scikit-learn-intelex 2024.4.0__py312-none-win_amd64.whl → 2025.10.0__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn}/decomposition/__init__.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -28
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +3 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +4 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils}/__init__.py +5 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp312-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal}/neighbors/__init__.py +19 -19
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/__init__.py +7 -3
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/__main__.py +2 -2
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +128 -78
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +101 -32
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +38 -29
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/conftest.py +20 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +199 -21
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +207 -2
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -17
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +288 -440
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +1 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +17 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +11 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +30 -62
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +56 -9
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +45 -101
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +63 -94
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +49 -25
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +6 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +54 -8
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +9 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +3 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +6 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +7 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +1 -3
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +99 -117
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +55 -16
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +95 -113
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +51 -16
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +43 -20
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +5 -4
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +122 -75
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -1
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py +0 -110
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -250
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py +0 -109
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -17
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -30
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -143
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -335
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -56
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -113
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -316
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -17
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +0 -385
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -117
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -91
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -26
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -303
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -133
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -50
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -71
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +0 -164
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -39
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -99
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -20
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +0 -97
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -59
- scikit_learn_intelex-2024.4.0.dist-info/METADATA +0 -230
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2025.10.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2025.10.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from abc import ABCMeta, abstractmethod
|
|
18
|
+
from numbers import Number
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
from daal4py.sklearn._utils import daal_check_version, get_dtype, make2d
|
|
23
|
+
from onedal._device_offload import supports_queue
|
|
24
|
+
from onedal.common._backend import bind_default_backend
|
|
25
|
+
from onedal.utils import _sycl_queue_manager as QM
|
|
26
|
+
|
|
27
|
+
from .._config import _get_config
|
|
28
|
+
from ..common._estimator_checks import _check_is_fitted
|
|
29
|
+
from ..common._mixin import ClassifierMixin
|
|
30
|
+
from ..datatypes import from_table, to_table
|
|
31
|
+
from ..utils._array_api import _get_sycl_namespace
|
|
32
|
+
from ..utils.validation import (
|
|
33
|
+
_check_array,
|
|
34
|
+
_check_n_features,
|
|
35
|
+
_check_X_y,
|
|
36
|
+
_is_csr,
|
|
37
|
+
_num_features,
|
|
38
|
+
_type_of_target,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class BaseLogisticRegression(metaclass=ABCMeta):
|
|
43
|
+
@abstractmethod
|
|
44
|
+
def __init__(self, tol, C, fit_intercept, solver, max_iter, algorithm):
|
|
45
|
+
self.tol = tol
|
|
46
|
+
self.C = C
|
|
47
|
+
self.fit_intercept = fit_intercept
|
|
48
|
+
self.solver = solver
|
|
49
|
+
self.max_iter = max_iter
|
|
50
|
+
self.algorithm = algorithm
|
|
51
|
+
|
|
52
|
+
@abstractmethod
|
|
53
|
+
def train(self, params, X, y): ...
|
|
54
|
+
|
|
55
|
+
@abstractmethod
|
|
56
|
+
def infer(self, params, X): ...
|
|
57
|
+
|
|
58
|
+
# direct access to the backend model constructor
|
|
59
|
+
@abstractmethod
|
|
60
|
+
def model(self): ...
|
|
61
|
+
|
|
62
|
+
def _get_onedal_params(self, is_csr, dtype=np.float32):
|
|
63
|
+
intercept = "intercept|" if self.fit_intercept else ""
|
|
64
|
+
return {
|
|
65
|
+
"fptype": dtype,
|
|
66
|
+
"method": "sparse" if is_csr else self.algorithm,
|
|
67
|
+
"intercept": self.fit_intercept,
|
|
68
|
+
"tol": self.tol,
|
|
69
|
+
"max_iter": self.max_iter,
|
|
70
|
+
"C": self.C,
|
|
71
|
+
"optimizer": self.solver,
|
|
72
|
+
"result_option": (
|
|
73
|
+
intercept
|
|
74
|
+
+ "coefficients|iterations_count"
|
|
75
|
+
+ ("|inner_iterations_count" if self.solver == "newton-cg" else "")
|
|
76
|
+
),
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
def _fit(self, X, y):
|
|
80
|
+
use_raw_input = _get_config()["use_raw_input"] is True
|
|
81
|
+
|
|
82
|
+
sparsity_enabled = daal_check_version((2024, "P", 700))
|
|
83
|
+
if not use_raw_input:
|
|
84
|
+
X, y = _check_X_y(
|
|
85
|
+
X,
|
|
86
|
+
y,
|
|
87
|
+
accept_sparse=sparsity_enabled,
|
|
88
|
+
force_all_finite=True,
|
|
89
|
+
accept_2d_y=False,
|
|
90
|
+
dtype=[np.float64, np.float32],
|
|
91
|
+
)
|
|
92
|
+
if _type_of_target(y) != "binary":
|
|
93
|
+
raise ValueError("Only binary classification is supported")
|
|
94
|
+
|
|
95
|
+
self.classes_, y = np.unique(y, return_inverse=True)
|
|
96
|
+
y = y.astype(dtype=np.int32)
|
|
97
|
+
else:
|
|
98
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
99
|
+
# try catch needed for raw_inputs + array_api data where unlike
|
|
100
|
+
# numpy the way to yield unique values is via `unique_values`
|
|
101
|
+
# This should be removed when refactored for gpu zero-copy
|
|
102
|
+
try:
|
|
103
|
+
self.classes_ = xp.unique(y)
|
|
104
|
+
except AttributeError:
|
|
105
|
+
self.classes_ = xp.unique_values(y)
|
|
106
|
+
|
|
107
|
+
n_classes = len(self.classes_)
|
|
108
|
+
if n_classes != 2:
|
|
109
|
+
raise ValueError("Only binary classification is supported")
|
|
110
|
+
is_csr = _is_csr(X)
|
|
111
|
+
|
|
112
|
+
self.n_features_in_ = _num_features(X, fallback_1d=True)
|
|
113
|
+
X_table, y_table = to_table(X, y, queue=QM.get_global_queue())
|
|
114
|
+
params = self._get_onedal_params(is_csr, X_table.dtype)
|
|
115
|
+
|
|
116
|
+
result = self.train(params, X_table, y_table)
|
|
117
|
+
|
|
118
|
+
self._onedal_model = result.model
|
|
119
|
+
self.n_iter_ = np.array([result.iterations_count])
|
|
120
|
+
|
|
121
|
+
# _n_inner_iter is the total number of cg-solver iterations
|
|
122
|
+
if daal_check_version((2024, "P", 300)) and self.solver == "newton-cg":
|
|
123
|
+
self._n_inner_iter = result.inner_iterations_count
|
|
124
|
+
|
|
125
|
+
coeff = from_table(result.model.packed_coefficients)
|
|
126
|
+
self.coef_, self.intercept_ = coeff[:, 1:], coeff[:, 0]
|
|
127
|
+
|
|
128
|
+
return self
|
|
129
|
+
|
|
130
|
+
def _create_model(self):
|
|
131
|
+
m = self.model()
|
|
132
|
+
|
|
133
|
+
coefficients = self.coef_
|
|
134
|
+
dtype = get_dtype(coefficients)
|
|
135
|
+
coefficients = np.asarray(coefficients, dtype=dtype)
|
|
136
|
+
|
|
137
|
+
if coefficients.ndim == 2:
|
|
138
|
+
n_features_in = coefficients.shape[1]
|
|
139
|
+
assert coefficients.shape[0] == 1
|
|
140
|
+
else:
|
|
141
|
+
n_features_in = coefficients.size
|
|
142
|
+
|
|
143
|
+
intercept = self.intercept_
|
|
144
|
+
if not isinstance(intercept, Number):
|
|
145
|
+
intercept = np.asarray(intercept, dtype=dtype)
|
|
146
|
+
assert intercept.size == 1
|
|
147
|
+
|
|
148
|
+
intercept = _check_array(
|
|
149
|
+
intercept,
|
|
150
|
+
dtype=[np.float64, np.float32],
|
|
151
|
+
force_all_finite=True,
|
|
152
|
+
ensure_2d=False,
|
|
153
|
+
)
|
|
154
|
+
coefficients = _check_array(
|
|
155
|
+
coefficients,
|
|
156
|
+
dtype=[np.float64, np.float32],
|
|
157
|
+
force_all_finite=True,
|
|
158
|
+
ensure_2d=False,
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
coefficients, intercept = make2d(coefficients), make2d(intercept)
|
|
162
|
+
|
|
163
|
+
assert coefficients.shape == (1, n_features_in)
|
|
164
|
+
assert intercept.shape == (1, 1)
|
|
165
|
+
|
|
166
|
+
desired_shape = (1, n_features_in + 1)
|
|
167
|
+
packed_coefficients = np.zeros(desired_shape, dtype=dtype)
|
|
168
|
+
|
|
169
|
+
packed_coefficients[:, 1:] = coefficients
|
|
170
|
+
if self.fit_intercept:
|
|
171
|
+
packed_coefficients[:, 0][:, np.newaxis] = intercept
|
|
172
|
+
|
|
173
|
+
m.packed_coefficients = to_table(packed_coefficients, queue=QM.get_global_queue())
|
|
174
|
+
|
|
175
|
+
self._onedal_model = m
|
|
176
|
+
|
|
177
|
+
return m
|
|
178
|
+
|
|
179
|
+
def _infer(self, X):
|
|
180
|
+
_check_is_fitted(self)
|
|
181
|
+
|
|
182
|
+
sparsity_enabled = daal_check_version((2024, "P", 700))
|
|
183
|
+
|
|
184
|
+
if not _get_config()["use_raw_input"]:
|
|
185
|
+
X = _check_array(
|
|
186
|
+
X,
|
|
187
|
+
dtype=[np.float64, np.float32],
|
|
188
|
+
accept_sparse=sparsity_enabled,
|
|
189
|
+
force_all_finite=True,
|
|
190
|
+
ensure_2d=False,
|
|
191
|
+
accept_large_sparse=sparsity_enabled,
|
|
192
|
+
)
|
|
193
|
+
is_csr = _is_csr(X)
|
|
194
|
+
_check_n_features(self, X, False)
|
|
195
|
+
|
|
196
|
+
X = make2d(X)
|
|
197
|
+
|
|
198
|
+
if hasattr(self, "_onedal_model"):
|
|
199
|
+
model = self._onedal_model
|
|
200
|
+
else:
|
|
201
|
+
model = self._create_model()
|
|
202
|
+
|
|
203
|
+
X_table = to_table(X, queue=QM.get_global_queue())
|
|
204
|
+
params = self._get_onedal_params(is_csr, X.dtype)
|
|
205
|
+
|
|
206
|
+
result = self.infer(params, model, X_table)
|
|
207
|
+
return result
|
|
208
|
+
|
|
209
|
+
def _predict(self, X):
|
|
210
|
+
result = self._infer(X)
|
|
211
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
212
|
+
y = from_table(result.responses, like=X)
|
|
213
|
+
y = xp.take(xp.asarray(self.classes_), xp.reshape(y, (-1,)), axis=0)
|
|
214
|
+
return y
|
|
215
|
+
|
|
216
|
+
def _predict_proba(self, X):
|
|
217
|
+
result = self._infer(X)
|
|
218
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
219
|
+
y = from_table(result.probabilities, like=X)
|
|
220
|
+
y = xp.reshape(y, -1)
|
|
221
|
+
return xp.stack([1 - y, y], axis=1)
|
|
222
|
+
|
|
223
|
+
def _predict_log_proba(self, X):
|
|
224
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
225
|
+
y_proba = self._predict_proba(X)
|
|
226
|
+
# These are the same thresholds used by oneDAL during the model fitting procedure
|
|
227
|
+
if y_proba.dtype == np.float32:
|
|
228
|
+
min_prob = 1e-7
|
|
229
|
+
max_prob = 1.0 - 1e-7
|
|
230
|
+
else:
|
|
231
|
+
min_prob = 1e-15
|
|
232
|
+
max_prob = 1.0 - 1e-15
|
|
233
|
+
y_proba = xp.clip(y_proba, min_prob, max_prob)
|
|
234
|
+
return xp.log(y_proba)
|
|
235
|
+
|
|
236
|
+
def _decision_function(self, X):
|
|
237
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
238
|
+
raw = xp.matmul(X, xp.reshape(self.coef_, -1))
|
|
239
|
+
if self.fit_intercept:
|
|
240
|
+
raw += self.intercept_
|
|
241
|
+
return raw
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
class LogisticRegression(ClassifierMixin, BaseLogisticRegression):
|
|
245
|
+
|
|
246
|
+
def __init__(
|
|
247
|
+
self,
|
|
248
|
+
tol=1e-4,
|
|
249
|
+
C=1.0,
|
|
250
|
+
fit_intercept=True,
|
|
251
|
+
solver="newton-cg",
|
|
252
|
+
max_iter=100,
|
|
253
|
+
*,
|
|
254
|
+
algorithm="dense_batch",
|
|
255
|
+
**kwargs,
|
|
256
|
+
):
|
|
257
|
+
super().__init__(
|
|
258
|
+
tol=tol,
|
|
259
|
+
C=C,
|
|
260
|
+
fit_intercept=fit_intercept,
|
|
261
|
+
solver=solver,
|
|
262
|
+
max_iter=max_iter,
|
|
263
|
+
algorithm=algorithm,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
@bind_default_backend("logistic_regression.classification")
|
|
267
|
+
def train(self, params, X, y, queue=None): ...
|
|
268
|
+
|
|
269
|
+
@bind_default_backend("logistic_regression.classification")
|
|
270
|
+
def infer(self, params, X, model, queue=None): ...
|
|
271
|
+
|
|
272
|
+
@bind_default_backend("logistic_regression.classification")
|
|
273
|
+
def model(self): ...
|
|
274
|
+
|
|
275
|
+
@supports_queue
|
|
276
|
+
def fit(self, X, y, queue=None):
|
|
277
|
+
return self._fit(X, y)
|
|
278
|
+
|
|
279
|
+
@supports_queue
|
|
280
|
+
def predict(self, X, queue=None):
|
|
281
|
+
return self._predict(X)
|
|
282
|
+
|
|
283
|
+
@supports_queue
|
|
284
|
+
def predict_proba(self, X, queue=None):
|
|
285
|
+
return self._predict_proba(X)
|
|
286
|
+
|
|
287
|
+
@supports_queue
|
|
288
|
+
def predict_log_proba(self, X, queue=None):
|
|
289
|
+
return self._predict_log_proba(X)
|
|
290
|
+
|
|
291
|
+
@supports_queue
|
|
292
|
+
def decision_function(self, X, queue=None):
|
|
293
|
+
return self._decision_function(X)
|
|
@@ -0,0 +1,213 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from sklearn.datasets import load_diabetes
|
|
21
|
+
from sklearn.metrics import mean_squared_error
|
|
22
|
+
from sklearn.model_selection import train_test_split
|
|
23
|
+
|
|
24
|
+
from onedal.datatypes import from_table
|
|
25
|
+
from onedal.linear_model import IncrementalLinearRegression
|
|
26
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
30
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
31
|
+
def test_diabetes(queue, dtype):
|
|
32
|
+
X, y = load_diabetes(return_X_y=True)
|
|
33
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
34
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
35
|
+
X, y, train_size=0.8, random_state=777
|
|
36
|
+
)
|
|
37
|
+
X_train_split = np.array_split(X_train, 2)
|
|
38
|
+
y_train_split = np.array_split(y_train, 2)
|
|
39
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
40
|
+
for i in range(2):
|
|
41
|
+
model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
|
|
42
|
+
model.finalize_fit()
|
|
43
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
44
|
+
assert mean_squared_error(y_test, y_pred) < 2396
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
48
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
49
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
50
|
+
def test_full_results(queue, num_blocks, dtype):
|
|
51
|
+
seed = 42
|
|
52
|
+
num_features, num_targets = 19, 7
|
|
53
|
+
num_samples_train, num_samples_test = 3500, 1999
|
|
54
|
+
|
|
55
|
+
gen = np.random.default_rng(seed)
|
|
56
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
57
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
58
|
+
|
|
59
|
+
X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
|
|
60
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
61
|
+
X_split = np.array_split(X, num_blocks)
|
|
62
|
+
y_split = np.array_split(y, num_blocks)
|
|
63
|
+
|
|
64
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
65
|
+
for i in range(num_blocks):
|
|
66
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
67
|
+
model.finalize_fit()
|
|
68
|
+
|
|
69
|
+
if queue and queue.sycl_device.is_gpu:
|
|
70
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
71
|
+
else:
|
|
72
|
+
tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
73
|
+
atol = 1e-4 if model.coef_.dtype == np.float32 else 1e-6
|
|
74
|
+
assert_allclose(coef, model.coef_.T, rtol=tol, atol=atol)
|
|
75
|
+
|
|
76
|
+
tol = 3e-3 if model.intercept_.dtype == np.float32 else 1e-5
|
|
77
|
+
assert_allclose(intercept, model.intercept_, rtol=tol)
|
|
78
|
+
|
|
79
|
+
Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
|
|
80
|
+
gtr = Xt @ coef + intercept[np.newaxis, :]
|
|
81
|
+
|
|
82
|
+
res = model.predict(Xt, queue=queue)
|
|
83
|
+
|
|
84
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
85
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
89
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
90
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
91
|
+
def test_no_intercept_results(queue, num_blocks, dtype):
|
|
92
|
+
seed = 42
|
|
93
|
+
num_features, num_targets = 19, 7
|
|
94
|
+
num_samples_train, num_samples_test = 3500, 1999
|
|
95
|
+
|
|
96
|
+
gen = np.random.default_rng(seed)
|
|
97
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
98
|
+
|
|
99
|
+
X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
|
|
100
|
+
y = X @ coef
|
|
101
|
+
|
|
102
|
+
X_split = np.array_split(X, num_blocks)
|
|
103
|
+
y_split = np.array_split(y, num_blocks)
|
|
104
|
+
|
|
105
|
+
model = IncrementalLinearRegression(fit_intercept=False)
|
|
106
|
+
for i in range(num_blocks):
|
|
107
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
108
|
+
model.finalize_fit()
|
|
109
|
+
|
|
110
|
+
# TODO Find out is it necessary to have accuracy so different for float32 and float64
|
|
111
|
+
if queue and queue.sycl_device.is_gpu:
|
|
112
|
+
tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
113
|
+
else:
|
|
114
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
115
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
116
|
+
|
|
117
|
+
Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
|
|
118
|
+
gtr = Xt @ coef
|
|
119
|
+
|
|
120
|
+
res = model.predict(Xt, queue=queue)
|
|
121
|
+
|
|
122
|
+
tol = 5e-5 if res.dtype == np.float32 else 1e-7
|
|
123
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
127
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
128
|
+
def test_reconstruct_model(queue, dtype):
|
|
129
|
+
seed = 42
|
|
130
|
+
num_samples = 3500
|
|
131
|
+
num_features, num_targets = 14, 9
|
|
132
|
+
|
|
133
|
+
gen = np.random.default_rng(seed)
|
|
134
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
135
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
136
|
+
|
|
137
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
138
|
+
gtr = X @ coef + intercept[np.newaxis, :]
|
|
139
|
+
|
|
140
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
141
|
+
model.coef_ = coef.T
|
|
142
|
+
model.intercept_ = intercept
|
|
143
|
+
|
|
144
|
+
res = model.predict(X, queue=queue)
|
|
145
|
+
|
|
146
|
+
tol = 1e-5 if res.dtype == np.float32 else 1e-7
|
|
147
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
151
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
152
|
+
def test_incremental_estimator_pickle(queue, dtype):
|
|
153
|
+
import pickle
|
|
154
|
+
|
|
155
|
+
from onedal.linear_model import IncrementalLinearRegression
|
|
156
|
+
|
|
157
|
+
inclr = IncrementalLinearRegression()
|
|
158
|
+
|
|
159
|
+
# Check that estimator can be serialized without any data.
|
|
160
|
+
dump = pickle.dumps(inclr)
|
|
161
|
+
inclr_loaded = pickle.loads(dump)
|
|
162
|
+
seed = 77
|
|
163
|
+
gen = np.random.default_rng(seed)
|
|
164
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
165
|
+
X = X.astype(dtype)
|
|
166
|
+
coef = gen.random(size=(1, 10), dtype=dtype).T
|
|
167
|
+
y = X @ coef
|
|
168
|
+
X_split = np.array_split(X, 2)
|
|
169
|
+
y_split = np.array_split(y, 2)
|
|
170
|
+
inclr.partial_fit(X_split[0], y_split[0], queue=queue)
|
|
171
|
+
inclr_loaded.partial_fit(X_split[0], y_split[0], queue=queue)
|
|
172
|
+
|
|
173
|
+
# inclr.finalize_fit()
|
|
174
|
+
|
|
175
|
+
assert inclr._need_to_finalize == True
|
|
176
|
+
assert inclr_loaded._need_to_finalize == True
|
|
177
|
+
|
|
178
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
179
|
+
dump = pickle.dumps(inclr)
|
|
180
|
+
inclr_loaded = pickle.loads(dump)
|
|
181
|
+
|
|
182
|
+
partial_xtx = from_table(inclr._partial_result.partial_xtx)
|
|
183
|
+
partial_xtx_loaded = from_table(inclr_loaded._partial_result.partial_xtx)
|
|
184
|
+
assert_allclose(partial_xtx, partial_xtx_loaded)
|
|
185
|
+
|
|
186
|
+
partial_xty = from_table(inclr._partial_result.partial_xty)
|
|
187
|
+
partial_xty_loaded = from_table(inclr_loaded._partial_result.partial_xty)
|
|
188
|
+
assert_allclose(partial_xty, partial_xty_loaded)
|
|
189
|
+
|
|
190
|
+
assert inclr._need_to_finalize == False
|
|
191
|
+
# Finalize is called during serialization to make sure partial results are finalized correctly.
|
|
192
|
+
assert inclr_loaded._need_to_finalize == False
|
|
193
|
+
|
|
194
|
+
inclr.partial_fit(X_split[1], y_split[1], queue=queue)
|
|
195
|
+
inclr_loaded.partial_fit(X_split[1], y_split[1], queue=queue)
|
|
196
|
+
assert inclr._need_to_finalize == True
|
|
197
|
+
assert inclr_loaded._need_to_finalize == True
|
|
198
|
+
|
|
199
|
+
dump = pickle.dumps(inclr_loaded)
|
|
200
|
+
inclr_loaded = pickle.loads(dump)
|
|
201
|
+
|
|
202
|
+
assert inclr._need_to_finalize == True
|
|
203
|
+
assert inclr_loaded._need_to_finalize == False
|
|
204
|
+
|
|
205
|
+
inclr.finalize_fit()
|
|
206
|
+
inclr_loaded.finalize_fit()
|
|
207
|
+
|
|
208
|
+
# Check that finalized estimator can be serialized.
|
|
209
|
+
dump = pickle.dumps(inclr_loaded)
|
|
210
|
+
inclr_loaded = pickle.loads(dump)
|
|
211
|
+
|
|
212
|
+
assert_allclose(inclr.coef_, inclr_loaded.coef_, atol=1e-6)
|
|
213
|
+
assert_allclose(inclr.intercept_, inclr_loaded.intercept_, atol=1e-6)
|
|
@@ -0,0 +1,171 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 600)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
23
|
+
from sklearn.datasets import load_diabetes
|
|
24
|
+
from sklearn.metrics import mean_squared_error
|
|
25
|
+
from sklearn.model_selection import train_test_split
|
|
26
|
+
|
|
27
|
+
from onedal.datatypes import from_table
|
|
28
|
+
from onedal.linear_model import IncrementalRidge
|
|
29
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
30
|
+
|
|
31
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_diabetes(queue, dtype):
|
|
34
|
+
X, y = load_diabetes(return_X_y=True)
|
|
35
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
36
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
37
|
+
X, y, train_size=0.8, random_state=777
|
|
38
|
+
)
|
|
39
|
+
X_train_split = np.array_split(X_train, 2)
|
|
40
|
+
y_train_split = np.array_split(y_train, 2)
|
|
41
|
+
model = IncrementalRidge(fit_intercept=True, alpha=0.1)
|
|
42
|
+
for i in range(2):
|
|
43
|
+
model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
|
|
44
|
+
model.finalize_fit()
|
|
45
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
46
|
+
assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
|
|
47
|
+
|
|
48
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
49
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
50
|
+
@pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
|
|
51
|
+
def test_pickle(queue, dtype):
|
|
52
|
+
# TODO Implement pickling for oneDAL entities
|
|
53
|
+
X, y = load_diabetes(return_X_y=True)
|
|
54
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
55
|
+
model = IncrementalRidge(fit_intercept=True, alpha=0.5)
|
|
56
|
+
model.partial_fit(X, y, queue=queue)
|
|
57
|
+
model.finalize_fit()
|
|
58
|
+
expected = model.predict(X, queue=queue)
|
|
59
|
+
|
|
60
|
+
import pickle
|
|
61
|
+
|
|
62
|
+
dump = pickle.dumps(model)
|
|
63
|
+
model2 = pickle.loads(dump)
|
|
64
|
+
|
|
65
|
+
assert isinstance(model2, model.__class__)
|
|
66
|
+
result = model2.predict(X, queue=queue)
|
|
67
|
+
|
|
68
|
+
assert_array_equal(expected, result)
|
|
69
|
+
|
|
70
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
71
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
72
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
73
|
+
def test_no_intercept_results(queue, num_blocks, dtype):
|
|
74
|
+
seed = 42
|
|
75
|
+
n_features, n_targets = 19, 7
|
|
76
|
+
n_train_samples, n_test_samples = 3500, 1999
|
|
77
|
+
|
|
78
|
+
gen = np.random.default_rng(seed)
|
|
79
|
+
|
|
80
|
+
X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
|
|
81
|
+
y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
|
|
82
|
+
X_split = np.array_split(X, num_blocks)
|
|
83
|
+
y_split = np.array_split(y, num_blocks)
|
|
84
|
+
alpha = 0.5
|
|
85
|
+
|
|
86
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
87
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
88
|
+
xt_y = np.dot(X.T, y)
|
|
89
|
+
coef = np.dot(inverse_term, xt_y)
|
|
90
|
+
|
|
91
|
+
model = IncrementalRidge(fit_intercept=False, alpha=alpha)
|
|
92
|
+
for i in range(num_blocks):
|
|
93
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
94
|
+
model.finalize_fit()
|
|
95
|
+
|
|
96
|
+
if queue and queue.sycl_device.is_gpu:
|
|
97
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
98
|
+
else:
|
|
99
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
100
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
101
|
+
|
|
102
|
+
Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
|
|
103
|
+
gtr = Xt @ coef
|
|
104
|
+
|
|
105
|
+
res = model.predict(Xt, queue=queue)
|
|
106
|
+
|
|
107
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
108
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
109
|
+
|
|
110
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
111
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
112
|
+
def test_incremental_estimator_pickle(queue, dtype):
|
|
113
|
+
import pickle
|
|
114
|
+
|
|
115
|
+
model = IncrementalRidge()
|
|
116
|
+
|
|
117
|
+
# Check that estimator can be serialized without any data.
|
|
118
|
+
dump = pickle.dumps(model)
|
|
119
|
+
model_loaded = pickle.loads(dump)
|
|
120
|
+
seed = 77
|
|
121
|
+
gen = np.random.default_rng(seed)
|
|
122
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
123
|
+
X = X.astype(dtype)
|
|
124
|
+
coef = gen.random(size=(1, 10), dtype=dtype).T
|
|
125
|
+
y = X @ coef
|
|
126
|
+
X_split = np.array_split(X, 2)
|
|
127
|
+
y_split = np.array_split(y, 2)
|
|
128
|
+
model.partial_fit(X_split[0], y_split[0], queue=queue)
|
|
129
|
+
model_loaded.partial_fit(X_split[0], y_split[0], queue=queue)
|
|
130
|
+
|
|
131
|
+
# model.finalize_fit()
|
|
132
|
+
|
|
133
|
+
assert model._need_to_finalize == True
|
|
134
|
+
assert model_loaded._need_to_finalize == True
|
|
135
|
+
|
|
136
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
137
|
+
dump = pickle.dumps(model)
|
|
138
|
+
model_loaded = pickle.loads(dump)
|
|
139
|
+
|
|
140
|
+
partial_xtx = from_table(model._partial_result.partial_xtx)
|
|
141
|
+
partial_xtx_loaded = from_table(model_loaded._partial_result.partial_xtx)
|
|
142
|
+
assert_allclose(partial_xtx, partial_xtx_loaded)
|
|
143
|
+
|
|
144
|
+
partial_xty = from_table(model._partial_result.partial_xty)
|
|
145
|
+
partial_xty_loaded = from_table(model_loaded._partial_result.partial_xty)
|
|
146
|
+
assert_allclose(partial_xty, partial_xty_loaded)
|
|
147
|
+
|
|
148
|
+
assert model._need_to_finalize == False
|
|
149
|
+
# Finalize is called during serialization to make sure partial results are finalized correctly.
|
|
150
|
+
assert model_loaded._need_to_finalize == False
|
|
151
|
+
|
|
152
|
+
model.partial_fit(X_split[1], y_split[1], queue=queue)
|
|
153
|
+
model_loaded.partial_fit(X_split[1], y_split[1], queue=queue)
|
|
154
|
+
assert model._need_to_finalize == True
|
|
155
|
+
assert model_loaded._need_to_finalize == True
|
|
156
|
+
|
|
157
|
+
dump = pickle.dumps(model_loaded)
|
|
158
|
+
model_loaded = pickle.loads(dump)
|
|
159
|
+
|
|
160
|
+
assert model._need_to_finalize == True
|
|
161
|
+
assert model_loaded._need_to_finalize == False
|
|
162
|
+
|
|
163
|
+
model.finalize_fit()
|
|
164
|
+
model_loaded.finalize_fit()
|
|
165
|
+
|
|
166
|
+
# Check that finalized estimator can be serialized.
|
|
167
|
+
dump = pickle.dumps(model_loaded)
|
|
168
|
+
model_loaded = pickle.loads(dump)
|
|
169
|
+
|
|
170
|
+
assert_allclose(model.coef_, model_loaded.coef_, atol=1e-6)
|
|
171
|
+
assert_allclose(model.intercept_, model_loaded.intercept_, atol=1e-6)
|