scikit-learn-intelex 2025.0.0__py39-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-39-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-39-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-39-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
sklearnex/svm/nusvc.py ADDED
@@ -0,0 +1,332 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.exceptions import NotFittedError
19
+ from sklearn.metrics import accuracy_score
20
+ from sklearn.svm import NuSVC as sklearn_NuSVC
21
+ from sklearn.utils.validation import _deprecate_positional_args
22
+
23
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
24
+ from daal4py.sklearn._utils import sklearn_check_version
25
+
26
+ from .._device_offload import dispatch, wrap_output_data
27
+ from ..utils._array_api import get_namespace
28
+ from ._common import BaseSVC
29
+
30
+ if sklearn_check_version("1.0"):
31
+ from sklearn.utils.metaestimators import available_if
32
+
33
+ from onedal.svm import NuSVC as onedal_NuSVC
34
+
35
+
36
+ @control_n_jobs(
37
+ decorated_methods=["fit", "predict", "_predict_proba", "decision_function", "score"]
38
+ )
39
+ class NuSVC(sklearn_NuSVC, BaseSVC):
40
+ __doc__ = sklearn_NuSVC.__doc__
41
+
42
+ if sklearn_check_version("1.2"):
43
+ _parameter_constraints: dict = {**sklearn_NuSVC._parameter_constraints}
44
+
45
+ @_deprecate_positional_args
46
+ def __init__(
47
+ self,
48
+ *,
49
+ nu=0.5,
50
+ kernel="rbf",
51
+ degree=3,
52
+ gamma="scale",
53
+ coef0=0.0,
54
+ shrinking=True,
55
+ probability=False,
56
+ tol=1e-3,
57
+ cache_size=200,
58
+ class_weight=None,
59
+ verbose=False,
60
+ max_iter=-1,
61
+ decision_function_shape="ovr",
62
+ break_ties=False,
63
+ random_state=None,
64
+ ):
65
+ super().__init__(
66
+ nu=nu,
67
+ kernel=kernel,
68
+ degree=degree,
69
+ gamma=gamma,
70
+ coef0=coef0,
71
+ shrinking=shrinking,
72
+ probability=probability,
73
+ tol=tol,
74
+ cache_size=cache_size,
75
+ class_weight=class_weight,
76
+ verbose=verbose,
77
+ max_iter=max_iter,
78
+ decision_function_shape=decision_function_shape,
79
+ break_ties=break_ties,
80
+ random_state=random_state,
81
+ )
82
+
83
+ def fit(self, X, y, sample_weight=None):
84
+ if sklearn_check_version("1.2"):
85
+ self._validate_params()
86
+ elif self.nu <= 0 or self.nu > 1:
87
+ # else if added to correct issues with
88
+ # sklearn tests:
89
+ # svm/tests/test_sparse.py::test_error
90
+ # svm/tests/test_svm.py::test_bad_input
91
+ # for sklearn versions < 1.2 (i.e. without
92
+ # validate_params parameter checking)
93
+ # Without this, a segmentation fault with
94
+ # Windows fatal exception: access violation
95
+ # occurs
96
+ raise ValueError("nu <= 0 or nu > 1")
97
+ if sklearn_check_version("1.0"):
98
+ self._check_feature_names(X, reset=True)
99
+ dispatch(
100
+ self,
101
+ "fit",
102
+ {
103
+ "onedal": self.__class__._onedal_fit,
104
+ "sklearn": sklearn_NuSVC.fit,
105
+ },
106
+ X,
107
+ y,
108
+ sample_weight=sample_weight,
109
+ )
110
+
111
+ return self
112
+
113
+ @wrap_output_data
114
+ def predict(self, X):
115
+ if sklearn_check_version("1.0"):
116
+ self._check_feature_names(X, reset=False)
117
+ return dispatch(
118
+ self,
119
+ "predict",
120
+ {
121
+ "onedal": self.__class__._onedal_predict,
122
+ "sklearn": sklearn_NuSVC.predict,
123
+ },
124
+ X,
125
+ )
126
+
127
+ @wrap_output_data
128
+ def score(self, X, y, sample_weight=None):
129
+ if sklearn_check_version("1.0"):
130
+ self._check_feature_names(X, reset=False)
131
+ return dispatch(
132
+ self,
133
+ "score",
134
+ {
135
+ "onedal": self.__class__._onedal_score,
136
+ "sklearn": sklearn_NuSVC.score,
137
+ },
138
+ X,
139
+ y,
140
+ sample_weight=sample_weight,
141
+ )
142
+
143
+ if sklearn_check_version("1.0"):
144
+
145
+ @available_if(sklearn_NuSVC._check_proba)
146
+ def predict_proba(self, X):
147
+ """
148
+ Compute probabilities of possible outcomes for samples in X.
149
+
150
+ The model need to have probability information computed at training
151
+ time: fit with attribute `probability` set to True.
152
+
153
+ Parameters
154
+ ----------
155
+ X : array-like of shape (n_samples, n_features)
156
+ For kernel="precomputed", the expected shape of X is
157
+ (n_samples_test, n_samples_train).
158
+
159
+ Returns
160
+ -------
161
+ T : ndarray of shape (n_samples, n_classes)
162
+ Returns the probability of the sample for each class in
163
+ the model. The columns correspond to the classes in sorted
164
+ order, as they appear in the attribute :term:`classes_`.
165
+
166
+ Notes
167
+ -----
168
+ The probability model is created using cross validation, so
169
+ the results can be slightly different than those obtained by
170
+ predict. Also, it will produce meaningless results on very small
171
+ datasets.
172
+ """
173
+ return self._predict_proba(X)
174
+
175
+ @available_if(sklearn_NuSVC._check_proba)
176
+ def predict_log_proba(self, X):
177
+ """Compute log probabilities of possible outcomes for samples in X.
178
+
179
+ The model need to have probability information computed at training
180
+ time: fit with attribute `probability` set to True.
181
+
182
+ Parameters
183
+ ----------
184
+ X : array-like of shape (n_samples, n_features) or \
185
+ (n_samples_test, n_samples_train)
186
+ For kernel="precomputed", the expected shape of X is
187
+ (n_samples_test, n_samples_train).
188
+
189
+ Returns
190
+ -------
191
+ T : ndarray of shape (n_samples, n_classes)
192
+ Returns the log-probabilities of the sample for each class in
193
+ the model. The columns correspond to the classes in sorted
194
+ order, as they appear in the attribute :term:`classes_`.
195
+
196
+ Notes
197
+ -----
198
+ The probability model is created using cross validation, so
199
+ the results can be slightly different than those obtained by
200
+ predict. Also, it will produce meaningless results on very small
201
+ datasets.
202
+ """
203
+ xp, _ = get_namespace(X)
204
+
205
+ return xp.log(self.predict_proba(X))
206
+
207
+ else:
208
+
209
+ @property
210
+ def predict_proba(self):
211
+ self._check_proba()
212
+ return self._predict_proba
213
+
214
+ def _predict_log_proba(self, X):
215
+ xp, _ = get_namespace(X)
216
+ return xp.log(self.predict_proba(X))
217
+
218
+ predict_proba.__doc__ = sklearn_NuSVC.predict_proba.__doc__
219
+
220
+ @wrap_output_data
221
+ def _predict_proba(self, X):
222
+ if sklearn_check_version("1.0"):
223
+ self._check_feature_names(X, reset=False)
224
+ sklearn_pred_proba = (
225
+ sklearn_NuSVC.predict_proba
226
+ if sklearn_check_version("1.0")
227
+ else sklearn_NuSVC._predict_proba
228
+ )
229
+
230
+ return dispatch(
231
+ self,
232
+ "predict_proba",
233
+ {
234
+ "onedal": self.__class__._onedal_predict_proba,
235
+ "sklearn": sklearn_pred_proba,
236
+ },
237
+ X,
238
+ )
239
+
240
+ @wrap_output_data
241
+ def decision_function(self, X):
242
+ if sklearn_check_version("1.0"):
243
+ self._check_feature_names(X, reset=False)
244
+ return dispatch(
245
+ self,
246
+ "decision_function",
247
+ {
248
+ "onedal": self.__class__._onedal_decision_function,
249
+ "sklearn": sklearn_NuSVC.decision_function,
250
+ },
251
+ X,
252
+ )
253
+
254
+ decision_function.__doc__ = sklearn_NuSVC.decision_function.__doc__
255
+
256
+ def _get_sample_weight(self, X, y, sample_weight=None):
257
+ sample_weight = super()._get_sample_weight(X, y, sample_weight)
258
+ if sample_weight is None:
259
+ return sample_weight
260
+
261
+ weight_per_class = [
262
+ np.sum(sample_weight[y == class_label]) for class_label in np.unique(y)
263
+ ]
264
+
265
+ for i in range(len(weight_per_class)):
266
+ for j in range(i + 1, len(weight_per_class)):
267
+ if self.nu * (weight_per_class[i] + weight_per_class[j]) / 2 > min(
268
+ weight_per_class[i], weight_per_class[j]
269
+ ):
270
+ raise ValueError("specified nu is infeasible")
271
+
272
+ return sample_weight
273
+
274
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
275
+ X, _, weights = self._onedal_fit_checks(X, y, sample_weight)
276
+ onedal_params = {
277
+ "nu": self.nu,
278
+ "kernel": self.kernel,
279
+ "degree": self.degree,
280
+ "gamma": self._compute_gamma_sigma(X),
281
+ "coef0": self.coef0,
282
+ "tol": self.tol,
283
+ "shrinking": self.shrinking,
284
+ "cache_size": self.cache_size,
285
+ "max_iter": self.max_iter,
286
+ "class_weight": self.class_weight,
287
+ "break_ties": self.break_ties,
288
+ "decision_function_shape": self.decision_function_shape,
289
+ }
290
+
291
+ self._onedal_estimator = onedal_NuSVC(**onedal_params)
292
+ self._onedal_estimator.fit(X, y, weights, queue=queue)
293
+
294
+ if self.probability:
295
+ self._fit_proba(
296
+ X,
297
+ y,
298
+ sample_weight=sample_weight,
299
+ queue=queue,
300
+ )
301
+
302
+ self._save_attributes()
303
+
304
+ def _onedal_predict(self, X, queue=None):
305
+ return self._onedal_estimator.predict(X, queue=queue)
306
+
307
+ def _onedal_predict_proba(self, X, queue=None):
308
+ if getattr(self, "clf_prob", None) is None:
309
+ raise NotFittedError(
310
+ "predict_proba is not available when fitted with probability=False"
311
+ )
312
+ from .._config import config_context, get_config
313
+
314
+ # We use stock metaestimators below, so the only way
315
+ # to pass a queue is using config_context.
316
+ cfg = get_config()
317
+ cfg["target_offload"] = queue
318
+ with config_context(**cfg):
319
+ return self.clf_prob.predict_proba(X)
320
+
321
+ def _onedal_decision_function(self, X, queue=None):
322
+ return self._onedal_estimator.decision_function(X, queue=queue)
323
+
324
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
325
+ return accuracy_score(
326
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
327
+ )
328
+
329
+ fit.__doc__ = sklearn_NuSVC.fit.__doc__
330
+ predict.__doc__ = sklearn_NuSVC.predict.__doc__
331
+ decision_function.__doc__ = sklearn_NuSVC.decision_function.__doc__
332
+ score.__doc__ = sklearn_NuSVC.score.__doc__
sklearnex/svm/nusvr.py ADDED
@@ -0,0 +1,148 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from sklearn.svm import NuSVR as sklearn_NuSVR
18
+ from sklearn.utils.validation import _deprecate_positional_args
19
+
20
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
21
+ from daal4py.sklearn._utils import sklearn_check_version
22
+ from onedal.svm import NuSVR as onedal_NuSVR
23
+
24
+ from .._device_offload import dispatch, wrap_output_data
25
+ from ._common import BaseSVR
26
+
27
+
28
+ @control_n_jobs(decorated_methods=["fit", "predict"])
29
+ class NuSVR(sklearn_NuSVR, BaseSVR):
30
+ __doc__ = sklearn_NuSVR.__doc__
31
+
32
+ if sklearn_check_version("1.2"):
33
+ _parameter_constraints: dict = {**sklearn_NuSVR._parameter_constraints}
34
+
35
+ @_deprecate_positional_args
36
+ def __init__(
37
+ self,
38
+ *,
39
+ nu=0.5,
40
+ C=1.0,
41
+ kernel="rbf",
42
+ degree=3,
43
+ gamma="scale",
44
+ coef0=0.0,
45
+ shrinking=True,
46
+ tol=1e-3,
47
+ cache_size=200,
48
+ verbose=False,
49
+ max_iter=-1,
50
+ ):
51
+ super().__init__(
52
+ kernel=kernel,
53
+ degree=degree,
54
+ gamma=gamma,
55
+ coef0=coef0,
56
+ tol=tol,
57
+ C=C,
58
+ nu=nu,
59
+ shrinking=shrinking,
60
+ cache_size=cache_size,
61
+ verbose=verbose,
62
+ max_iter=max_iter,
63
+ )
64
+
65
+ def fit(self, X, y, sample_weight=None):
66
+ if sklearn_check_version("1.2"):
67
+ self._validate_params()
68
+ elif self.nu <= 0 or self.nu > 1:
69
+ # else if added to correct issues with
70
+ # sklearn tests:
71
+ # svm/tests/test_sparse.py::test_error
72
+ # svm/tests/test_svm.py::test_bad_input
73
+ # for sklearn versions < 1.2 (i.e. without
74
+ # validate_params parameter checking)
75
+ # Without this, a segmentation fault with
76
+ # Windows fatal exception: access violation
77
+ # occurs
78
+ raise ValueError("nu <= 0 or nu > 1")
79
+ if sklearn_check_version("1.0"):
80
+ self._check_feature_names(X, reset=True)
81
+ dispatch(
82
+ self,
83
+ "fit",
84
+ {
85
+ "onedal": self.__class__._onedal_fit,
86
+ "sklearn": sklearn_NuSVR.fit,
87
+ },
88
+ X,
89
+ y,
90
+ sample_weight=sample_weight,
91
+ )
92
+ return self
93
+
94
+ @wrap_output_data
95
+ def predict(self, X):
96
+ if sklearn_check_version("1.0"):
97
+ self._check_feature_names(X, reset=False)
98
+ return dispatch(
99
+ self,
100
+ "predict",
101
+ {
102
+ "onedal": self.__class__._onedal_predict,
103
+ "sklearn": sklearn_NuSVR.predict,
104
+ },
105
+ X,
106
+ )
107
+
108
+ @wrap_output_data
109
+ def score(self, X, y, sample_weight=None):
110
+ if sklearn_check_version("1.0"):
111
+ self._check_feature_names(X, reset=False)
112
+ return dispatch(
113
+ self,
114
+ "score",
115
+ {
116
+ "onedal": self.__class__._onedal_score,
117
+ "sklearn": sklearn_NuSVR.score,
118
+ },
119
+ X,
120
+ y,
121
+ sample_weight=sample_weight,
122
+ )
123
+
124
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
125
+ X, _, sample_weight = self._onedal_fit_checks(X, y, sample_weight)
126
+ onedal_params = {
127
+ "C": self.C,
128
+ "nu": self.nu,
129
+ "kernel": self.kernel,
130
+ "degree": self.degree,
131
+ "gamma": self._compute_gamma_sigma(X),
132
+ "coef0": self.coef0,
133
+ "tol": self.tol,
134
+ "shrinking": self.shrinking,
135
+ "cache_size": self.cache_size,
136
+ "max_iter": self.max_iter,
137
+ }
138
+
139
+ self._onedal_estimator = onedal_NuSVR(**onedal_params)
140
+ self._onedal_estimator.fit(X, y, sample_weight, queue=queue)
141
+ self._save_attributes()
142
+
143
+ def _onedal_predict(self, X, queue=None):
144
+ return self._onedal_estimator.predict(X, queue=queue)
145
+
146
+ fit.__doc__ = sklearn_NuSVR.fit.__doc__
147
+ predict.__doc__ = sklearn_NuSVR.predict.__doc__
148
+ score.__doc__ = sklearn_NuSVR.score.__doc__