scikit-learn-intelex 2025.0.0__py39-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-39-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-39-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-39-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,184 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests._utils_spmd import (
26
+ _generate_statistic_data,
27
+ _get_local_tensor,
28
+ _mpi_libs_and_gpu_available,
29
+ )
30
+
31
+
32
+ @pytest.mark.skipif(
33
+ not _mpi_libs_and_gpu_available,
34
+ reason="GPU device and MPI libs required for test",
35
+ )
36
+ @pytest.mark.parametrize(
37
+ "dataframe,queue",
38
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
39
+ )
40
+ @pytest.mark.parametrize("assume_centered", [True, False])
41
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
42
+ @pytest.mark.mpi
43
+ def test_incremental_covariance_fit_spmd_gold(dataframe, queue, assume_centered, dtype):
44
+ # Import spmd and batch algo
45
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
46
+ from sklearnex.spmd.covariance import (
47
+ IncrementalEmpiricalCovariance as IncrementalEmpiricalCovariance_SPMD,
48
+ )
49
+
50
+ # Create gold data and process into dpt
51
+ data = np.array(
52
+ [
53
+ [0.0, 0.0, 0.0],
54
+ [0.0, 1.0, 2.0],
55
+ [0.0, 2.0, 4.0],
56
+ [0.0, 3.0, 8.0],
57
+ [0.0, 4.0, 16.0],
58
+ [0.0, 5.0, 32.0],
59
+ [0.0, 6.0, 64.0],
60
+ [0.0, 7.0, 128.0],
61
+ ],
62
+ dtype=dtype,
63
+ )
64
+
65
+ dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)
66
+
67
+ local_dpt_data = _convert_to_dataframe(
68
+ _get_local_tensor(data), sycl_queue=queue, target_df=dataframe
69
+ )
70
+
71
+ # ensure results of batch algo match spmd
72
+ spmd_result = IncrementalEmpiricalCovariance_SPMD(
73
+ assume_centered=assume_centered
74
+ ).fit(local_dpt_data)
75
+ non_spmd_result = IncrementalEmpiricalCovariance(assume_centered=assume_centered).fit(
76
+ dpt_data
77
+ )
78
+
79
+ assert_allclose(spmd_result.covariance_, non_spmd_result.covariance_)
80
+ assert_allclose(spmd_result.location_, non_spmd_result.location_)
81
+
82
+
83
+ @pytest.mark.skipif(
84
+ not _mpi_libs_and_gpu_available,
85
+ reason="GPU device and MPI libs required for test",
86
+ )
87
+ @pytest.mark.parametrize(
88
+ "dataframe,queue",
89
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
90
+ )
91
+ @pytest.mark.parametrize("num_blocks", [1, 2])
92
+ @pytest.mark.parametrize("assume_centered", [True, False])
93
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
+ @pytest.mark.mpi
95
+ def test_incremental_covariance_partial_fit_spmd_gold(
96
+ dataframe, queue, num_blocks, assume_centered, dtype
97
+ ):
98
+ # Import spmd and batch algo
99
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
100
+ from sklearnex.spmd.covariance import (
101
+ IncrementalEmpiricalCovariance as IncrementalEmpiricalCovariance_SPMD,
102
+ )
103
+
104
+ # Create gold data and process into dpt
105
+ data = np.array(
106
+ [
107
+ [0.0, 0.0, 0.0],
108
+ [0.0, 1.0, 2.0],
109
+ [0.0, 2.0, 4.0],
110
+ [0.0, 3.0, 8.0],
111
+ [0.0, 4.0, 16.0],
112
+ [0.0, 5.0, 32.0],
113
+ [0.0, 6.0, 64.0],
114
+ [0.0, 7.0, 128.0],
115
+ ],
116
+ dtype=dtype,
117
+ )
118
+
119
+ dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)
120
+
121
+ local_data = _get_local_tensor(data)
122
+ split_local_data = np.array_split(local_data, num_blocks)
123
+
124
+ inccov_spmd = IncrementalEmpiricalCovariance_SPMD(assume_centered=assume_centered)
125
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
126
+
127
+ for i in range(num_blocks):
128
+ local_dpt_data = _convert_to_dataframe(
129
+ split_local_data[i], sycl_queue=queue, target_df=dataframe
130
+ )
131
+ inccov_spmd.partial_fit(local_dpt_data)
132
+
133
+ inccov.fit(dpt_data)
134
+
135
+ assert_allclose(inccov_spmd.covariance_, inccov.covariance_)
136
+ assert_allclose(inccov_spmd.location_, inccov.location_)
137
+
138
+
139
+ @pytest.mark.skipif(
140
+ not _mpi_libs_and_gpu_available,
141
+ reason="GPU device and MPI libs required for test",
142
+ )
143
+ @pytest.mark.parametrize("n_samples", [100, 10000])
144
+ @pytest.mark.parametrize("n_features", [10, 100])
145
+ @pytest.mark.parametrize("num_blocks", [1, 2])
146
+ @pytest.mark.parametrize("assume_centered", [True, False])
147
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
148
+ @pytest.mark.parametrize(
149
+ "dataframe,queue",
150
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
151
+ )
152
+ @pytest.mark.mpi
153
+ def test_incremental_covariance_partial_fit_spmd_synthetic(
154
+ n_samples, n_features, num_blocks, assume_centered, dataframe, queue, dtype
155
+ ):
156
+ # Import spmd and batch algo
157
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
158
+ from sklearnex.spmd.covariance import (
159
+ IncrementalEmpiricalCovariance as IncrementalEmpiricalCovariance_SPMD,
160
+ )
161
+
162
+ # Generate data and process into dpt
163
+ data = _generate_statistic_data(n_samples, n_features, dtype=dtype)
164
+
165
+ dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)
166
+
167
+ local_data = _get_local_tensor(data)
168
+ split_local_data = np.array_split(local_data, num_blocks)
169
+
170
+ inccov_spmd = IncrementalEmpiricalCovariance_SPMD(assume_centered=assume_centered)
171
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
172
+
173
+ for i in range(num_blocks):
174
+ local_dpt_data = _convert_to_dataframe(
175
+ split_local_data[i], sycl_queue=queue, target_df=dataframe
176
+ )
177
+ inccov_spmd.partial_fit(local_dpt_data)
178
+
179
+ inccov.fit(dpt_data)
180
+
181
+ tol = 1e-7
182
+
183
+ assert_allclose(inccov_spmd.covariance_, inccov.covariance_, atol=tol)
184
+ assert_allclose(inccov_spmd.location_, inccov.location_, atol=tol)
@@ -0,0 +1,20 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .incremental_pca import IncrementalPCA
18
+ from .pca import PCA
19
+
20
+ __all__ = ["IncrementalPCA", "PCA"]
@@ -0,0 +1,30 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.decomposition import IncrementalPCA as onedalSPMD_IncrementalPCA
18
+
19
+ from ...preview.decomposition import IncrementalPCA as base_IncrementalPCA
20
+
21
+
22
+ class IncrementalPCA(base_IncrementalPCA):
23
+ """
24
+ Distributed incremental estimator for PCA based on sklearnex implementation.
25
+ Allows for distributed PCA computation if data is split into batches.
26
+
27
+ API is the same as for `sklearnex.decomposition.IncrementalPCA`
28
+ """
29
+
30
+ _onedal_incremental_pca = staticmethod(onedalSPMD_IncrementalPCA)
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.decomposition import PCA
18
+
19
+ # TODO:
20
+ # Currently it uses `onedal` module interface.
21
+ # Add sklearnex dispatching.
@@ -0,0 +1,269 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.tests._utils_spmd import (
27
+ _generate_statistic_data,
28
+ _get_local_tensor,
29
+ _mpi_libs_and_gpu_available,
30
+ )
31
+
32
+ attributes_to_compare = [
33
+ "n_components_",
34
+ "components_",
35
+ "singular_values_",
36
+ "mean_",
37
+ "var_",
38
+ "explained_variance_",
39
+ "explained_variance_ratio_",
40
+ ]
41
+
42
+
43
+ @pytest.mark.skipif(
44
+ not _mpi_libs_and_gpu_available,
45
+ reason="GPU device and MPI libs required for test",
46
+ )
47
+ @pytest.mark.parametrize(
48
+ "dataframe,queue",
49
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
50
+ )
51
+ @pytest.mark.parametrize("whiten", [True, False])
52
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
53
+ @pytest.mark.mpi
54
+ def test_incremental_pca_fit_spmd_gold(dataframe, queue, whiten, dtype):
55
+ # Import spmd and non-SPMD algo
56
+ from sklearnex.preview.decomposition import IncrementalPCA
57
+ from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
58
+
59
+ # Create gold data and process into dpt
60
+ X = np.array(
61
+ [
62
+ [0.0, 0.0],
63
+ [1.0, 2.0],
64
+ [2.0, 4.0],
65
+ [3.0, 8.0],
66
+ [4.0, 16.0],
67
+ [5.0, 32.0],
68
+ [6.0, 64.0],
69
+ [7.0, 128.0],
70
+ ],
71
+ dtype=dtype,
72
+ )
73
+ dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
74
+ local_X = _get_local_tensor(X)
75
+ local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
76
+
77
+ incpca_spmd = IncrementalPCA_SPMD(whiten=whiten)
78
+ incpca = IncrementalPCA(whiten=whiten)
79
+
80
+ incpca_spmd.fit(local_dpt_X)
81
+ incpca.fit(dpt_X)
82
+
83
+ for attribute in attributes_to_compare:
84
+ assert_allclose(
85
+ getattr(incpca, attribute),
86
+ getattr(incpca_spmd, attribute),
87
+ err_msg=f"{attribute} is incorrect",
88
+ )
89
+
90
+
91
+ @pytest.mark.skipif(
92
+ not _mpi_libs_and_gpu_available,
93
+ reason="GPU device and MPI libs required for test",
94
+ )
95
+ @pytest.mark.parametrize(
96
+ "dataframe,queue",
97
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
98
+ )
99
+ @pytest.mark.parametrize("whiten", [True, False])
100
+ @pytest.mark.parametrize("num_blocks", [1, 2])
101
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
102
+ @pytest.mark.mpi
103
+ def test_incremental_pca_partial_fit_spmd_gold(
104
+ dataframe, queue, whiten, num_blocks, dtype
105
+ ):
106
+ # Import spmd and non-SPMD algo
107
+ from sklearnex.preview.decomposition import IncrementalPCA
108
+ from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
109
+
110
+ # Create gold data and process into dpt
111
+ X = np.array(
112
+ [
113
+ [0.0, 0.0],
114
+ [1.0, 2.0],
115
+ [2.0, 4.0],
116
+ [3.0, 8.0],
117
+ [4.0, 16.0],
118
+ [5.0, 32.0],
119
+ [6.0, 64.0],
120
+ [7.0, 128.0],
121
+ [8.0, 0.0],
122
+ [9.0, 2.0],
123
+ [10.0, 4.0],
124
+ [11.0, 8.0],
125
+ [12.0, 16.0],
126
+ [13.0, 32.0],
127
+ [14.0, 64.0],
128
+ [15.0, 128.0],
129
+ ],
130
+ dtype=dtype,
131
+ )
132
+ X_split = np.array_split(X, num_blocks)
133
+ local_X = _get_local_tensor(X)
134
+ split_local_X = np.array_split(local_X, num_blocks)
135
+
136
+ incpca_spmd = IncrementalPCA_SPMD(whiten=whiten)
137
+ incpca = IncrementalPCA(whiten=whiten)
138
+
139
+ for i in range(num_blocks):
140
+ local_dpt_X = _convert_to_dataframe(
141
+ split_local_X[i], sycl_queue=queue, target_df=dataframe
142
+ )
143
+ dpt_X = _convert_to_dataframe(X_split[i], sycl_queue=queue, target_df=dataframe)
144
+ incpca.partial_fit(dpt_X)
145
+ incpca_spmd.partial_fit(local_dpt_X)
146
+
147
+ for attribute in attributes_to_compare:
148
+ assert_allclose(
149
+ getattr(incpca, attribute),
150
+ getattr(incpca_spmd, attribute),
151
+ err_msg=f"{attribute} is incorrect",
152
+ )
153
+
154
+
155
+ @pytest.mark.skipif(
156
+ not _mpi_libs_and_gpu_available,
157
+ reason="GPU device and MPI libs required for test",
158
+ )
159
+ @pytest.mark.parametrize(
160
+ "dataframe,queue",
161
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
162
+ )
163
+ @pytest.mark.parametrize("whiten", [True, False])
164
+ @pytest.mark.parametrize("n_components", [None, 2, 5])
165
+ @pytest.mark.parametrize("num_samples", [100, 200])
166
+ @pytest.mark.parametrize("num_features", [10, 20])
167
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
168
+ @pytest.mark.mpi
169
+ def test_incremental_pca_fit_spmd_random(
170
+ dataframe, queue, whiten, n_components, num_samples, num_features, dtype
171
+ ):
172
+ # Import spmd and non-SPMD algo
173
+ from sklearnex.preview.decomposition import IncrementalPCA
174
+ from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
175
+
176
+ # Increased test dataset size requires a higher tol setting in comparison to other tests
177
+ tol = 7e-5 if dtype == np.float32 else 1e-7
178
+
179
+ # Create data and process into dpt
180
+ X = _generate_statistic_data(num_samples, num_features, dtype)
181
+ dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
182
+ X_test = _generate_statistic_data(num_samples // 5, num_features, dtype)
183
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
184
+ local_X = _get_local_tensor(X)
185
+ local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
186
+
187
+ incpca_spmd = IncrementalPCA_SPMD(n_components=n_components, whiten=whiten)
188
+ incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
189
+
190
+ incpca_spmd.fit(local_dpt_X)
191
+ incpca.fit(dpt_X)
192
+
193
+ for attribute in attributes_to_compare:
194
+ assert_allclose(
195
+ getattr(incpca, attribute),
196
+ getattr(incpca_spmd, attribute),
197
+ atol=tol,
198
+ err_msg=f"{attribute} is incorrect",
199
+ )
200
+
201
+ y_trans_spmd = incpca_spmd.transform(dpt_X_test)
202
+ y_trans = incpca.transform(dpt_X_test)
203
+
204
+ assert_allclose(_as_numpy(y_trans_spmd), _as_numpy(y_trans), atol=tol)
205
+
206
+
207
+ @pytest.mark.skipif(
208
+ not _mpi_libs_and_gpu_available,
209
+ reason="GPU device and MPI libs required for test",
210
+ )
211
+ @pytest.mark.parametrize(
212
+ "dataframe,queue",
213
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
214
+ )
215
+ @pytest.mark.parametrize("whiten", [True, False])
216
+ @pytest.mark.parametrize("n_components", [None, 2, 5])
217
+ @pytest.mark.parametrize("num_blocks", [1, 2])
218
+ @pytest.mark.parametrize("num_samples", [200, 400])
219
+ @pytest.mark.parametrize("num_features", [10, 20])
220
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
221
+ @pytest.mark.mpi
222
+ def test_incremental_pca_partial_fit_spmd_random(
223
+ dataframe,
224
+ queue,
225
+ whiten,
226
+ n_components,
227
+ num_blocks,
228
+ num_samples,
229
+ num_features,
230
+ dtype,
231
+ ):
232
+ # Import spmd and non-SPMD algo
233
+ from sklearnex.preview.decomposition import IncrementalPCA
234
+ from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
235
+
236
+ tol = 3e-4 if dtype == np.float32 else 1e-7
237
+
238
+ # Create data and process into dpt
239
+ X = _generate_statistic_data(num_samples, num_features, dtype)
240
+ dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
241
+ X_test = _generate_statistic_data(num_samples // 5, num_features, dtype)
242
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
243
+ local_X = _get_local_tensor(X)
244
+ X_split = np.array_split(X, num_blocks)
245
+ split_local_X = np.array_split(local_X, num_blocks)
246
+
247
+ incpca_spmd = IncrementalPCA_SPMD(n_components=n_components, whiten=whiten)
248
+ incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
249
+
250
+ for i in range(num_blocks):
251
+ local_dpt_X = _convert_to_dataframe(
252
+ split_local_X[i], sycl_queue=queue, target_df=dataframe
253
+ )
254
+ dpt_X = _convert_to_dataframe(X_split[i], sycl_queue=queue, target_df=dataframe)
255
+ incpca_spmd.partial_fit(local_dpt_X)
256
+ incpca.partial_fit(dpt_X)
257
+
258
+ for attribute in attributes_to_compare:
259
+ assert_allclose(
260
+ getattr(incpca, attribute),
261
+ getattr(incpca_spmd, attribute),
262
+ atol=tol,
263
+ err_msg=f"{attribute} is incorrect",
264
+ )
265
+
266
+ y_trans_spmd = incpca_spmd.transform(dpt_X_test)
267
+ y_trans = incpca.transform(dpt_X_test)
268
+
269
+ assert_allclose(_as_numpy(y_trans_spmd), _as_numpy(y_trans), atol=tol)
@@ -0,0 +1,128 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests._utils_spmd import (
26
+ _generate_statistic_data,
27
+ _get_local_tensor,
28
+ _mpi_libs_and_gpu_available,
29
+ )
30
+
31
+
32
+ @pytest.mark.skipif(
33
+ not _mpi_libs_and_gpu_available,
34
+ reason="GPU device and MPI libs required for test",
35
+ )
36
+ @pytest.mark.parametrize(
37
+ "dataframe,queue",
38
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
39
+ )
40
+ @pytest.mark.mpi
41
+ def test_pca_spmd_gold(dataframe, queue):
42
+ # Import spmd and batch algo
43
+ from sklearnex.decomposition import PCA as PCA_Batch
44
+ from sklearnex.spmd.decomposition import PCA as PCA_SPMD
45
+
46
+ # Create gold data and convert to dataframe
47
+ data = np.array(
48
+ [
49
+ [0.0, 0.0, 0.0],
50
+ [0.0, 1.0, 2.0],
51
+ [0.0, 2.0, 4.0],
52
+ [0.0, 3.0, 8.0],
53
+ [0.0, 4.0, 16.0],
54
+ [0.0, 5.0, 32.0],
55
+ [0.0, 6.0, 64.0],
56
+ [0.0, 7.0, 128.0],
57
+ ]
58
+ )
59
+
60
+ local_dpt_data = _convert_to_dataframe(
61
+ _get_local_tensor(data), sycl_queue=queue, target_df=dataframe
62
+ )
63
+
64
+ # Ensure results of batch algo match spmd
65
+ spmd_result = PCA_SPMD(n_components=2).fit(local_dpt_data)
66
+ batch_result = PCA_Batch(n_components=2).fit(data)
67
+
68
+ assert_allclose(spmd_result.mean_, batch_result.mean_)
69
+ assert_allclose(spmd_result.components_, batch_result.components_)
70
+ assert_allclose(spmd_result.singular_values_, batch_result.singular_values_)
71
+ assert_allclose(
72
+ spmd_result.noise_variance_,
73
+ batch_result.noise_variance_,
74
+ atol=1e-7,
75
+ )
76
+ assert_allclose(
77
+ spmd_result.explained_variance_ratio_, batch_result.explained_variance_ratio_
78
+ )
79
+
80
+
81
+ @pytest.mark.skipif(
82
+ not _mpi_libs_and_gpu_available,
83
+ reason="GPU device and MPI libs required for test",
84
+ )
85
+ @pytest.mark.parametrize("n_samples", [100, 10000])
86
+ @pytest.mark.parametrize("n_features", [10, 100])
87
+ @pytest.mark.parametrize("n_components", [0.5, 3, "mle", None])
88
+ @pytest.mark.parametrize("whiten", [True, False])
89
+ @pytest.mark.parametrize(
90
+ "dataframe,queue",
91
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
92
+ )
93
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
+ @pytest.mark.mpi
95
+ def test_pca_spmd_synthetic(
96
+ n_samples, n_features, n_components, whiten, dataframe, queue, dtype
97
+ ):
98
+ # TODO: Resolve issues with batch fallback and lack of support for n_rows_rank < n_cols
99
+ if n_components == "mle" or n_components == 3:
100
+ pytest.skip("Avoid error in case of batch fallback to sklearn")
101
+ if n_samples <= n_features:
102
+ pytest.skip("Avoid n_samples < n_features error from spmd data split")
103
+
104
+ # Import spmd and batch algo
105
+ from sklearnex.decomposition import PCA as PCA_Batch
106
+ from sklearnex.spmd.decomposition import PCA as PCA_SPMD
107
+
108
+ # Generate data and convert to dataframe
109
+ data = _generate_statistic_data(n_samples, n_features, dtype=dtype)
110
+
111
+ local_dpt_data = _convert_to_dataframe(
112
+ _get_local_tensor(data), sycl_queue=queue, target_df=dataframe
113
+ )
114
+
115
+ # Ensure results of batch algo match spmd
116
+ spmd_result = PCA_SPMD(n_components=n_components, whiten=whiten).fit(local_dpt_data)
117
+ batch_result = PCA_Batch(n_components=n_components, whiten=whiten).fit(data)
118
+
119
+ tol = 1e-3 if dtype == np.float32 else 1e-7
120
+ assert_allclose(spmd_result.mean_, batch_result.mean_, atol=tol)
121
+ assert_allclose(spmd_result.components_, batch_result.components_, atol=tol, rtol=tol)
122
+ assert_allclose(spmd_result.singular_values_, batch_result.singular_values_, atol=tol)
123
+ assert_allclose(spmd_result.noise_variance_, batch_result.noise_variance_, atol=tol)
124
+ assert_allclose(
125
+ spmd_result.explained_variance_ratio_,
126
+ batch_result.explained_variance_ratio_,
127
+ atol=tol,
128
+ )
@@ -0,0 +1,19 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .forest import RandomForestClassifier, RandomForestRegressor
18
+
19
+ __all__ = ["RandomForestClassifier", "RandomForestRegressor"]