",
60
+ degree=3,
61
+ gamma="scale",
62
+ coef0=0.0,
63
+ shrinking=True,
64
+ probability=False,
65
+ tol=1e-3,
66
+ cache_size=200,
67
+ class_weight=None,
68
+ verbose=False,
69
+ max_iter=-1,
70
+ decision_function_shape="ovr",
71
+ break_ties=False,
72
+ random_state=None,
73
+ ):
74
+ super().__init__(
75
+ nu=nu,
76
+ kernel=kernel,
77
+ degree=degree,
78
+ gamma=gamma,
79
+ coef0=coef0,
80
+ shrinking=shrinking,
81
+ probability=probability,
82
+ tol=tol,
83
+ cache_size=cache_size,
84
+ class_weight=class_weight,
85
+ verbose=verbose,
86
+ max_iter=max_iter,
87
+ decision_function_shape=decision_function_shape,
88
+ break_ties=break_ties,
89
+ random_state=random_state,
90
+ )
91
+
92
+ def fit(self, X, y, sample_weight=None):
93
+ if sklearn_check_version("1.2"):
94
+ self._validate_params()
95
+ elif self.nu <= 0 or self.nu > 1:
96
+ # else if added to correct issues with
97
+ # sklearn tests:
98
+ # svm/tests/test_sparse.py::test_error
99
+ # svm/tests/test_svm.py::test_bad_input
100
+ # for sklearn versions < 1.2 (i.e. without
101
+ # validate_params parameter checking)
102
+ # Without this, a segmentation fault with
103
+ # Windows fatal exception: access violation
104
+ # occurs
105
+ raise ValueError("nu <= 0 or nu > 1")
106
+ dispatch(
107
+ self,
108
+ "fit",
109
+ {
110
+ "onedal": self.__class__._onedal_fit,
111
+ "sklearn": _sklearn_NuSVC.fit,
112
+ },
113
+ X,
114
+ y,
115
+ sample_weight=sample_weight,
116
+ )
117
+
118
+ return self
119
+
120
+ @wrap_output_data
121
+ def predict(self, X):
122
+ check_is_fitted(self)
123
+ return dispatch(
124
+ self,
125
+ "predict",
126
+ {
127
+ "onedal": self.__class__._onedal_predict,
128
+ "sklearn": _sklearn_NuSVC.predict,
129
+ },
130
+ X,
131
+ )
132
+
133
+ @wrap_output_data
134
+ def score(self, X, y, sample_weight=None):
135
+ check_is_fitted(self)
136
+ return dispatch(
137
+ self,
138
+ "score",
139
+ {
140
+ "onedal": self.__class__._onedal_score,
141
+ "sklearn": _sklearn_NuSVC.score,
142
+ },
143
+ X,
144
+ y,
145
+ sample_weight=sample_weight,
146
+ )
147
+
148
+ if sklearn_check_version("1.0"):
149
+
150
+ @available_if(_sklearn_NuSVC._check_proba)
151
+ def predict_proba(self, X):
152
+ """
153
+ Compute probabilities of possible outcomes for samples in X.
154
+
155
+ The model need to have probability information computed at training
156
+ time: fit with attribute `probability` set to True.
157
+
158
+ Parameters
159
+ ----------
160
+ X : array-like of shape (n_samples, n_features)
161
+ For kernel="precomputed", the expected shape of X is
162
+ (n_samples_test, n_samples_train).
163
+
164
+ Returns
165
+ -------
166
+ T : ndarray of shape (n_samples, n_classes)
167
+ Returns the probability of the sample for each class in
168
+ the model. The columns correspond to the classes in sorted
169
+ order, as they appear in the attribute :term:`classes_`.
170
+
171
+ Notes
172
+ -----
173
+ The probability model is created using cross validation, so
174
+ the results can be slightly different than those obtained by
175
+ predict. Also, it will produce meaningless results on very small
176
+ datasets.
177
+ """
178
+ check_is_fitted(self)
179
+ return self._predict_proba(X)
180
+
181
+ @available_if(_sklearn_NuSVC._check_proba)
182
+ def predict_log_proba(self, X):
183
+ """Compute log probabilities of possible outcomes for samples in X.
184
+
185
+ The model need to have probability information computed at training
186
+ time: fit with attribute `probability` set to True.
187
+
188
+ Parameters
189
+ ----------
190
+ X : array-like of shape (n_samples, n_features) or \
191
+ (n_samples_test, n_samples_train)
192
+ For kernel="precomputed", the expected shape of X is
193
+ (n_samples_test, n_samples_train).
194
+
195
+ Returns
196
+ -------
197
+ T : ndarray of shape (n_samples, n_classes)
198
+ Returns the log-probabilities of the sample for each class in
199
+ the model. The columns correspond to the classes in sorted
200
+ order, as they appear in the attribute :term:`classes_`.
201
+
202
+ Notes
203
+ -----
204
+ The probability model is created using cross validation, so
205
+ the results can be slightly different than those obtained by
206
+ predict. Also, it will produce meaningless results on very small
207
+ datasets.
208
+ """
209
+ xp, _ = get_namespace(X)
210
+
211
+ return xp.log(self.predict_proba(X))
212
+
213
+ else:
214
+
215
+ @property
216
+ def predict_proba(self):
217
+ self._check_proba()
218
+ check_is_fitted(self)
219
+ return self._predict_proba
220
+
221
+ def _predict_log_proba(self, X):
222
+ xp, _ = get_namespace(X)
223
+ return xp.log(self.predict_proba(X))
224
+
225
+ predict_proba.__doc__ = _sklearn_NuSVC.predict_proba.__doc__
226
+
227
+ @wrap_output_data
228
+ def _predict_proba(self, X):
229
+ sklearn_pred_proba = (
230
+ _sklearn_NuSVC.predict_proba
231
+ if sklearn_check_version("1.0")
232
+ else _sklearn_NuSVC._predict_proba
233
+ )
234
+
235
+ return dispatch(
236
+ self,
237
+ "predict_proba",
238
+ {
239
+ "onedal": self.__class__._onedal_predict_proba,
240
+ "sklearn": sklearn_pred_proba,
241
+ },
242
+ X,
243
+ )
244
+
245
+ @wrap_output_data
246
+ def decision_function(self, X):
247
+ check_is_fitted(self)
248
+ return dispatch(
249
+ self,
250
+ "decision_function",
251
+ {
252
+ "onedal": self.__class__._onedal_decision_function,
253
+ "sklearn": _sklearn_NuSVC.decision_function,
254
+ },
255
+ X,
256
+ )
257
+
258
+ decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
259
+
260
+ def _get_sample_weight(self, X, y, sample_weight=None):
261
+ sample_weight = super()._get_sample_weight(X, y, sample_weight)
262
+ if sample_weight is None:
263
+ return sample_weight
264
+
265
+ weight_per_class = [
266
+ np.sum(sample_weight[y == class_label]) for class_label in np.unique(y)
267
+ ]
268
+
269
+ for i in range(len(weight_per_class)):
270
+ for j in range(i + 1, len(weight_per_class)):
271
+ if self.nu * (weight_per_class[i] + weight_per_class[j]) / 2 > min(
272
+ weight_per_class[i], weight_per_class[j]
273
+ ):
274
+ raise ValueError("specified nu is infeasible")
275
+
276
+ return sample_weight
277
+
278
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
279
+ X, _, weights = self._onedal_fit_checks(X, y, sample_weight)
280
+ onedal_params = {
281
+ "nu": self.nu,
282
+ "kernel": self.kernel,
283
+ "degree": self.degree,
284
+ "gamma": self._compute_gamma_sigma(X),
285
+ "coef0": self.coef0,
286
+ "tol": self.tol,
287
+ "shrinking": self.shrinking,
288
+ "cache_size": self.cache_size,
289
+ "max_iter": self.max_iter,
290
+ "class_weight": self.class_weight,
291
+ "break_ties": self.break_ties,
292
+ "decision_function_shape": self.decision_function_shape,
293
+ }
294
+
295
+ self._onedal_estimator = onedal_NuSVC(**onedal_params)
296
+ self._onedal_estimator.fit(X, y, weights, queue=queue)
297
+
298
+ if self.probability:
299
+ self._fit_proba(
300
+ X,
301
+ y,
302
+ sample_weight=sample_weight,
303
+ queue=queue,
304
+ )
305
+
306
+ self._save_attributes()
307
+
308
+ def _onedal_predict(self, X, queue=None):
309
+ if sklearn_check_version("1.0"):
310
+ validate_data(
311
+ self,
312
+ X,
313
+ dtype=[np.float64, np.float32],
314
+ force_all_finite=False,
315
+ ensure_2d=False,
316
+ accept_sparse="csr",
317
+ reset=False,
318
+ )
319
+ else:
320
+ X = check_array(
321
+ X,
322
+ dtype=[np.float64, np.float32],
323
+ force_all_finite=False,
324
+ accept_sparse="csr",
325
+ )
326
+
327
+ return self._onedal_estimator.predict(X, queue=queue)
328
+
329
+ def _onedal_predict_proba(self, X, queue=None):
330
+ if getattr(self, "clf_prob", None) is None:
331
+ raise NotFittedError(
332
+ "predict_proba is not available when fitted with probability=False"
333
+ )
334
+ from .._config import config_context, get_config
335
+
336
+ # We use stock metaestimators below, so the only way
337
+ # to pass a queue is using config_context.
338
+ cfg = get_config()
339
+ cfg["target_offload"] = queue
340
+ with config_context(**cfg):
341
+ return self.clf_prob.predict_proba(X)
342
+
343
+ def _onedal_decision_function(self, X, queue=None):
344
+ if sklearn_check_version("1.0"):
345
+ validate_data(
346
+ self,
347
+ X,
348
+ dtype=[np.float64, np.float32],
349
+ force_all_finite=False,
350
+ accept_sparse="csr",
351
+ reset=False,
352
+ )
353
+ else:
354
+ X = check_array(
355
+ X,
356
+ dtype=[np.float64, np.float32],
357
+ force_all_finite=False,
358
+ accept_sparse="csr",
359
+ )
360
+
361
+ return self._onedal_estimator.decision_function(X, queue=queue)
362
+
363
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
364
+ return accuracy_score(
365
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
366
+ )
367
+
368
+ fit.__doc__ = _sklearn_NuSVC.fit.__doc__
369
+ predict.__doc__ = _sklearn_NuSVC.predict.__doc__
370
+ decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
371
+ score.__doc__ = _sklearn_NuSVC.score.__doc__