scikit-learn-intelex 2025.0.0__py39-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-39-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-39-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-39-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,403 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+ from abc import ABC
19
+
20
+ from daal4py.sklearn._utils import daal_check_version
21
+ from daal4py.sklearn.linear_model.logistic_path import (
22
+ LogisticRegression as LogisticRegression_daal4py,
23
+ )
24
+
25
+ if daal_check_version((2024, "P", 1)):
26
+ import numpy as np
27
+ from scipy.sparse import issparse
28
+ from sklearn.linear_model import LogisticRegression as sklearn_LogisticRegression
29
+ from sklearn.metrics import accuracy_score
30
+ from sklearn.utils.multiclass import type_of_target
31
+ from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
32
+
33
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
34
+ from daal4py.sklearn._utils import sklearn_check_version
35
+ from daal4py.sklearn.linear_model.logistic_path import daal4py_fit, daal4py_predict
36
+ from onedal.linear_model import LogisticRegression as onedal_LogisticRegression
37
+ from onedal.utils import _num_samples
38
+
39
+ from .._device_offload import dispatch, wrap_output_data
40
+ from .._utils import PatchingConditionsChain, get_patch_message
41
+
42
+ _sparsity_enabled = daal_check_version((2024, "P", 700))
43
+
44
+ class BaseLogisticRegression(ABC):
45
+ def _save_attributes(self):
46
+ assert hasattr(self, "_onedal_estimator")
47
+ self.classes_ = self._onedal_estimator.classes_
48
+ self.coef_ = self._onedal_estimator.coef_
49
+ self.intercept_ = self._onedal_estimator.intercept_
50
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
51
+ self.n_iter_ = self._onedal_estimator.n_iter_
52
+
53
+ @control_n_jobs(
54
+ decorated_methods=[
55
+ "fit",
56
+ "predict",
57
+ "predict_proba",
58
+ "predict_log_proba",
59
+ "score",
60
+ ]
61
+ )
62
+ class LogisticRegression(sklearn_LogisticRegression, BaseLogisticRegression):
63
+ __doc__ = sklearn_LogisticRegression.__doc__
64
+ intercept_, coef_, n_iter_ = None, None, None
65
+
66
+ if sklearn_check_version("1.2"):
67
+ _parameter_constraints: dict = {
68
+ **sklearn_LogisticRegression._parameter_constraints
69
+ }
70
+
71
+ def __init__(
72
+ self,
73
+ penalty="l2",
74
+ *,
75
+ dual=False,
76
+ tol=1e-4,
77
+ C=1.0,
78
+ fit_intercept=True,
79
+ intercept_scaling=1,
80
+ class_weight=None,
81
+ random_state=None,
82
+ solver="lbfgs",
83
+ max_iter=100,
84
+ multi_class="deprecated" if sklearn_check_version("1.5") else "auto",
85
+ verbose=0,
86
+ warm_start=False,
87
+ n_jobs=None,
88
+ l1_ratio=None,
89
+ ):
90
+ super().__init__(
91
+ penalty=penalty,
92
+ dual=dual,
93
+ tol=tol,
94
+ C=C,
95
+ fit_intercept=fit_intercept,
96
+ intercept_scaling=intercept_scaling,
97
+ class_weight=class_weight,
98
+ random_state=random_state,
99
+ solver=solver,
100
+ max_iter=max_iter,
101
+ multi_class=multi_class,
102
+ verbose=verbose,
103
+ warm_start=warm_start,
104
+ n_jobs=n_jobs,
105
+ l1_ratio=l1_ratio,
106
+ )
107
+
108
+ _onedal_cpu_fit = daal4py_fit
109
+
110
+ def fit(self, X, y, sample_weight=None):
111
+ if sklearn_check_version("1.2"):
112
+ self._validate_params()
113
+ dispatch(
114
+ self,
115
+ "fit",
116
+ {
117
+ "onedal": self.__class__._onedal_fit,
118
+ "sklearn": sklearn_LogisticRegression.fit,
119
+ },
120
+ X,
121
+ y,
122
+ sample_weight,
123
+ )
124
+ return self
125
+
126
+ @wrap_output_data
127
+ def predict(self, X):
128
+ return dispatch(
129
+ self,
130
+ "predict",
131
+ {
132
+ "onedal": self.__class__._onedal_predict,
133
+ "sklearn": sklearn_LogisticRegression.predict,
134
+ },
135
+ X,
136
+ )
137
+
138
+ @wrap_output_data
139
+ def predict_proba(self, X):
140
+ return dispatch(
141
+ self,
142
+ "predict_proba",
143
+ {
144
+ "onedal": self.__class__._onedal_predict_proba,
145
+ "sklearn": sklearn_LogisticRegression.predict_proba,
146
+ },
147
+ X,
148
+ )
149
+
150
+ @wrap_output_data
151
+ def predict_log_proba(self, X):
152
+ return dispatch(
153
+ self,
154
+ "predict_log_proba",
155
+ {
156
+ "onedal": self.__class__._onedal_predict_log_proba,
157
+ "sklearn": sklearn_LogisticRegression.predict_log_proba,
158
+ },
159
+ X,
160
+ )
161
+
162
+ @wrap_output_data
163
+ def score(self, X, y, sample_weight=None):
164
+ return dispatch(
165
+ self,
166
+ "score",
167
+ {
168
+ "onedal": self.__class__._onedal_score,
169
+ "sklearn": sklearn_LogisticRegression.score,
170
+ },
171
+ X,
172
+ y,
173
+ sample_weight=sample_weight,
174
+ )
175
+
176
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
177
+ return accuracy_score(
178
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
179
+ )
180
+
181
+ def _onedal_gpu_fit_supported(self, method_name, *data):
182
+ assert method_name == "fit"
183
+ assert len(data) == 3
184
+ X, y, sample_weight = data
185
+
186
+ class_name = self.__class__.__name__
187
+ patching_status = PatchingConditionsChain(
188
+ f"sklearn.linear_model.{class_name}.fit"
189
+ )
190
+
191
+ target_type = (
192
+ type_of_target(y, input_name="y")
193
+ if sklearn_check_version("1.1")
194
+ else type_of_target(y)
195
+ )
196
+ patching_status.and_conditions(
197
+ [
198
+ (self.penalty == "l2", "Only l2 penalty is supported."),
199
+ (self.dual == False, "dual=True is not supported."),
200
+ (
201
+ self.intercept_scaling == 1,
202
+ "Intercept scaling is not supported.",
203
+ ),
204
+ (self.class_weight is None, "Class weight is not supported"),
205
+ (self.solver == "newton-cg", "Only newton-cg solver is supported."),
206
+ (
207
+ self.multi_class != "multinomial",
208
+ "multi_class parameter is not supported.",
209
+ ),
210
+ (self.warm_start == False, "Warm start is not supported."),
211
+ (self.l1_ratio is None, "l1 ratio is not supported."),
212
+ (sample_weight is None, "Sample weight is not supported."),
213
+ (
214
+ target_type == "binary",
215
+ "Only binary classification is supported",
216
+ ),
217
+ ]
218
+ )
219
+
220
+ return patching_status
221
+
222
+ def _onedal_gpu_predict_supported(self, method_name, *data):
223
+ assert method_name in [
224
+ "predict",
225
+ "predict_proba",
226
+ "predict_log_proba",
227
+ "score",
228
+ ]
229
+
230
+ class_name = self.__class__.__name__
231
+ patching_status = PatchingConditionsChain(
232
+ f"sklearn.linear_model.{class_name}.{method_name}"
233
+ )
234
+
235
+ n_samples = _num_samples(data[0])
236
+ model_is_sparse = issparse(self.coef_) or (
237
+ self.fit_intercept and issparse(self.intercept_)
238
+ )
239
+ dal_ready = patching_status.and_conditions(
240
+ [
241
+ (n_samples > 0, "Number of samples is less than 1."),
242
+ (
243
+ (not any([issparse(i) for i in data])) or _sparsity_enabled,
244
+ "Sparse input is not supported.",
245
+ ),
246
+ (not model_is_sparse, "Sparse coefficients are not supported."),
247
+ (
248
+ hasattr(self, "_onedal_estimator"),
249
+ "oneDAL model was not trained.",
250
+ ),
251
+ ]
252
+ )
253
+
254
+ return patching_status
255
+
256
+ def _onedal_gpu_supported(self, method_name, *data):
257
+ if method_name == "fit":
258
+ return self._onedal_gpu_fit_supported(method_name, *data)
259
+ if method_name in ["predict", "predict_proba", "predict_log_proba", "score"]:
260
+ return self._onedal_gpu_predict_supported(method_name, *data)
261
+ raise RuntimeError(
262
+ f"Unknown method {method_name} in {self.__class__.__name__}"
263
+ )
264
+
265
+ def _onedal_cpu_supported(self, method_name, *data):
266
+ class_name = self.__class__.__name__
267
+ patching_status = PatchingConditionsChain(
268
+ f"sklearn.linear_model.{class_name}.{method_name}"
269
+ )
270
+
271
+ return patching_status
272
+
273
+ def _initialize_onedal_estimator(self):
274
+ onedal_params = {
275
+ "tol": self.tol,
276
+ "C": self.C,
277
+ "fit_intercept": self.fit_intercept,
278
+ "solver": self.solver,
279
+ "max_iter": self.max_iter,
280
+ }
281
+ self._onedal_estimator = onedal_LogisticRegression(**onedal_params)
282
+
283
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
284
+ if queue is None or queue.sycl_device.is_cpu:
285
+ return self._onedal_cpu_fit(X, y, sample_weight)
286
+
287
+ assert sample_weight is None
288
+
289
+ if sklearn_check_version("1.0"):
290
+ X, y = self._validate_data(
291
+ X,
292
+ y,
293
+ accept_sparse=_sparsity_enabled,
294
+ accept_large_sparse=_sparsity_enabled,
295
+ dtype=[np.float64, np.float32],
296
+ )
297
+ else:
298
+ X, y = check_X_y(
299
+ X,
300
+ y,
301
+ accept_sparse=_sparsity_enabled,
302
+ accept_large_sparse=_sparsity_enabled,
303
+ dtype=[np.float64, np.float32],
304
+ )
305
+
306
+ self._initialize_onedal_estimator()
307
+ try:
308
+ self._onedal_estimator.fit(X, y, queue=queue)
309
+ self._save_attributes()
310
+ except RuntimeError:
311
+ logging.getLogger("sklearnex").info(
312
+ f"{self.__class__.__name__}.fit "
313
+ + get_patch_message("sklearn_after_onedal")
314
+ )
315
+
316
+ del self._onedal_estimator
317
+ super().fit(X, y)
318
+
319
+ def _onedal_predict(self, X, queue=None):
320
+ if queue is None or queue.sycl_device.is_cpu:
321
+ return daal4py_predict(self, X, "computeClassLabels")
322
+
323
+ check_is_fitted(self)
324
+ if sklearn_check_version("1.0"):
325
+ X = self._validate_data(
326
+ X,
327
+ reset=False,
328
+ accept_sparse=_sparsity_enabled,
329
+ accept_large_sparse=_sparsity_enabled,
330
+ dtype=[np.float64, np.float32],
331
+ )
332
+ else:
333
+ X = check_array(
334
+ X,
335
+ accept_sparse=_sparsity_enabled,
336
+ accept_large_sparse=_sparsity_enabled,
337
+ dtype=[np.float64, np.float32],
338
+ )
339
+
340
+ assert hasattr(self, "_onedal_estimator")
341
+ return self._onedal_estimator.predict(X, queue=queue)
342
+
343
+ def _onedal_predict_proba(self, X, queue=None):
344
+ if queue is None or queue.sycl_device.is_cpu:
345
+ return daal4py_predict(self, X, "computeClassProbabilities")
346
+
347
+ check_is_fitted(self)
348
+ if sklearn_check_version("1.0"):
349
+ X = self._validate_data(
350
+ X,
351
+ reset=False,
352
+ accept_sparse=_sparsity_enabled,
353
+ accept_large_sparse=_sparsity_enabled,
354
+ dtype=[np.float64, np.float32],
355
+ )
356
+ else:
357
+ X = check_array(
358
+ X,
359
+ accept_sparse=_sparsity_enabled,
360
+ accept_large_sparse=_sparsity_enabled,
361
+ dtype=[np.float64, np.float32],
362
+ )
363
+
364
+ assert hasattr(self, "_onedal_estimator")
365
+ return self._onedal_estimator.predict_proba(X, queue=queue)
366
+
367
+ def _onedal_predict_log_proba(self, X, queue=None):
368
+ if queue is None or queue.sycl_device.is_cpu:
369
+ return daal4py_predict(self, X, "computeClassLogProbabilities")
370
+
371
+ check_is_fitted(self)
372
+ if sklearn_check_version("1.0"):
373
+ X = self._validate_data(
374
+ X,
375
+ reset=False,
376
+ accept_sparse=_sparsity_enabled,
377
+ accept_large_sparse=_sparsity_enabled,
378
+ dtype=[np.float64, np.float32],
379
+ )
380
+ else:
381
+ X = check_array(
382
+ X,
383
+ accept_sparse=_sparsity_enabled,
384
+ accept_large_sparse=_sparsity_enabled,
385
+ dtype=[np.float64, np.float32],
386
+ )
387
+
388
+ assert hasattr(self, "_onedal_estimator")
389
+ return self._onedal_estimator.predict_log_proba(X, queue=queue)
390
+
391
+ fit.__doc__ = sklearn_LogisticRegression.fit.__doc__
392
+ predict.__doc__ = sklearn_LogisticRegression.predict.__doc__
393
+ predict_proba.__doc__ = sklearn_LogisticRegression.predict_proba.__doc__
394
+ predict_log_proba.__doc__ = sklearn_LogisticRegression.predict_log_proba.__doc__
395
+ score.__doc__ = sklearn_LogisticRegression.score.__doc__
396
+
397
+ else:
398
+ LogisticRegression = LogisticRegression_daal4py
399
+
400
+ logging.warning(
401
+ "Sklearnex LogisticRegression requires oneDAL version >= 2024.0.1 "
402
+ "but it was not found"
403
+ )
@@ -0,0 +1,24 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn.linear_model import Ridge
18
+ from onedal._device_offload import support_input_format
19
+
20
+ # Note: `sklearnex.linear_model.Ridge` only has functional
21
+ # sycl GPU support. No GPU device will be offloaded.
22
+ Ridge.fit = support_input_format(queue_param=False)(Ridge.fit)
23
+ Ridge.predict = support_input_format(queue_param=False)(Ridge.predict)
24
+ Ridge.score = support_input_format(queue_param=False)(Ridge.score)
@@ -0,0 +1,203 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.linear_model import IncrementalLinearRegression
27
+
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ @pytest.mark.parametrize("fit_intercept", [True, False])
31
+ @pytest.mark.parametrize("macro_block", [None, 1024])
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
34
+ X = np.array([[1], [2]])
35
+ X = X.astype(dtype=dtype)
36
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
37
+ y = np.array([[1], [2]])
38
+ y = y.astype(dtype=dtype)
39
+ y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
40
+
41
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
42
+ if macro_block is not None:
43
+ hparams = inclin.get_hyperparameters("fit")
44
+ hparams.cpu_macro_block = macro_block
45
+ hparams.gpu_macro_block = macro_block
46
+ inclin.fit(X_df, y_df)
47
+
48
+ y_pred = inclin.predict(X_df)
49
+ np_y_pred = _as_numpy(y_pred)
50
+
51
+ tol = 2e-6 if dtype == np.float32 else 1e-7
52
+ assert_allclose(inclin.coef_, [1], atol=tol)
53
+ if fit_intercept:
54
+ assert_allclose(inclin.intercept_, [0], atol=tol)
55
+ assert_allclose(np_y_pred, y, atol=tol)
56
+
57
+
58
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
59
+ @pytest.mark.parametrize("fit_intercept", [True, False])
60
+ @pytest.mark.parametrize("macro_block", [None, 1024])
61
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
62
+ def test_sklearnex_partial_fit_on_gold_data(
63
+ dataframe, queue, fit_intercept, macro_block, dtype
64
+ ):
65
+ X = np.array([[1], [2], [3], [4]])
66
+ X = X.astype(dtype=dtype)
67
+ y = X + 3
68
+ y = y.astype(dtype=dtype)
69
+ X_split = np.array_split(X, 2)
70
+ y_split = np.array_split(y, 2)
71
+
72
+ inclin = IncrementalLinearRegression()
73
+ if macro_block is not None:
74
+ hparams = inclin.get_hyperparameters("fit")
75
+ hparams.cpu_macro_block = macro_block
76
+ hparams.gpu_macro_block = macro_block
77
+ for i in range(2):
78
+ X_split_df = _convert_to_dataframe(
79
+ X_split[i], sycl_queue=queue, target_df=dataframe
80
+ )
81
+ y_split_df = _convert_to_dataframe(
82
+ y_split[i], sycl_queue=queue, target_df=dataframe
83
+ )
84
+ inclin.partial_fit(X_split_df, y_split_df)
85
+
86
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
87
+ y_pred = inclin.predict(X_df)
88
+ np_y_pred = _as_numpy(y_pred)
89
+
90
+ assert inclin.n_features_in_ == 1
91
+ tol = 1e-5 if dtype == np.float32 else 1e-7
92
+ assert_allclose(inclin.coef_, [[1]], atol=tol)
93
+ if fit_intercept:
94
+ assert_allclose(inclin.intercept_, 3, atol=tol)
95
+
96
+ assert_allclose(np_y_pred, y, atol=tol)
97
+
98
+
99
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
100
+ @pytest.mark.parametrize("fit_intercept", [True, False])
101
+ @pytest.mark.parametrize("macro_block", [None, 1024])
102
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
103
+ def test_sklearnex_partial_fit_multitarget_on_gold_data(
104
+ dataframe, queue, fit_intercept, macro_block, dtype
105
+ ):
106
+ X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
107
+ X = X.astype(dtype=dtype)
108
+ y = np.dot(X, [1, 2]) + 3
109
+ y = y.astype(dtype=dtype)
110
+ X_split = np.array_split(X, 2)
111
+ y_split = np.array_split(y, 2)
112
+
113
+ inclin = IncrementalLinearRegression()
114
+ if macro_block is not None:
115
+ hparams = inclin.get_hyperparameters("fit")
116
+ hparams.cpu_macro_block = macro_block
117
+ hparams.gpu_macro_block = macro_block
118
+ for i in range(2):
119
+ X_split_df = _convert_to_dataframe(
120
+ X_split[i], sycl_queue=queue, target_df=dataframe
121
+ )
122
+ y_split_df = _convert_to_dataframe(
123
+ y_split[i], sycl_queue=queue, target_df=dataframe
124
+ )
125
+ inclin.partial_fit(X_split_df, y_split_df)
126
+
127
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
128
+ y_pred = inclin.predict(X_df)
129
+ np_y_pred = _as_numpy(y_pred)
130
+
131
+ assert inclin.n_features_in_ == 2
132
+ tol = 7e-6 if dtype == np.float32 else 1e-7
133
+ assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
134
+ if fit_intercept:
135
+ assert_allclose(inclin.intercept_, 3.0, atol=tol)
136
+
137
+ assert_allclose(np_y_pred, y, atol=tol)
138
+
139
+
140
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
141
+ @pytest.mark.parametrize("fit_intercept", [True, False])
142
+ @pytest.mark.parametrize("num_samples", [100, 1000])
143
+ @pytest.mark.parametrize("num_features", [5, 10])
144
+ @pytest.mark.parametrize("num_targets", [1, 2])
145
+ @pytest.mark.parametrize("num_blocks", [1, 10])
146
+ @pytest.mark.parametrize("macro_block", [None, 1024])
147
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
148
+ def test_sklearnex_partial_fit_on_random_data(
149
+ dataframe,
150
+ queue,
151
+ fit_intercept,
152
+ num_samples,
153
+ num_features,
154
+ num_targets,
155
+ num_blocks,
156
+ macro_block,
157
+ dtype,
158
+ ):
159
+ seed = 42
160
+ gen = np.random.default_rng(seed)
161
+ intercept = gen.random(size=num_targets, dtype=dtype)
162
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
163
+
164
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
165
+ if fit_intercept:
166
+ y = X @ coef + intercept[np.newaxis, :]
167
+ else:
168
+ y = X @ coef
169
+
170
+ X_split = np.array_split(X, num_blocks)
171
+ y_split = np.array_split(y, num_blocks)
172
+
173
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
174
+ if macro_block is not None:
175
+ hparams = inclin.get_hyperparameters("fit")
176
+ hparams.cpu_macro_block = macro_block
177
+ hparams.gpu_macro_block = macro_block
178
+ for i in range(num_blocks):
179
+ X_split_df = _convert_to_dataframe(
180
+ X_split[i], sycl_queue=queue, target_df=dataframe
181
+ )
182
+ y_split_df = _convert_to_dataframe(
183
+ y_split[i], sycl_queue=queue, target_df=dataframe
184
+ )
185
+ inclin.partial_fit(X_split_df, y_split_df)
186
+
187
+ tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
188
+ assert_allclose(coef.T.squeeze(), inclin.coef_, atol=tol)
189
+
190
+ if fit_intercept:
191
+ assert_allclose(intercept, inclin.intercept_, atol=tol)
192
+
193
+ X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
194
+ if fit_intercept:
195
+ expected_y_pred = (X_test @ coef + intercept[np.newaxis, :]).squeeze()
196
+ else:
197
+ expected_y_pred = (X_test @ coef).squeeze()
198
+
199
+ X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
200
+
201
+ y_pred = inclin.predict(X_test_df)
202
+
203
+ assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)