scikit-learn-intelex 2025.1.0__py311-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,482 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ import warnings
19
+
20
+ import numpy as np
21
+ from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
22
+ from sklearn.metrics import r2_score
23
+ from sklearn.utils import check_array, gen_batches
24
+ from sklearn.utils.validation import check_is_fitted
25
+
26
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
27
+ from daal4py.sklearn._utils import sklearn_check_version
28
+ from onedal.linear_model import (
29
+ IncrementalLinearRegression as onedal_IncrementalLinearRegression,
30
+ )
31
+
32
+ if sklearn_check_version("1.2"):
33
+ from sklearn.utils._param_validation import Interval
34
+
35
+ if sklearn_check_version("1.6"):
36
+ from sklearn.utils.validation import validate_data
37
+ else:
38
+ validate_data = BaseEstimator._validate_data
39
+
40
+ from onedal.common.hyperparameters import get_hyperparameters
41
+
42
+ from .._device_offload import dispatch, wrap_output_data
43
+ from .._utils import IntelEstimator, PatchingConditionsChain, register_hyperparameters
44
+
45
+
46
+ @register_hyperparameters(
47
+ {
48
+ "fit": get_hyperparameters("linear_regression", "train"),
49
+ "partial_fit": get_hyperparameters("linear_regression", "train"),
50
+ }
51
+ )
52
+ @control_n_jobs(
53
+ decorated_methods=["fit", "partial_fit", "predict", "score", "_onedal_finalize_fit"]
54
+ )
55
+ class IncrementalLinearRegression(
56
+ IntelEstimator, MultiOutputMixin, RegressorMixin, BaseEstimator
57
+ ):
58
+ """
59
+ Trains a linear regression model, allows for computation if the data are split into
60
+ batches. The user can use the ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
61
+ the entire dataset.
62
+
63
+ Parameters
64
+ ----------
65
+ fit_intercept : bool, default=True
66
+ Whether to calculate the intercept for this model. If set
67
+ to False, no intercept will be used in calculations
68
+ (i.e. data is expected to be centered).
69
+
70
+ copy_X : bool, default=True
71
+ If True, X will be copied; else, it may be overwritten.
72
+
73
+ n_jobs : int, default=None
74
+ The number of jobs to use for the computation.
75
+
76
+ batch_size : int, default=None
77
+ The number of samples to use for each batch. Only used when calling
78
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
79
+ is inferred from the data and set to ``5 * n_features``.
80
+
81
+ Attributes
82
+ ----------
83
+ coef_ : array of shape (n_features, ) or (n_targets, n_features)
84
+ Estimated coefficients for the linear regression problem.
85
+ If multiple targets are passed during the fit (y 2D), this
86
+ is a 2D array of shape (n_targets, n_features), while if only
87
+ one target is passed, this is a 1D array of length n_features.
88
+
89
+ intercept_ : float or array of shape (n_targets,)
90
+ Independent term in the linear model. Set to 0.0 if
91
+ `fit_intercept = False`.
92
+
93
+ n_samples_seen_ : int
94
+ The number of samples processed by the estimator. Will be reset on
95
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
96
+ It should be not less than `n_features_in_` if `fit_intercept`
97
+ is False and not less than `n_features_in_` + 1 if `fit_intercept`
98
+ is True to obtain regression coefficients.
99
+
100
+ batch_size_ : int
101
+ Inferred batch size from ``batch_size``.
102
+
103
+ n_features_in_ : int
104
+ Number of features seen during ``fit`` or ``partial_fit``.
105
+
106
+ Examples
107
+ --------
108
+ >>> import numpy as np
109
+ >>> from sklearnex.linear_model import IncrementalLinearRegression
110
+ >>> inclr = IncrementalLinearRegression(batch_size=2)
111
+ >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 10]])
112
+ >>> y = np.array([1.5, 3.5, 5.5, 8.5])
113
+ >>> inclr.partial_fit(X[:2], y[:2])
114
+ >>> inclr.partial_fit(X[2:], y[2:])
115
+ >>> inclr.coef_
116
+ np.array([0.5., 0.5.])
117
+ >>> inclr.intercept_
118
+ np.array(0.)
119
+ >>> inclr.fit(X)
120
+ >>> inclr.coef_
121
+ np.array([0.5., 0.5.])
122
+ >>> inclr.intercept_
123
+ np.array(0.)
124
+ """
125
+
126
+ _onedal_incremental_linear = staticmethod(onedal_IncrementalLinearRegression)
127
+
128
+ if sklearn_check_version("1.2"):
129
+ _parameter_constraints: dict = {
130
+ "fit_intercept": ["boolean"],
131
+ "copy_X": ["boolean"],
132
+ "n_jobs": [Interval(numbers.Integral, -1, None, closed="left"), None],
133
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
134
+ }
135
+
136
+ def __init__(self, *, fit_intercept=True, copy_X=True, n_jobs=None, batch_size=None):
137
+ self.fit_intercept = fit_intercept
138
+ self.copy_X = copy_X
139
+ self.n_jobs = n_jobs
140
+ self.batch_size = batch_size
141
+
142
+ def _onedal_supported(self, method_name, *data):
143
+ patching_status = PatchingConditionsChain(
144
+ f"sklearn.linear_model.{self.__class__.__name__}.{method_name}"
145
+ )
146
+ return patching_status
147
+
148
+ _onedal_cpu_supported = _onedal_supported
149
+ _onedal_gpu_supported = _onedal_supported
150
+
151
+ def _onedal_predict(self, X, queue=None):
152
+ if sklearn_check_version("1.2"):
153
+ self._validate_params()
154
+
155
+ if sklearn_check_version("1.0"):
156
+ X = validate_data(
157
+ self,
158
+ X,
159
+ dtype=[np.float64, np.float32],
160
+ copy=self.copy_X,
161
+ reset=False,
162
+ )
163
+ else:
164
+ X = check_array(
165
+ X,
166
+ dtype=[np.float64, np.float32],
167
+ copy=self.copy_X,
168
+ )
169
+
170
+ assert hasattr(self, "_onedal_estimator")
171
+ if self._need_to_finalize:
172
+ self._onedal_finalize_fit()
173
+ return self._onedal_estimator.predict(X, queue=queue)
174
+
175
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
176
+ return r2_score(
177
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
178
+ )
179
+
180
+ def _onedal_partial_fit(self, X, y, check_input=True, queue=None):
181
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
182
+
183
+ if sklearn_check_version("1.2"):
184
+ self._validate_params()
185
+
186
+ if check_input:
187
+ if sklearn_check_version("1.0"):
188
+ X, y = validate_data(
189
+ self,
190
+ X,
191
+ y,
192
+ dtype=[np.float64, np.float32],
193
+ reset=first_pass,
194
+ copy=self.copy_X,
195
+ multi_output=True,
196
+ force_all_finite=False,
197
+ )
198
+ else:
199
+ X = check_array(
200
+ X,
201
+ dtype=[np.float64, np.float32],
202
+ copy=self.copy_X,
203
+ force_all_finite=False,
204
+ )
205
+ y = check_array(
206
+ y,
207
+ dtype=[np.float64, np.float32],
208
+ copy=False,
209
+ ensure_2d=False,
210
+ force_all_finite=False,
211
+ )
212
+
213
+ if first_pass:
214
+ self.n_samples_seen_ = X.shape[0]
215
+ self.n_features_in_ = X.shape[1]
216
+ else:
217
+ self.n_samples_seen_ += X.shape[0]
218
+ onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
219
+ if not hasattr(self, "_onedal_estimator"):
220
+ self._onedal_estimator = self._onedal_incremental_linear(**onedal_params)
221
+ self._onedal_estimator.partial_fit(X, y, queue=queue)
222
+ self._need_to_finalize = True
223
+
224
+ def _onedal_finalize_fit(self, queue=None):
225
+ assert hasattr(self, "_onedal_estimator")
226
+ is_underdetermined = self.n_samples_seen_ < self.n_features_in_ + int(
227
+ self.fit_intercept
228
+ )
229
+ if is_underdetermined:
230
+ raise ValueError("Not enough samples to finalize")
231
+ self._onedal_estimator.finalize_fit(queue=queue)
232
+ self._need_to_finalize = False
233
+
234
+ def _onedal_fit(self, X, y, queue=None):
235
+ if sklearn_check_version("1.2"):
236
+ self._validate_params()
237
+
238
+ if sklearn_check_version("1.0"):
239
+ X, y = validate_data(
240
+ self,
241
+ X,
242
+ y,
243
+ dtype=[np.float64, np.float32],
244
+ copy=self.copy_X,
245
+ multi_output=True,
246
+ ensure_2d=True,
247
+ )
248
+ else:
249
+ X = check_array(
250
+ X,
251
+ dtype=[np.float64, np.float32],
252
+ copy=self.copy_X,
253
+ )
254
+ y = check_array(
255
+ y,
256
+ dtype=[np.float64, np.float32],
257
+ copy=False,
258
+ ensure_2d=False,
259
+ )
260
+
261
+ n_samples, n_features = X.shape
262
+
263
+ is_underdetermined = n_samples < n_features + int(self.fit_intercept)
264
+ if is_underdetermined:
265
+ raise ValueError("Not enough samples to run oneDAL backend")
266
+
267
+ if self.batch_size is None:
268
+ self.batch_size_ = 5 * n_features
269
+ else:
270
+ self.batch_size_ = self.batch_size
271
+
272
+ self.n_samples_seen_ = 0
273
+ if hasattr(self, "_onedal_estimator"):
274
+ self._onedal_estimator._reset()
275
+
276
+ for batch in gen_batches(n_samples, self.batch_size_):
277
+ X_batch, y_batch = X[batch], y[batch]
278
+ self._onedal_partial_fit(X_batch, y_batch, check_input=False, queue=queue)
279
+
280
+ if sklearn_check_version("1.2"):
281
+ self._validate_params()
282
+
283
+ # finite check occurs on onedal side
284
+ self.n_features_in_ = n_features
285
+
286
+ if n_samples == 1:
287
+ warnings.warn(
288
+ "Only one sample available. You may want to reshape your data array"
289
+ )
290
+
291
+ self._onedal_finalize_fit(queue=queue)
292
+ return self
293
+
294
+ @property
295
+ def intercept_(self):
296
+ if hasattr(self, "_onedal_estimator"):
297
+ if self._need_to_finalize:
298
+ self._onedal_finalize_fit()
299
+
300
+ return self._onedal_estimator.intercept_
301
+ else:
302
+ raise AttributeError(
303
+ f"'{self.__class__.__name__}' object has no attribute 'intercept_'"
304
+ )
305
+
306
+ @intercept_.setter
307
+ def intercept_(self, value):
308
+ self.__dict__["intercept_"] = value
309
+ if hasattr(self, "_onedal_estimator"):
310
+ self._onedal_estimator.intercept_ = value
311
+ del self._onedal_estimator._onedal_model
312
+
313
+ @property
314
+ def coef_(self):
315
+ if hasattr(self, "_onedal_estimator"):
316
+ if self._need_to_finalize:
317
+ self._onedal_finalize_fit()
318
+
319
+ return self._onedal_estimator.coef_
320
+ else:
321
+ raise AttributeError(
322
+ f"'{self.__class__.__name__}' object has no attribute 'coef_'"
323
+ )
324
+
325
+ @coef_.setter
326
+ def coef_(self, value):
327
+ self.__dict__["coef_"] = value
328
+ if hasattr(self, "_onedal_estimator"):
329
+ self._onedal_estimator.coef_ = value
330
+ del self._onedal_estimator._onedal_model
331
+
332
+ def partial_fit(self, X, y, check_input=True):
333
+ """
334
+ Incremental fit linear model with X and y. All of X and y is
335
+ processed as a single batch.
336
+
337
+ Parameters
338
+ ----------
339
+ X : array-like of shape (n_samples, n_features)
340
+ Training data, where ``n_samples`` is the number of samples and
341
+ `n_features` is the number of features.
342
+
343
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
344
+ Target values, where ``n_samples`` is the number of samples and
345
+ ``n_targets`` is the number of targets.
346
+
347
+ Returns
348
+ -------
349
+ self : object
350
+ Returns the instance itself.
351
+ """
352
+
353
+ dispatch(
354
+ self,
355
+ "partial_fit",
356
+ {
357
+ "onedal": self.__class__._onedal_partial_fit,
358
+ "sklearn": None,
359
+ },
360
+ X,
361
+ y,
362
+ check_input=check_input,
363
+ )
364
+ return self
365
+
366
+ def fit(self, X, y):
367
+ """
368
+ Fit the model with X and y, using minibatches of size ``batch_size``.
369
+
370
+ Parameters
371
+ ----------
372
+ X : array-like of shape (n_samples, n_features)
373
+ Training data, where ``n_samples`` is the number of samples and
374
+ ``n_features`` is the number of features. It is necessary for
375
+ ``n_samples`` to be not less than ``n_features`` if ``fit_intercept``
376
+ is False and not less than ``n_features + 1`` if ``fit_intercept``
377
+ is True
378
+
379
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
380
+ Target values, where ``n_samples`` is the number of samples and
381
+ ``n_targets`` is the number of targets.
382
+
383
+ Returns
384
+ -------
385
+ self : object
386
+ Returns the instance itself.
387
+ """
388
+
389
+ dispatch(
390
+ self,
391
+ "fit",
392
+ {
393
+ "onedal": self.__class__._onedal_fit,
394
+ "sklearn": None,
395
+ },
396
+ X,
397
+ y,
398
+ )
399
+ return self
400
+
401
+ @wrap_output_data
402
+ def predict(self, X, y=None):
403
+ """
404
+ Predict using the linear model.
405
+
406
+ Parameters
407
+ ----------
408
+ X : array-like or sparse matrix, shape (n_samples, n_features)
409
+ Samples.
410
+
411
+ y : Ignored
412
+ Not used, present for API consistency by convention.
413
+
414
+ Returns
415
+ -------
416
+ C : array, shape (n_samples, n_targets)
417
+ Returns predicted values.
418
+ """
419
+ check_is_fitted(self)
420
+ return dispatch(
421
+ self,
422
+ "predict",
423
+ {
424
+ "onedal": self.__class__._onedal_predict,
425
+ "sklearn": None,
426
+ },
427
+ X,
428
+ )
429
+
430
+ @wrap_output_data
431
+ def score(self, X, y, sample_weight=None):
432
+ """Return the coefficient of determination of the prediction.
433
+
434
+ The coefficient of determination :math:`R^2` is defined as
435
+ :math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual
436
+ sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
437
+ is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
438
+ The best possible score is 1.0 and it can be negative (because the
439
+ model can be arbitrarily worse). A constant model that always predicts
440
+ the expected value of `y`, disregarding the input features, would get
441
+ a :math:`R^2` score of 0.0.
442
+
443
+ Parameters
444
+ ----------
445
+ X : array-like of shape (n_samples, n_features)
446
+ Test samples. For some estimators this may be a precomputed
447
+ kernel matrix or a list of generic objects instead with shape
448
+ ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
449
+ is the number of samples used in the fitting for the estimator.
450
+
451
+ y : array-like of shape (n_samples,) or (n_samples, n_outputs)
452
+ True values for `X`.
453
+
454
+ sample_weight : array-like of shape (n_samples,), default=None
455
+ Sample weights.
456
+
457
+ Returns
458
+ -------
459
+ score : float
460
+ :math:`R^2` of ``self.predict(X)`` w.r.t. `y`.
461
+
462
+ Notes
463
+ -----
464
+ The :math:`R^2` score used when calling ``score`` on a regressor uses
465
+ ``multioutput='uniform_average'`` from version 0.23 to keep consistent
466
+ with default value of :func:`~sklearn.metrics.r2_score`.
467
+ This influences the ``score`` method of all the multioutput
468
+ regressors (except for
469
+ :class:`~sklearn.multioutput.MultiOutputRegressor`).
470
+ """
471
+ check_is_fitted(self)
472
+ return dispatch(
473
+ self,
474
+ "score",
475
+ {
476
+ "onedal": self.__class__._onedal_score,
477
+ "sklearn": None,
478
+ },
479
+ X,
480
+ y,
481
+ sample_weight=sample_weight,
482
+ )